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PREFACE

YOU will have gathered from the title page that this is the second edition of a text in
deductive logic. While aimed primarily at students undertaking an introductory course in
formal logic at either tertiary or upper secondary level, it will also be of use to the general
reader who wishes to improve his skills at reasoning and communicating and who already
knows or is prepared to discover that working with symbols can be both entertaining and
illuminating.

Although the text provides a comprehensive introduction to classical First Order Logic
(Propositional Calculus and Quantification Theory), it does not proceed to the theories of
identity, definite descriptions and relation-types. We plan to produce a supplementary
volume which will cover these extensions to QT as well as other topics in logic e.g.,
further set theory (finite and transfinite), recursion, modal logic and dynamic logic. It is
anticipated that chapters of this supplement will also be available individually. A
Teachers’ Manual to accompany the text is also planned for subsequent publication.

Major changes and revisions have been made to the first edition (1975). Several new
techniques and fresh approaches have been adopted, making the text significantly
different from other works in its treatment of the subject matter. Notable features
include: employment of possible-world semantics; use of Staines arrows to determine
adequacy of formal translation; extensive treatment of logic diagrams; enhancements to
standard evaluation methods (e.g., possible-truth tables, method of assigning possible-
values; possible-truth trees, the one-tree method, use of decidability theorems for QT);
easier development of QT through world-specifications; puzzle-solving heuristics and
motivating chapter puzzles; argument modification.

Our method of presentation features top-down approaches, careful distinction
between formal and propositional results, an abundance of worked examples, chapter
summaries, and thousands of graded exercise questions, with answers. We have devoted
considerable space to discussing the relationship between propositions (and arguments)
expressed in English and their counterparts in the formal languages. The experience of
teaching QT to secondary school students in Queensland indicated that it was preferable
to provide a firm foundation in Monadic QT before going on to QT proper: almost all the
evaluation techniques can be introduced with monadic predicates, without confronting
the complexities of translations involving polyadic predicates.
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1 dntroduction

1.1 WHY STUDY LOGIC?

You probably know that logicians delight in the analysis of arguments. Such analysis
is not only intellectually stimulating but, as we shall see, of great practical importance.
Seven arguments are given below: some of these are quite all right and some are not.

Try your intuitions out on them now, explaining any defects that you find.

If Raquel is a woman, then Raquel is a person.
Obviously, Raquel is a woman.
So Raquel is a person.

If Fred lives in Queensland then he lives in Australia.
But Fred does not live in Queensland.
Hence Fred does not live in Australia.

Anyone who takes my magic elixir will never need to go to the doctor.
Smith never needs to go to the doctor.
We may infer that Smith takes my magic elixir.

Tom has a blue Holden.
All Holdens are cars.
So Tom has a blue car.

Namu is a small whale.
All whales are mammals.
So Namu is a small mammal.

David is taller than Linda.
Paul is taller than David.
It follows that Paul is taller than Linda.

Nothing is better than chicken casserole.
But dogfood is better than nothing.
It follows that dogfood is better than chicken casserole.

Jot down your own ideas about these before reading on.

(1)

(2)

(3)

(4)

&)

(6)

(7N

Of the first three arguments, only (1) is logically correct. One way of showing an
argument is logically defective is to imagine a case where the conclusion (the point
being argued for) is false even when the other information is correct. For instance, with
(2) Fred might live in Tasmania; with (3) Smith might take other medicines or might be
naturally very healthy. One reason for studying logic is that it assists us in drawing

appropriate conclusions from the information available.
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Another important benefit deriving from a study of logic is an increased sensitivity
to the role that language plays in reasoning. The subtle difference in structure between
the logically correct argument (4) and the logically incorrect argument (5) may illustrate
this point. Whereas the phrase “blue Holden” may be analysed simply as “object which is
blue and a Holden” the phrase “small whale”” means “whale which is small relative to
whales”. Namu might be three metres long, which is small relative to whales but not small
relative to mammals.

Many sentences in English are ambiguous: they may be read in more than one way.
People often misinterpret what another is trying to say. Sometimes two people might be
engaged in a heated dispute, not knowing each is trying to say the same thing in different
words. People sometimes fall ‘into logical error by sliding from one meaning to another
during the course of an argument: occasionally this is done deliberately to trap the
unwary: argument (7) is a humorous case in point. Provided we accept as understood the
transitive nature of the ‘is taller than’ relation, argument (6) is logically impeccable.
Argument (7) is obviously defective because of its preposterous conclusion, but to logically
untutored eyes the source of the error may not be obvious because on the surface (7)
appears to have the same form as (6). You may have seen that the trouble lies with the
first sentence: it could be read as “Chicken casserole is the best food” or as “Having no
food is better than having chicken casserole”. With the first reading the sentence is
plausible; but it is the second, highly implausible reading which is needed to tie the
argument into a logically correct structure, since that is the way “nothing” is to be read
in the second sentence.

While the ambiguity of English is useful for poetry (conjuring up many images) and
jokes (long live puns!), there is no place for it in rational discussion. Within logic a number
of special languages have been developed which are totally unambiguous. Given a sentence
or argument in English, logicians are careful to ascertain its exact meaning; if helpful,
they translate it into one of the logical languages before testing it. This is what you will
be doing soon. In order to become competent at such translation you will be forced to
stop and think about what the English really means. Practice at this will help you to both
interpret what others say and express yourself clearly .

With regard to propositions expressed in English, logic helps us to not only clarify
them but also assess their structure and the relationships they bear to one another. Con-
sider for instance the three propositions expressed below.

Today is Monday. (8)
Today is Tuesday. 9)
Today is either Monday or not Monday. (10)

Which of these has got to be true under any circumstance? Which two of these could
not possibly be true at the same time? From your answers it should be obvious that any-
one who believed that (10) was false, or that both (8) and (9) were simultaneously true,
would be logically inconsistent. Part of the aim of logic is to help us be as consistent as

possible in our beliefs. Might one maintain that both (8) and (9) were false and still be
consistent?

As will now be apparent, logic is intimately concerned with propositions and argu-
ments. On the one hand it helps us to draw conclusions from a given set of facts (e.g.,
constructing proofs in mathematics, science, philosophy, everyday life) : on the other
hand it assists in spotting errors in reasoning. Thus it facilitates both good reasoning and
the detection of bad reasoning. Briefly, logic may be described as the science and art of
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reasoning correctly. This does not imply that a person untrained in formal logic is neces-
sarily a poor thinker; one can be a good judo player, for instance, without knowing the
physical and physiological principles involved in throwing a person. However there is no
doubt that anyone who studies logic with the attitude of applying it in one’s everyday
thinking will improve one’s reasoning power and competency at communication (both
active and passive). Herein lies the essential relevance of logic. One may treat logic purely
as an intellectual discipline and derive much satisfaction from it; indeed, doing symbolic
logic is like playing “mathematical games’ and we can get a lot of fun out of it. Logic
is more than a game however; it is the basis of all fields of rational pursuit. So let’s
enjoy the game and apply it.

1.2 PROPOSITIONS

The term “proposition” is a familiar enough one. As a noun it is often used for “state-
ment”, sometimes for “scheme proposed”, and sometimes for other things. In logic we
give the term a precise meaning and stick to this meaning whenever we use the term. The
most important thing about the word “proposition™ as it is used in logic was emphasized
by the brilliant German philosopher and mathematician Gottfried Wilhelm Leibniz in his
short paper “The Nature of Truth” (c. 1686):

I think that this principle is to be sought in the general nature of truths,
and that we are to hold to this above all: every proposition is either
true or false.

If in uttering a sentence a person is actually declaring something to be the case, that
something which he asserts is the proposition he is expressing. Some examples should
make this clear. Consider the following sentences.

“Earth is a planet.” ()
“John Locke was a philosopher.” (2)
“Earth is a star.” (3)
“In 1979 Australia was a republic.” (4)

Of these, (1) and (2) express true propositions and (3) and (4) express false propositions.
What about the next two sentences?

“Earth is the only planet with life on it.” (5)
“John Locke loved sailing.” (6)

For each of (5) and (6) we do not know whether what is asserted is true, or whether it
is false. But we do know it must be either true or false. With (5) for example we know
that either

It is true that Earth is the only planet with life on it.
or

It is false that Earth is the only planet with life on it.
Hence (5) and (6) do express propositions. What is expressed is either true or false.

A sentence is declarative or indicative if it declares or indicates that something is the
case. If a sentence is not declarative, it doesn’t make sense to preface it with “It is true
that” or It is false that”’; here are some examples.
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“Can you understand this?”

“Let ‘L’ stand for ‘Logic is great’.”

“The green thoughts sipped procrastination.”
“Hooray for John Locke!”

“Would that people were more tolerant.”
‘“Please come inside.”

“Shut the door.”

With each of these cases it is clear that what is expressed is neither true nor false. Thus
some sentences do not express propositions. The above cases are examples (in order) of
the list below.

questions
stipulations
nonsense
exclamations
wishes
requests
commands

While questions, stipulations and nonsense never express propositions, the situation
with exclamations, wishes, requests and commands is less straightforward. Consider the
following exclamation.

“Logic is fabulous!” (7

This obviously expresses a true proposition. Now consider the three sentences below.

“Norma wishes you a merry Christmas.” (8)
“May you have a merry Christmas.” 9)
“I wish you a merry Christmas.” (10)

Here (8) reports about a wish but is not itself used to make a wish: it simply expresses
a proposition. It doesn’t make sense to preface (9) with “It is true that” or “It is false
that”; we would usually regard (9) as expressing a wish but not a proposition. It does
make sense to preface (10) with “It is true that” or “It is false that”: it seems reasonable
to say that (10) is used not only to make a wish but also report about it (¢f (8)): so we
could argue that (10) expresses both a wish and a proposition. The analysis of requests
and commands is similar to that of wishes. You will notice that a propositional aspect
seems to be brought out with these when the speaker refers to himself e.g., “I request
that . ..”, “I command you to .. .”.

What we have said about the logician’s use of the term “proposition” may be sum-
marized in the following definition.

Definition: A proposition is that which is asserted when a sentence is uttered; it is always
true or false (but not both).

Note that the same proposition may be asserted by different sentences, e.g.

“Honshu is a Japanese island.”
“Honshu is an island of Japan.”
“Honshu wa Nihon no shima desu.”

As sentences, these are different, but the proposition they express is the same: they
“say the same thing in different words”.
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Note also that the same sentence may express different propositions e.g.,

“Today is Monday.” (11)
“I am happy.” (12)
“Brisbane is in Australia.” (13)
“The monk kicked the smoking habit.” (14)

The proposition expressed by (11) is different for different days; (12) depends on
both the speaker and the time; (13) depends on whether the Brisbane referred to is the
capital of Queensland or the town of that name in California etc.; and (14) could mean
the monk kicked the habit (garment) which was on fire, or that the monk gave up smoking.

Note on referring to propositions and sentences:

To prevent longwindedness we will frequently, when there is no danger of ambiguity,
abbreviate the phrase “the proposition expressed by the sentence (n)” to “the proposi-
tion (n)” or just “(n)”. With indented examples, we will usually include quotes to indicate
we are referring to the sentence inside the quotes, and omit quotes to indicate we are
referring to the proposition expressed by the sentence. For instance, sentence (15)
expresses proposition (16).

“Logicians like to laugh.” (15)
Logicians like to laugh. (16)

You are now ready to start the first exercise. To derive maximum benefit from these
questions you should make a serious attempt to provide your own answer before refer-
ring to the answers in the back. Any problems of a particularly challenging nature are
marked with an asterisk.

NOTES
Some authors use the term “‘statement’ in the way we have used ““proposition”.

“Rhetorical questions” may express propositions, since they are really assertions disguised as questions
for dramatic effect. For instance, a minister of religion who asks rhetorically “What can cause a good
man to lose all hope if he believes in a rewarding life after death?” It is really stating that no such
person could lose all hope.

Not all logicians would agree with our treatment of the nature of propositions. An overview and useful
bibliography on this matter is to be found in ‘“Propositions, Judgments, Sentences, and Statements”
by R. M. Gale in The Encyclopedia of Philosophy Vol. 6, ed. Paul Edwards (Macmillan, 1967). Two
more recent sources worth consulting in this regard are R. Bradley and N. Swartz’s Possible Worlds
(Blackwell, 1979) Ch. 2, and S. Haack’s Philosophy of Logics (Cambridge U.P., 1978) Ch. 6. For a
contrary view see T. J. Richards’ The Language of Reason (Pergamon, 1978) pp 122—126.

Our inclusion of a propositional aspect for “explicit performatives’ such as sentence (10) would not
appeal to many logicians. For a clear exposition of how sentences may be used to perform many
functions besides stating facts see R. J. Fogelin’s Understanding Arguments (Harcourt Brace Jovano-
vich, 1978) Ch. 1 and J. L. Austin’s paper “Performative Utterances” which is reprinted as an appendix
in Fogelin’s text.

Logicians draw a distinction between “‘tokens” and “types”, the former being instances of the latter.
In this terminology, the point that “the same sentence may express different propositions” may be
rephrased as “‘tokens of the same sentence-type may express different propositions”.

EXERCISE 1.2

1. Which of the following sentences express propositions?

(a) The baby is laughing.
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(b) What’s that noise?

(c) Barnard’s star may have some planets about it.
(d) 1+1=3.

(e) Let “I” denote “Inflation is a problem”.

(f) Get out of here!

(g) He ran in the race but slipped on a banana peel.
(h) What a glorious day it is!

(i) Santa Clause is jolly.

(j) To fail to achieve the impossible is not to fail.
(k) Please pay attention.

(1) All triangles have four sides.

(m) The next prime minister will be a woman.

(n) Suppose that x is an even number.

(o) What are you thinking?

(p) If it rains then there is moisture in the air.

(q) Super-sausage had a hamburger for lunch.

(r) I wish to be immortal.

(s) Neither circumstances nor criticism will prevent my progress.
(t) Won’t you close the door?

(u) Santa Claus is a fictitional character.

(v) Let x mark the spot.

(w) Your wish is my command.

(x) Would that there were peace.

(y) Define “proposition” to mean “‘bearer of one truth value”.

2. For each of the following sentences list at least two propositions that it might be
used to express.

(a) John made the mince with his own hands.
(b) The lamb is too hot to eat.
(c) Visiting relatives can be a nuisance.
(d) Students dislike boring lecturers.
(e) Some dogs do not smell.
(f) He is speaking on the subject of old tongues.
(g) The cricket stopped when the bat began to squeak.
(h) Only sons are spoilt.
(i) He addressed the chair from the floor.
(j) Because of the wind the bowler flew off the handle.
(k) Tom the indian would try.
3. Ambiguities often find their way into newspapers. Indicate where they occur in
the selection below.

(a) Crash courses are available for those wishing to learn to drive very quickly.
Eastbourne Gazette

(b) A doctor has compiled a list of poisons which children may drink at home.
Ottawa Journal

(c) The man dropped the grammophone while running, but the policeman
eventually caught him. It was stated that the defendant had a record.
Belfast Telegraph

(d) At the other end of the building . . . is the section where devotees [of a Hare
Krishna group] prepare and eat their meat, fish and egg-free diet of honey-
dipped nuts and grains, curried vegetables, yoghurt, milk and rice.

The Sunday Mail




7 Section 1.2

4. Which of the following pairs of sentences may be taken as expressing the same
proposition?

(a)
(b)
(c)
(d)
(e)
()

()

6]

6
*()

Jack saw Sue. Sue was seen by Jack.

Vince has a brother. John is Vince’s brother.

Brisbane is south of Mackay. Mackay is north of Brisbane.

Canning Downs is bigger than Wales. Canning Downs is at least as big as Wales.
Norma is Selena’s mother. One of Selena’s parents is Norma.

Neither John nor Susan is responsible. John is'not responsible and Susan is
not responsible.

Seven is larger than five. Five is smaller than seven.

Adam stood between Brian and Dougal. Between Brian and Dougal stood
Adam.

Yesterday today was tomorrow. Today was tomorrow yesterday.

Either the bus has gone or my watch is fast. If the bus has not gone then my
watch is fast.

5. Which of the following are true?

(a)
(v)
(o)
(d)
(e)
(9
()
()
@)
@3)

All propositions are true.

All propositions are true or all propositions are false.

Every proposition is either true or false.

If a sentence does not express a truth then it expresses a falsehood.

No sentence expresses something that is both true and false.

Every proposition is known to be true or known!to be false.

Some sentences can express different propositions at different times.

No two sentences in different languages ever express the same proposition.
“2 4+ 2 = 4” expresses the same proposition as “twice two are four”.

If a command is obeyed then it is true.

Puzzle 1

All Cretans are!liars.

The philosopher Epimenides of Crete once said that
“All Cretans are liars.” What he meant was “Cretans
always lie.” When he uttered 'this sentence did he
express a proposition, and 'if so must it be true or
must it be false?
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1.3 DENIALS

In this and the next few sections we familiarise ourselves with some of the more
important types of sentence constructions as well as some key terms which assist in des-
cribing and contrasting various types of propositions. We turn first to ways in which a
proposition may be denied.

The most straightforward way of denying a proposition is to state its negation. In
English this is usually handled by inserting the word “not”. For instance (2) is the negation
of (1).

Linda is wide awake. (1)
Linda is not wide awake. (2)

There are many ways in which the negation may be expressed. Each of (3) and (4)
is also the negation of (1).

It’s false that Linda is wide awake. (3)
It’s not the case that Linda is wide awake. 4)

The proposition being negated is called the negand. Thus (1) is the negand in (2).
In general, if we have some proposition p, then Not p is the negation of p, and in this
negation p is the negand.

A proposition and its negation form a pair of contradictory propositions. This means
that in terms of truth or falsehood they must be opposite. For example, (1) and (2) are
contradictories. If Linda is wide awake then (1) is true and (2) is false; if she isn’t wide
awake then (1) is false and (2) is true.

Another way of denying a proposition is to state one of its contraries. For instance,
each of (5) and (6) is a contrary of (1).

Linda is half asleep. (5)
Linda is sound asleep. (6)

Like contradictories, contraries can’t both be true; unlike contradictories however,
contraries can both be false. For example, while (1) and (6) can never be true together,
if Linda is half asleep they will both be false.

A further example will help clarify things. Consider the following proposition.
Karen is taller than Susan. (7

(8) is denied by each of the following;

Karen is not taller than Susan. (8)
Karen is shorter than Susan. 9
Karen is at least 5 cm shorter than Susan. (10)

Of these, (8) is the negation and so a contradictory of (7), and (9) and (10) are each a
contrary of (7). Note that (8) and (9) express different propositions. In the situation
where Karen and Susan are both the same height (8) will be true and (9) will be false.

Now consider proposition (11).

Karen is shorter than or the same height as Susan. (11)
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"We do not count this as the same proposition as (8) since (11) contains certain concepts
not present in (8). Yet (11) will clearly be true whenever (8) is true and false whenever
(8) is false. So (11) is a contradictory, but not the negation, of (7).

Sometimes prefixes are used to make denials. For instance (12) and (13) form a pair
of contradictories.

His action was legal. (12)
His action was illegal. (13)

Use of prefixes is not always clearcut, however. Consider the following propositions:

Suzi is popular. (14)
Suzi is unpopular. (15)

Are these contradictories or just contraries? Is it possible for Suzi to be neither popular
nor unpopular? What if Suzi is a newcomer who has just joined a class? Does this mean
she is currently unpopular with her classmates? Is “unpopular’” ambiguous? A sensitivity
towards common usage of words is something that all logicians find it necessary to
cultivate.

Before getting on to the exercise, let’s summarize the main points reached in this
section. In this summary, the phrase “can’t both be true” means “can’t’both be true at
the same time”: this allows that one might be true in one situation and the other might
be true in a different situation.

Main Points: Not p is the negation of p
p is the negand in Not p.
Contradictory propositions can’t both be true, and can’t both be false.
Contrary propositions can’t both be true, but may both be false.

NOTES

Some authors may wish to include both contradictories and contraries as negations. Qur preference
has been to treat both as denials, but to classify negation as a special type of contradictory.

We will show later that any proposition has just one negation, but has an infinite number of contra-
dictories as well as an infinite number of contraries. In everyday dialogue, the use of the phrase “On
the contrary” may be seen as heralding the statement of either a contradictory or a contrary. We
choose to define ‘“‘contrary’ in such a way that it must be possible for a pair of contraries to both be
false. Thus ‘“‘contradictory” and “‘contrary” are mutually exclusive descriptions;in particular, contra-
dictories will not be treated as a subset of contraries.

EXERCISE 1.3

1. Which of the following pairs of propositions are contradictories, and which are
contraries?

(a) Susan is at home. Susan is not at home.
(b) All men are mortal. No men are mortal.
(c¢) All philosophers are fallible. Not all philosophers are fallible.
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*4,

*S.

*6.

(d) Brisbane is less than 600 kilometres from Sydney. Brisbane is more than
700 kilometres from Sydney.

{e) No Martians are green. Some Martians are green.

(f) Both Henry and Robert will break the record. Neither Henry nor Robert will
break the record.

(g) Either it will rain or there will be a dust storm. It will neither rain nor will
there be a dust storm.

(h) Susan fell down. Susan nearty fell down.

(i) Cain and Abel were both young. Cain and Abel were not both young.

(j) Cain and Abel were both young. Abel was not young.

(k) Aristarchus was the first to propose the heliocentric model. Herakleides was
the first to propose the heliocentric model.

What is the negation of each of the following?

(a) John is sick.

{(b) Jack is Bill’s brother.

{c) Jack and Jill are both hill-climbers.

(d) Wales is smaller than Queensland.

(e) Jack is Australian and Jill is Scottish.
(f) It never rains.

(g) All men are mortal.

(h) It is possible that you left it in the train.
(i) No fools are rich.

(i) Some students are very wise.

State the negation, and a contrary, for each of the following.

(a) That number is positive,.

(b) Paul came first in the race.

(c) My favourite recording artist is Donovan.

(d) Heis 33 years old.

(e) The universe began with a big explosion 16 billion years ago.
(f) The colour of the car is red.

(a) Prove that for any given proposition p, if a contrary of p is true then so is
each contradictory of p.

(b) If a contradictory of p is true then what, if anything, may be deduced about
the set of contraries of p?

Consider the following two propositions:

Logic is very interesting.
Logic is very uninteresting.

(a) Are they a pair of contradictories?

(b) Are they a pair of contraries?

(c) Provide a negation for the first proposition (i.e. negate the true proposition
in the pair!).

Explain why the following two propositions are not contradictories.

Tom passed the exam.
Tom failed the exam.
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7. Which of the following are true?

(a) If the first proposition is contrary to the second, then the second is contrary
to the first.
(b) If the first proposition is contradictory to the second, then the second is
contradictory to the first.
*(¢) If the first proposition is the negation of the second then the second propo-
sition is the negation of the first.

8. (a) Explain why the word “inflammable” was replaced some years ago by the
word “flammable”. (Hint: Latin prefixes are sometimes ambiguous).
(b) In which of the following words is the prefix “in” used for negation:
“infamous”, “incorrect”, “invaluable”? Elaborate.

1.4 CONJUNCTIONS AND DISJUNCTIONS

With the aid of the word “and”, any number of assertions can be made in a single
English sentence. For instance, both (1) and (2) are asserted by (3).

The bus is gone. (n
I have no money. (2)
The bus is gone and I have no money. 3)

There are many phrases in English, such as “but” or “although” which we can use
instead of “and” to say several things within the one proposition. Each of (1), (2) and
(4) are asserted in (5).

My friend will give me a lift. 4)
The bus is gone and I have no money but my friend will give
me a lift. (5)

The individual assertions which have been conjoined (joined together) in the one
proposition are in this context referred to as conjuncts, and the overall proposition is
termed the conjunction of these conjuncts. Thus (3) is the conjunction of (1) and (2);
(1), (2) and (4) are the conjuncts in (5).

Sometimes words like ‘“and” are used between nouns, adjectives or other parts of
speech. Usually we can rephrase the sentence so that such words lie between sentences.
For example, (6) may be reworded as (7). Proposition (6) may thus be viewed as a
conjunction of (8) and (9).

John and Vince are acupuncturists. (6)
John is an acupuncturist and Vince is an acupuncturist. (7
John is an acupuncturist. (8)
Vince is an acupuncturist. 9)

This is not always the case however. Consider the following three propositions.

John and Vince are brothers. (10)
John is a brother. (11
Vince is a brother. (12)
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If (10) means that John is the brother of Vince, then it clearly says more than the
conjunction of (11) and (12). Further case studies warning of “logical conjunctivitis”
will be discussed in Chapter 2.

With the aid of the word “or”, individual propositions may be expressed as alter-
natives within a single English sentence. For instance, (13) and (14) are listed as alternatives
in (15).

Logic is interesting. (13)
Logic is useful. (14)
Logic is interesting or logic is useful. (15)

The alternatives are called disjuncts and the overall proposition is said to be a disjun-
tion of these disjuncts. We say the disjuncts have been disjoined to form the disjunction.
Thus (13) and (14) are disjuncts which have been disjoined to form the disjunction (15).

Disjunctions are usually expressed in English by means of the construction “either ...
or ... ”, or just “or”. Here are some more examples which place the “or” between nouns
or adjectives.

Jane is doing either maths or logic. (16)
His favourite colour is red or green. (17)

There are two kinds of disjunction: inclusive and exclusive. Inclusive disjunction
allows that both disjuncts might be true e.g., when we assert (15) above we should
certainly consider it possible that logic is both interesting and useful! Another obvious
case of this is (18).

The winner of the logic prize will be either very bright or
very hard working. (18)

When we wish to emphasize that both disjuncts might be true we sometimes add the
phrase “or both”, as in (19).

Her chubbiness is due to either overeating or lack of exercise or both. (19)

In legal documents this job is performed by the phrase “and/or”. A familiar case from
mathematics is the following definition:

The union of sets 4 and B is the set of all elements in either 4 or B. (20)

Here, elements common to both 4 and B are included in the union.

Whereas with inclusive disjunction we claim merely that at least one of the two alter-
natives is true, with exclusive disjunction we claim that just one of the two alternatives
is true. We will postpone discussion of exclusive disjunctions of more than two alternatives,
as complications arise there. Here are some examples of exclusive disjunction.

Jane had either cake or ice-cream but not both. 21
Terry was born in 1946 or 1948. (22)
Any whole number is either odd or even. (23)

It should be clear that when we exclusively disjoin two alternatives we state that one of
the disjuncts is true but definitely not both.
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Because it may be used both inclusively and exclusively, ““or’* may be ambiguous in
certain contexts. For the moment, if it is not clear that a disjunction is exclusive we will
treat it as inclusive. This simple policy of taking the minimum interpretation is not always
appropriate however, as will be discussed in detail in Chapter 7.

Besides being able to detect conjunctions and disjunctions, we should also be able to
detect their negations. For example, take the following conjunction:
Jane studies maths and logic. (24)

For this to be true Jane must study both. But there are four possibilities. Jane might
study both, or just maths, or just logic, or neither. (24) is true only for the first of the
four possibilities. We can set out the four possibilities in a chart.

Studies logic Does not
study logic

Studies maths (24)

Does not
study maths

As indicated, (24) is true only in the top left cell.

Now consider (25), which is the negation (and hence a contradictory) of (24).
Jane does not study both maths and logic. (25)

(25) is true in all cells other than the top left. It is true in the top right and the bottom
left cells because there Jane does not study both, only one. It is true in the bottom right
cell because there Jane studies neither.

In what cell will (26) be true?
Jane studies neither maths nor logic. (26)

Just the bottom right cell. Propositions (24) and (26) cannot both be true in any cell, but
both will be false in the bottom left and top right cells. So (24) and (26) are contraries,
not contradictories.

Can you see that, given any one cell in the chart, the other three cells collectively (i.e.
taken together) provide a contradictory to it, but individually (i.e. taken one at a time)
provide a contrary to it?

Consider now the following inclusive disjunction.
Tom studies either maths or logic. 27

We can use a chart again to see that (27) is true in three of the four possibilities.

Studies logic Does not
study logic
Studies maths 27) 27)
Does not
study maths (27)




Section 1.4 14

27) is.false only in the bottom right cell, where neither maths nor logic is studied. So a
contradictory of (27) is:

Tom studies neither maths nor logic. (28)
Another way of putting (28) is:
Tom does not study maths and he does not study logic. 29)
Exclusive disjunction is more complicated. Take the proposition:
Sue studies maths or logic, but not both. (30)

(30) is true in just two cells, as shown.

Studies logic Does not
study logic
Studies maths (30)
sty maths (30)
A contradictory of (30) is:
Sue studies both maths and logic, or she studies neither. 31

Notice that the contradictories (30) and (31) are true along opposite diagonals of the
chart. It should be obvious from the above chart that two contraries to (30) are:

Sue studies both maths and logic. (32)
Sue studies neither maths nor logic. (33)

That’s enough about conjunctions and disjunctions for the moment. Let’s review the
main ideas of this section. To simplify thingslet us use p and ¢ to denote any two proposi-
tions, and assume that “and” and “‘or” have the senses described earlier.

Main Points: p and q is the conjunction of p, q
D, q are conjuncts in p and q

p or q is the disjunction of p, q
p, q are disjuncts in p or q

p or q or both is the inclusive disjunction of p, q
p or q but not both is the exclusive disjunction of p, q

or should be read as inclusive unless it is obviously exclusive
Two standard ways of negating a conjunction:—

Not (pandgq) Not both p and ¢
Either not p or not ¢

Two ways of negating an inclusive disjunction :—

Not (p or q) : Neither p norq
Not p and not g
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EXERCISE 1.4

1. Identify the conjuncts in each of the following conjunctions.

(a)
(b)
(c)
(d)
(e)
(f)
(g)

The workmen put down their tools and Brown made a speech.

Michael is slow but careful.

Alan is here and Betty is here and so is Colin.

The gates are not locked and neither the side door nor the back door is closed.
The burglar is not in the house but he will be either on the road or on the moors.
If anyone is sick they should see the doctor, and it is clear that Bill is not well.

If the bus has gone then my watch is slow, and if my watch is slow then the tower
clock is slow.

2. In which of the following is ‘‘and” used merely for conjunction?

(a)
(b)
(c)
(d)
*(e)

Jane and Mary are girls.

Jane and Mary are sisters.
Jane and Mary share a room.
Jack is tall and handsome.
Jack and Jill went up the hill.

3. What are the disjuncts in each of the following disjunctions? Also state whether the
disjunction is inclusive or exclusive. (Hint: When in doubt treat the disjunction as
inclusive)

(a)
(b)
(c)
(d)
(e)

(f)
(g)
(h)

James went either to the library or to the club.

Mary is to enroll in either mathematics or physics, but not both.

He studied French or logic.

The number is either less than 10 or greater than 20.

The person who chose that colour scheme was either colour-blind or lacking in
aesthetic taste.

Either the rain will come and the crop will be planted or we will sell the farm.

The number is either not more than 10 or greater than 6.

Either Mary takes mathematics and logic or she takes Japanese and computing,
but not both.

4. Which of the following pairs of propositions are contradictories and which are con-
traries?

(a)
(b)
(c)
(d)
(e)

I will go either to Brisbane or to Perth.

I will go neither to Brisbane nor to Perth.

I will go to both Brisbane and Perth.

I will not go to both Brisbane and Perth.

I will go to both Canberra and Cairns.

I will go to neither Canberra nor Cairns.

I will go to both Canberra and Cairns.

Either I will not go to Canberra or I will not go to Cairns.

You will go to Goondiwindi or Gunnedah.

You will not go to Goondiwindi and you will not go to Gunnedah.

5. In your own words set out the negation of the following.

(a)
(b)
(c)
(d)
(e)
()
(g)

Susan is either a clerk or a teacher.

Sandy is both a farmer and an accountant.

The bus is slow and time is running out.

Either the bus is slow or I am impatient.

Both Robin and Chris are mechanics.

Cathy is not beautiful but she is attractive.

Either you will finish your homework before 9.30 or you will not watch T.V.
after 9.30.
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1.5 CONDITIONALS AND BICONDITIONALS

The proposition expressed by
“If the clock is slow then we are late.” (1)

is a conditional. The sentence itself is also called a conditional. Conditionals are so named
because they make the following type of claim: on the condition that one proposition is
true, a second (usually different) proposition is true too. They are often expressed by

means of the sentence construction If. . . then ———. The sentence immediately preceded
by “if” is called the antecedent. So, in (1) the antecedent is
“The clock is slow.” (2)

The other sentence, preceded by “then”, is called the consequent. The consequent in
(1)is
“We are late.” (3)
The propositions expressed by the antecedent and consequent of a conditional sentence
are called the antecedent and consequent of the conditional proposition.
There are other ways of expressing a conditional. Instead of sentence (1) we could
have
“If the clock is slow we are late.” 4)

The “then” is simply left out. It is a bit like the “either” in “either . .. or———"". It may
often be left off. We can express exactly the same conditional with

“We are late if the clock is slow.” (5

The “if” still precedes the same antecedent, and the other sentence is the consequent.
In the same way, the next three sentences express the same conditional proposition.

“If the parcel arrives today then it was posted yesterday.” (6)
“If the parcel arrives today it was posted yesterday.” (7)
“The parcel was posted yesterday if it arrives today.” (8)

In each case the antecedent is

“The parcel arrives today.” (9)
and the consequent is

“The parcel was posted yesterday.” (10)

In each of the conditionals above, the “if” has marked out the antecedent by preceding
it. But there are other ways of expressing conditionals. One way involves the phrase

“only if”.

“The clock is slow only if we are late.” (11)
This sentence expresses the same conditional as (1). Similarly,

“The parcel arrives today only if it was posted yesterday.” (12)

expresses the same conditional as (6). In these “only if” conditionals the “if”” marks out
the consequent. So, “Only if” marks out the consequent while “if” by itself marks out
the antecedent. We must look to see whether “if” is by itself or with “only”. Here are
some more pairs of sentences, both expressing the same conditional, one with “if” by
itself, the other with “only if”.

“If John has ten dollars then John has some money.” (13)
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“John has ten dollars only if John has some money.” (14)
“If John is not at home he is down at the club.” (15)
“John is not at home only if he is down at the club.” (16)

Every conditional has a converse. The converse of
If John has ten dollars then John has some money. 17
is .
If John has some money then John has ten dollars. (18)

We get the converse of a conditional by swapping the antecedent and the consequent. The
converse of If p then q is If q then p. The same applies to “only if”” conditionals. The
converse of

John has ten dollars only if he has some money. (19)
is

John has some money only if he has ten dollars. (20)
It is very important to notice that a conditional and its converse do not say the same

thing. Can you see the difference?

So, if we want to assert a conditional and its converse, it is no use just asserting the
conditional. One way of asserting both is to connect the conditional sentences by the
conjunctive “and” e.g.,

“If the set is empty then the set has no members and
if the set has no members then the set is empty.” 21

Now consider the following sentence.
“The set is empty if and only if the set has no members.” (22)

Does (22) express the same proposition as (21)? Well, let’s see. It should be clear that
(22) expresses the same proposition as (23) does.

“The set is empty if the set has no members, and
the set is empty only if the set has no members.” (23)

From the earlier work in this section, we can see that the “if” conditional in (23)
expresses the same proposition as

“If the set has no members then it is empty.” (24)
and that the “only if” conditional in (23) expresses the same proposition as
“If the set is empty then it has no members.” (25)

Hence (22) does express the same proposition as (21). Thus (22) asserts two conditionals.
For this reason, any sentence formed from two simpler ones by means of the connective
“if and only if” is called a biconditional. The proposition expressed by such a sentence
is also called a biconditional (it is really a special type of conjunction viz. a conjunction
of two conditionals which are converses of each other).

Logicians commonly abbreviate “if and only if” to “iff”. But when you read “iff”
out loud, read it in full as “if and only if”.

Main Points: If p then q is a conditional where p is the antecedent
and q is the consequent.
The conditional If p then g may also be expressed as:

ponlyifq
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Ifp, q
qifp
The converse of If p then q is If q then p.
p iff q is a biconditional.
p iff g may be expressed as If p then q, and if q then p.

EXERCISE 1.5

1. For each of the following conditionals, write down first the antecedent and then
the consequent.

(a) If taxes are cut people will spend more money.

(b) If Snoopy is a dog then Snoopy is an animal.

(c) If Tom believes that he is being helped then he is acting in a strange way.

(d) Fuzzy is a bear only if she is hairy.

(e) Fuzzy is an animal if Fuzzy is a bear.

(f) If neither Brown nor Jones breaks the law then they have nothing to fear.

(g) The wheat will grow only if it is planted.

(h) If it rains then either there will be a flood or the crops will be spoiled.

(i) The experiment will not be successful if conditions are not completely sterile.

2. Select those of the following for which both members of the pair express the same
conditional.
(a) If Sue comes home Bill will be happy.
Bill will be happy if Sue comes home.
(b) If Tiger is a cat then he drinks milk.
If Tiger drinks milk then he is a cat.
(¢) If that is a pine then it is an evergreen.
That is a pine only if it is an evergreen.
(d) Albert is consistent if he does not contradict himself.
Albert does not contradict himself, only if he is consistent.
(e) The lights will go on only if there is no power failure.
There is no power failure only if the lights will go on.

3. Write out the converses of the conditionals in Question 1.

4. Set out the two conditionals conjoined in the following.

(a) The number is even if and only if the number is divisible by two.

(b) There will be an election if and only if the Governor-General signs the writs.

(c) The experiment will be a success if and only if the correct procedures are followed.
(d) We will go on a picnic if and only if it doesn’t rain.

1.6 BEING CONSISTENT

Consider the following two propositions.
Freddo is a frog. Freddo is green. @))

It’s quite possible for both of these to be true, since Freddo could be a green frog. Any
set of propositions which can all be true together is said to be consistent. So (1) is a
consistent set.

Sometimes we meet a set of propositions which can’t all be true at once. Logicians call
this an inconsistent set. Any pair of contradictories will be inconsistent e.g.,

Freddo is a frog. Freddo is not a frog. (2)
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Though we can imagine situations in which either of the two propositions in (2) might
be true by itself, it is just not possible that they should both be true together. And the
same applies to contraries e.g.,

Tom is taller than Suzy. Tom is shorter than Suzy. (3)

It’s impossible to have both of these true. Any set of propositions with a pair of contra-
dictories or a pair of contraries will be inconsistent.

Now consider the following case.
John is a philosopher. John has not read Plato’s Republic. (4)

There is nothing inconsistent about this. It may be unlikely, but nevertheless it is possible
that both propositions in (4) are true. So (4) is a consistent set. What about the following
set?

If John is a philosopher then he has read Plato’s Republic.

John has not read Plato’s Republic. (5)

This set is consistent too. But now let’s unite sets (4) and (5):

John is a philosopher.
If John is a philosopher then he has read Plato’s Republic.
John has not read Plato’s Republic. (6)

Not all of (6) can be true. Anyone who believed (6) would be logically in error; he would
have an inconsistent set of beliefs.

Note carefully that for a set of propositions to be inconsistent it is not generally neces-
sary for each of the propositions to be impossible. Consider the individual propositions
in (2), (3) and (6) for instance. It is possible nevertheless to have a single proposition
which all by itself is inconsistent e.g.,

Today is Monday and not Monday. 7

Provided we allow the term “‘collectively” to apply to unit sets, the words “consistent”
and “inconsistent” may be accurately interpreted as “collectively possible” and “collect-
ively impossible”.

Each one of us should aim for consistency in our web of beliefs. This is not an easy
task!

Main Points: A set of propositions is consistent iff they can all be true together.
A set of propositions is inconsistent iff it’s not consistent.

NOTES

The terms ‘“‘incompatible’” and “self-contradictory” are often used instead of ‘“‘inconsistent”, though
“incompatible is reserved for sets of at least two propositions, and “self-contradictory” is used mostly
with unit sets. Where there are at least two propositions, “consistent” is sometimes replaced by
“compatible”. One of the first philosophers to make special use of the notion of consistency was
Leibniz, who coined the term “compossible” which captures nicely the idea of being possible together.

EXERCISE 1.6

1. Which of the following sets of propositions are inconsistent?

(a) My car is old. My car is new.

(b) Some numbers are even. Some numbers are odd. Some numbers are divisible by
three.

(c) If Hitler had invaded England then his army would have taken London. Hitler’s
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army did not take London. Hitler did not invade England.

(d) If it rains there is high humidity. It is raining. The humidity is not high.

(e) Karen takes either Japanese or Indonesian. Karen does not take Japanese. Karen
does not take Indonesian.

(f) Michael takes mathematics and physics. Michael does not take mathematics but
he does take physics.

(g) Senator Hall is neither Labor, Liberal nor Independent. Senator Hall is not
Country Party. Senator Hall is Independent.

(h) Unless the Parliament stops the Bill it will become law on Tuesday. The Parlia-
ment will not stop the Bill. The Bill will become law on Tuesday.

(i) Oranges are fruit. No cats are dogs. All bachelors are unmarried.

(j) The wheat crop will be good only if it rains in July. It rained in July. The wheat
crop will not be good.

1.7 ARGUMENTS AND LOGICAL FORM

You may have gathered from §1.1 that when logicians use the term “argument” they
do not mean a heated discussion. A logical argument involves the presentation of evidence
or reasons (technically known as premises) in support of some point (technically known
as the conclusion).

Definition: An argument consists of a set of propositions, one of which (the conclusion)
is claimed to follow from the others (the premises).

In this book we are exclusively concerned with arguments where the conclusion is
claimed to follow with certainty (rather than just high probability) from the premises.
More will be said about this in the next section.

Before assessing arguments that occur in English (“wild arguments” as Brian Medlin
calls them), we need to tame them. This involves separating out the premises and the
conclusion, and putting the argument into standard form. Consider the following example.

The burglar went out either by the window or by the door.
The burglar did not go out the door, so it follows that
he or she went out by the window. (1)

The phrase “so it follows that” clearly heralds the conclusion, which is:
The burglar went out by the window.
The premises are then the other two propositions:

The burglar went out either by the window or by the door.
The burglar did not go out by the door.

The whole argument may now be written down in standard form as follows:

The burglar went out either by the window or by the door.
The burglar did not go out by the door.

.. The burglar went out by the window. (1a)

Notice that an unbroken line is used to separate premises from conclusion. The premises
are always placed above this line and the conclusion below it. Notice also the use of .". as
an abbreviation for “therefore”, which is always placed in front of the conclusion: this
indicates the claim that the conclusion follows from the premises, but is not itself part of

the conclusion. Whenever we run across a phrase like “so it follows that”, “therefore”,
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ER)

“hence”, “thus”, ““so”, “clearly” etc. we can be almost sure that the conclusion comes
immediately after it. For this reason such phrases are sometimes called ‘“‘conclusion
markers”.

EEINTS

There are also “‘premise markers”. Three common ones are “because”, “since” and
“as”. When we come across one of these we can be almost certain that a premise comes
immediately after. Sometimes the conclusion comes immediately before one of these
premise markers, and sometimes the conclusion comes after the premise which follows
this marker. These two situations are illustrated, respectively, in arguments (2) and
(3) below.

The figure is a circle, because it’s either a circle
or a square, and it’s not a square. (2)

The burglar went out either by the window or by the door.
Since the burglar did not go out by the door, he or she
went out by the window. (3)

In standard form, argument (2) becomes:

The figure is either a circle or a square.
The figure is not a square.

.. The figure is a circle. (2a)
You probably noticed that argument (3) is really the same as argument (1).

Sometimes arguments in English have no obvious conclusion markers or premise
markers. But our English intuitions will usually stand us in good stead here. Practice on
the exercises in this book will help you tame such arguments. If the proposer of the
argument really was unclear in his presentation and if he is available, you should ask him
to clarify his argument for you. As a general rule, try to sort out the conclusion first.
Then conceritrate on the premises.

Once the argument is in standard form we go a step further in our analysis of it. This
involves abbreviating sentences which express certain propositions in the argument to
single capital letters. The choice of these letters is up to us, but our choice will be easier
to remember if we pick the first letter of a key word in the sentence. We set out our
choices in a dictionary. For example, a suitable dictionary for argument (1a) would be

W = The burglar went out by the window
D = The burglar went out by the door.

Here “=" stands for “is our abbreviation for”. Argument (1a) may now be displayed as
W orD
Not D
LW (1b)

Notice that we did not abbreviate the first premise to a single letter because it contains
simpler propositions (W, D) which occur either independently or in a different surrounding
structure elsewhere in the argument. A similar comment holds for the second premise.
The upshot of this is that the role played by the key logical words (here “or” and “not””)
is displayed.

Argument (2a) may likewise be exhibited as follows.

Dictionary: C = The figure is a circle
S = The figure is a square
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CorS
Not S

SC (2b)

You will notice that (1b) and (2b) have a similar pattern or logical form. The only dif-
ference is in the abbreviated propositions; and the ““insides” of these propositions have no
bearing on the logical correctness of these arguments. This common logical structure of
arguments (1) and (2) may now be shown with the help of small letters like p and gq.

porgq
Not g
Lp
This display is known as an argument-form. Because many arguments share common
logical forms logicians often conserve energy by focussing their interest on argument-
forms rather than treating each individual argument as an entirely new example.

It should be noted that the order in which the premises of an argument are stated is
irrelevant. Thus, logical forms of arguments will not be changed merely by changing the
order of the premises.

NOTES

In this introductory section we have spoken about just one logical form for each argument. In fact,
an argument usually has more than one form and it will be necessary later in the book to take this
into account.

Brian Medlin is Professor of Philosophy at Flinders University, South Australia.

EXERCISE 1.7

1. Pair each of the following abbreviated arguments with another of the same logical
form.

(a) A (b) If A then B
SAorB Not B
S.Not4
(c) Not (4 and B) ‘ (d) C
A .CorD
,.Not B
(e) If D then not F (f) Not D
If F then D If C then D
J.F only if not £ ..Not C
(g) A only if B (h) D
B only if not C Not (D and C)
..If A then not C S.Not C

2. Each of the following arguments may be paired with one other which has the same
logical form. Set each argument out in standard form, using the letters suggested for
abbreviation. Then match the pairs. (Not all of these arguments are logically correct).

(a) If Phaedo is a dog then Phaedo is a mammal. If Phaedo is a human then Phaedo
is a mammal. Since Phaedo is either a dog or a human, it follows that he is a
mammal. (D, M, H)

(b) It will rain only if there is moisture in the air. There is moisture in the air. Hence
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it will rain. (R, M)

(c) If no other site than Lake Pedder can be found for generating power, then Lake
Pedder will be flooded. Since no site can be found for power generation other
than Lake Pedder, the lake will be flooded. (N, F)

(d) John is not enrolled for both Philosophy and Classics. Since he is enrolled for
Philosophy, it is clear that he is not enrolled for Classics. (P, C)

(e) If Fig. A were of a triangle it would have three sides. But Fig. A does not have
three sides. So Fig. A is not of a triangle. (7, S)

(f) Either George will apologize and Harold will accept his apology or they will have
a prolonged dispute. We will not get both George apologizing and Harold accepting
the apology. So they will have a prolonged dispute. (G, H, D)

(g) If militants controlled the Union there would be strikes. But there will be no
strikes, because militants do not control the union. (M, S)

(h) If I am thinking then I exist. Why? Because if I am thinking then it is not possible
to doubt that I exist, and if it is not possible to doubt that I exist then I am
absolutely certain that I do exist, and if I am absolutely certain that I exist then
I do exist. (7, E, N, C)

(i) James can know that the theory is adequate only if the theory is, in fact, adequate.
So if the theory is, in fact, not adequate then James cannot know that the theory
is adequate. (K, F)

(j) There will be a good wheat crop only if there is rain. There is rain. Hence there
will be a good wheat crop. (G, R)

(k) If sample 756 were of copper then it would conduct electricity. But it does not
conduct electricity. So it is not copper. (C, E)

(1) If Mike were a dog then he would be an animal. But he is not an animal because
he is not a dog. (D, 4)

(m) If salary rises are refused then profits will be cut. The reasons for this are that if
salary rises are refused then the union will not call off the strike, and if a strike is
not called off by the union then valuable production time will be lost, and if such
time is lost then profits will be cut. (R, C, N, L)

(n) Brown will not be a member of both the Liberal and Labor Parties. Since he is a
member of the Liberal Party it follows that he is not a member of the Labor
Party. (I, 4)

(o) Some actions will count as selfish only if some actions count as unselfish. So if it
is false that some actions count as unselfish then it is false that some count as
selfish. (S, U)

(p) If it rains then the lawn will be watered. If the hose is turned on then the lawn
will be watered. Since either it rains or the hose is turned on, it follows that the
lawn will be watered. (R, L, H)

(q) Either the Prime Minister will resign and the Cabinet will fail to elect a new Prime
Minister or the Senate will bring the Government down. We will not get both the
Prime Minister resigning and Cabinet failing to elect a new Prime Minister. So, the
Senate will bring the Government down. (R, F, D)

(r) If no one is willing to volunteer, then we will have to draw lots. Since everyone is
unwilling to volunteer, we will have to draw lots. (V, L)

1.8 ASSESSING ARGUMENTS

When an argument is proposed in everyday life there are usually two types of claim
made (or at least understood). One claim is factual, the other logical. The factual claim
is simply that the premises are all true. If even one premise is false, a factual error has
been committed. Consider the following arguments about the famous Greek philosopher
Aristotle.
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Aristotle was a man or a woman.

Aristotle was not a woman.

So Aristotle was a man. (1)

Aristotle was Chinese or Greek.

Aristotle was not Greek.

So Aristotle was Chinese. (2)
Argument (1) is free of factual errors, but (2) has a factual error in its second premise.
Even one relevant factual error will prevent an argument from establishing its conclusion.

An argument’s logical claim is that the premises support the conclusion in a particular
way. If this claim is false then a logical error has been committed. The logical claim may
be for validity:

whenever the premises are true, the conclusion is true
or for inductive strength:
whenever the premises are true, the conclusion is probable

“Probable” here means “likely but not certain”. Arguments (1) and (2) make validity
claims whereas (3) claims inductive strength.

Almost all galaxies discovered so far, exhibit redshifts.
So probably, the next galaxy discovered will exhibit a redshift. (3)

The word “probably” is not counted as part of the conclusion of (3). Inductive strength
is assessed by that branch of logic known as inductive logic. Since this text is devoted to
deductive logic, we will consider only those arguments involving validity claims. From
now on, the term “argument’ will be used in this restricted sense.

Definition: An argument is valid iff the truth of the premises guarantees the truth of the
conclusion.

Clearly, argument (1) is valid. Note that validity does not require that the premises are
true. An argument is valid iff just supposing the premises are true, the conclusion follows.
Thus argument (2) is also valid, even though it has a false premise and a false conclusion.
Both (1) and (2) have the same logical form: neither commits any logical error.

An argument which is not valid is said to be invalid. Here it is possible for the premises
to be true without the conclusion being true. Arguments (4) and (5) are both invalid.

Some people are Hindus.

Hence all people are Hindus. (4)

Some dogs are cats.

So all dogs are cats. (5)
Note that argument (1) has no errors, (2) has just a factual error, (4) has just a logical
error, while (5) has both factual and logical errors. What kinds of error (if any) are made
by Arnold and Bertha in the cartoon below? Has either presented a valid argument?
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All women are illogical. Some men are illogical.
You're a woman. You’re a man.
So you’re illogical. So you’'re illogical.
S Z
@
~8009 )
... : .‘

Arnold Bertha

You should have assessed Arnold’s argument as valid (no logical error), but factually in
error (1st premise is false). Bertha’s argument has no factual errors (all the premises are
true), but it is invalid (the conclusion doesn’t follow). Because each has made at least one
relevant error, each has failed to prove the conclusion argued for.

In order for an argument to establish its conclusion it must have no relevant errors.
The only irrelevant errors would be factual errors which have no bearing on the conclu-
sion. We should aim for an argument which is not only valid but which has all its premises
true. Such an argument is called sound. Sound arguments will always have true conclusions.

Definition: A sound argument is a valid argument with all its premises true.

An argument which is not sound is said to be unsound. Argument (1) is sound, but
arguments (2), (4) and (§) are unsound.

At this point you may be feeling a little uneasy at the way we have been using the
term ‘“‘valid”. It doesn’t make sense, you might say, that a valid argument can have a
false conclusion. If you do feel this then it is probably because you are reading “valid”
as “correct”, the way it is often used in everyday speech. What you need to realise is
that this is not the way the word is used in logic. Just as with “proposition” and “argu-
ment”, the terms “‘valid” and “sound” are defined in a precise, special way for technical
use in logic. The logician’s use of “sound” is probably closer to the everyday use(s) of
‘“valid”. Note that while premises and conclusion will be true or false, it is incorrect to
speak of arguments as being true or false. Arguments are valid or invalid, sound or un-
sound. Validity is a logical relation between premises and conclusion. With a valid argu-
ment, if the premises are true then the conclusion will be true too; but if the premises
are not all true we have no such guarantee. On the other hand, if the conclusion is true
this does not guarantee we have a valid argument: consider the following argument.

Some people are vegetarians.
Therefore Sydney has an opera house. (6)

Here, both premise and conclusion are true, but the argument is invalid because the
conclusion does not follow from the premise i.e. it is logically possible for some people
to be vegetarians without Sydney having an opera house, as it was in 1950.

It is the primary business of logic to examine logical errors (errors in reasoning) rather
than factual errors. Nevertheless, since many “facts” are deduced with the aid of reason
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from other facts, logic helps to reduce factual errors too. And, as we shall see later, logic
can detect inconsistencies arising from factual errors.

In formal logic we often assess arguments for validity only. The premises are usually
invented simply to provide a specimen exercise, and there is rarely any claim made for
their truth. In everyday life however, arguments are used with the intention of establish-
ing their conclusions, and consequently the premises are presented as facts. Thus, every-
day arguments should be assessed for soundness: we should question both premises and
reasoning i.e. we should search for both factual and logical errors.

NOTES

There is considerable controversy about the difference (if any) between deductive and inductive
arguments. Our position is explained more fully in 8§2.5 of Inductive and Practical Reasoning by
R. A. Girle, T. A. Halpin, C. L. Miller and G. H. Williams (Rotecoge, 1978).

In this introductory section, the discussion of validity has been somewhat simplified. In particular
we have avoided the cases of inconsistent premises and necessary conclusions. A more rigorous treat-
ment which includes these cases will be provided in Chapter 4. An exact definition for validity which
makes use of our work on consistency is: An argument is valid iff the set of premises and negated
conclusion is inconsistent.

EXERCISE 1.8

1. Describe each of the following arguments by selecting an appropriate letter from the
Key provided.

Key A. No errors
B. Factual error only
C. Logical error only
D. Both logical and factual errors

(a) Bertrand Russell was a brilliant philosopher
So Bertrand Russell was a philosopher.

(b) All cats are animals.
Therefore all animals are cats.

(c) Apples are either oranges or lemons.
But apples are not oranges.
Hence apples are lemons.

(d) Some people are vegetarians.
So some people are not vegetarians.

(e) Some students are women.
Some women are koalas.
So some students are koalas.

2. Which of the arguments in Question 1 are valid?
3. Which of the arguments in Question 1 are sound?

4. Set each of the following arguments out in standard form. Then use your intuitions
to decide which are valid.

(a) If Spinoza was a Queenslander, then he was an Australian.
Since he was a Queenslander, he was an Australian.
(b) Hitler was a fascist. Why? Because he just was.

(c) You can’t be both a Christian and a Communist.
Since you’re not a Christian it follows that you’re a Communist.

(d) God is imperfect. Let me tell you why. If the universe is part of God then God is
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imperfect. But if the universe is not part of God then God is imperfect.
And the universe is either part or not part of God.

(e) Queensland is hot, but the Northern Territory is hotter.
Obviously the Northern Territory is very hot.

5. Which of the following are true? Where false, give an example.

(a) A valid argument must have true premises (i.e. all its premises must be true).

(b) A valid argument must have a true conclusion.

(c) A sound argument must have true premises.

(d) A sound argument must have a true conclusion.

(e) If avalid argument has true premises it must have a true conclusion.

(f) If a valid argument has a false conclusion it must have at least one false premise.

(g) If a valid argument has a true conclusion it must have at least one true premise.

(h) An invalid argument must have a false conclusion.

(i) If an invalid argument has true premises it must have a false conclusion.

(j) If the premises are true and the conclusion is false the argument is invalid.

(k) If an argument is invalid it must have true premises and a false conclusion.

() A valid argument may have factual errors but has no logical error.

(m) A sound argument has neither factual nor logical errors.

(n) An invalid argument must have a factual error.

(o) An invalid argument must have a logical error.

(p) If the conclusion of an argument is also one of the premises then the argument is
invalid.

(q) If one of the premises is removed from a valid argument, the resulting argument is
invalid.

6. Use your intuitions to assess the validity of the arguments in Exercise 1.7.

1.9 SUMMARY

The art of summarising is very useful. To develop further your own ability to summar-
ise, you should prepare your own chapter summaries before referring to those supplied
in this text.

A proposition is that which is asserted when a sentence is uttered; it is always either true
or false (but not both).

Propositions are usually expressed by sentences in the indicative mood. Some sentences
do not express propositions (e.g., all bona fide questions, stipulations, nonsense; some
exclamations, some commands, some requests, some wishes).

The same proposition may be expressed by different sentences, and the same sentence
may be used to express different propositions.

Not p is the negation of p, and p is the negand in Not p.
Contradictories can’t both be true and can’t both be false.
Contraries can’t both be true but can both be false.

Given the usual sense of “and” and “or”:—

p and q is the conjunction of p, q. p, q are conjuncts in p and q.
p or q is the disjunction of p, q. p, q are disjuncts in p or q.

p or q or both is the inclusive disjunction of p, q.

p or q but not both is the exclusive disjunction of p, q.

or should be read as inclusive unless it is obviously exclusive.

Not (p and g) may be expressed as: Not both p and g ; Either not p or not ¢
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Not (p or g) may be expressed as: Neither p nor ¢ ; Not p and not ¢q

If p then q is a conditional where p is the antecedent and q is the consequent.
If p then g may be expressed as: if p, q ;q if p,; ponly ifq

p iff q is a biconditional
p iff g may be expressed as: if p then q, and if q then p

A set of propositions is consistent iff the propositions can all be true together.
A set of propositions is inconsistent iff it is not consistent.

An argument consists of a set of propositions, one of which (the conclusion) is claimed to
follow from the others (the premises).
In standard form an argument is set out thus: premises

". conclusion

Sentences denoting propositions may be abbreviated to capital letters, and logical forms
of arguments displayed by replacing these letters with p, g, . . . Different arguments may
have a common argument-form.

Only deductive arguments are considered in this book. Here the conclusion is claimed to
follow with certainty from the premises. If this logical claim is met the argument is
valid; otherwise it is invalid. In everyday life the further claim is made that the premises
are all true. If this factual claim is met, and the argument is valid, then the argument is
sound; otherwise it is unsound. Sound arguments will always have true conclusions, but
the same cannot be said for valid arguments.

Invalid arguments contain a logical error. False premises contain a factual error. While
formal logic is concerned primarily with logical errors, day-to-day arguments should be
searched for both types of error.
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Propositional
Logic
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2.1 INTRODUCTION

For most of the next eight chapters our attention focusses on the logical system
known as Propositional Calculus (PC). The name derives from the fact that we can do
calculations in PC to establish properties of and relationships between propositions,
including validity of arguments. PC is also called “Classical Propositional Logic”. Its
modern form derives principally from the work of Gottlob Frege (1848-1925) and
Bertrand Russell (1872-1970).

This chapter lays the groundwork for Part One by introducing the special logical
language used in PC to facilitate its work. We will refer to this as our Propositional
Language (PL). The other chapters of Part One discuss ways of evaluating propositional
formulae, relationships and arguments, and consider both limitations and further applica-
tions of PC. Attention is drawn to the connection between propositional reasoning in
English and related moves in PC. One chapter is devoted entirely to natural deduction
within propositional logic. The final chapter of Part One includes a discussion of the
connection between PC and other systems such as set theory and switching calculus.
In Part Two, additions are made to PC to form a more powerful system, capable of
handling a wider range of propositions and arguments.

Some students may find the first half of this chapter a little difficult because of the
abstract way in which it is developed. We ask these people to make a patient effort, as
there is a good reason for structuring the content in this way; the point of the symbolic
game will soon be made clear. The reader will gain an insight into the structure of this
chapter if he follows the discussion in the next paragraph.

Any language contains a set of symbols (e.g., English contains the letters “a”, “b”,
etc.) and you will say hello to some interesting new symbols (e.g., “D”, “# *°) in the
course of learning PL. The general study of symbols is called semiotic and this may be
roughly divided into three sections as shown.

SYNTAX (study of symbols as uninterpreted objects)
SEMIOTIC <—— SEMANTICS (study of the meanings of symbols)

N

PRAGMATICS (study of the intended use of symbols)

We begin by studying syntax, playing around with strings of symbols but not reading
anything into them (i.e., treating them as nothing more than marks on paper). Then we
move on to semantics where we now give the marks some meaning: in particular we will
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talk about the symbols denoting (or “‘standing for”) something and, most importantly,
we will be concerned with truth and falsity (since certain strings of symbols will denote
propositions). Having done all this we will then find out how to use the symbols to our
advantage: this is pragmatics.

NOTES

Propositional Calculus is also known as Sentential Logic, Truth-functional Logic, or 2-valued Logic.

An ancient form of propositional logic was developed in the third century B.C. by the Stoic philoso-
phers, especially Chrysippus (280-205 B.C). George Boole (1815-1864) in his Laws of Thought (1847)
developed an algebra which is structurally in agreement with PC. Frege’s seminal paper, the Begriffs-
schrift, was published just over a century ago (1879). Russell’s major works on logic were The
Principles of Mathematics (1903) and, with his former teacher Alfred North Whitehead as co-author,
Principia Mathematica (1910-1913).

2.2 SYNTAX

To get under way we write down a list of the primitive symbols that make up PL and
name any that are unfamiliar. They are called “primitive” since they are not defined in
terms of anything else.

Primitive Symbols:

p,q,rs,t small letters, from p to ¢, with or without subscripts
¢,) left and right parentheses
~ tilde
& ampersand
\Y, wedge
D) hook
= tribar
e slashed tribar

In English some combinations of words are counted as grammatically correct sentences,
e.g.,
The cat sat on the mat

whereas others are not, e.g.

mat cat sat the on the.

Likewise in PL certain strings of symbols will constitute well formed formulae, €.g.,

P &aq)
and others will not, e.g.,

pq(

To save a bit of writing we will introduce the abbreviation “wff”’ (pronounced “‘woof™)
for ‘well formed formula”. Also we will use the Greek letters o (alpha) and § (beta) to
represent wffs in general. A well formed or grammatically correct sentence in English is
one that obeys the rules of English grammar; analogously, a well formed formula in PL
is one that obeys the formation rules of PL.
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Formation Rules:

Basis Clause: P, q, 1, s, t taken individually, are wffs (B)
Recursive Clauses: If ais a wff, sois ~a. (R~)
If & and § are wffs, so is (@ & ) (R &)
b v (aVB) (RV)
h (@2p) (R2)

(@ =p) (R=)

v (o #P) (R #)
Terminal Clause: If o is a wff, it is so because of the above rules. (T)

In building up Wffs, the basis clause gives us something to start with, the recursive
clauses allow us to make longer and longer wffs, and the terminal clause prevents us from
writing down just anything and calling it a wff. The names of the rules are shown in the
right hand column. Constructing wffs from the rules is fun. We use assembly lines. These
are just like assembly lines in factories, but we construct formulae of PL out of the
primitive symbols by using the formation rules.

Example:

1. p B

2. ~p 1,R~
3. ~~p 2,R~
4. q B

5. (~~pVg) 3,4, RV
6. ((~~pVag) =9q) 5,4,R =
7. ~({(~~pVg =49 6, R~

You will notice a column of working on the right. This shows the justification for each
step by quoting the lines and rules used. Before going any further, have a go yourself at
generating some well formed formulae, and include a justification column beside your
assembly line.

The rules enable us to decide whether or not a formula is a wff. If it can be construc-
ted from the rules it is a wff; if it can’t, it is not a wff. The best way to understand this
is to work through some problems, checking your answers and referring back to the rules
if you make a mistake.

The following six symbols of PL are known as operators: ~, &, V, D, =, #. The
reason for calling them this will be explained in the next section. You should be able to
see from the formation rules of PL that every wff with more than one symbol in it will
have at least one operator. Now the last operator added in building up a wff is called the
main operator of the wff. We indicate the main operator by placing an arrow underneath
e.g.,

~p (rVa) ~(r24q) ~~p

1 t t 1
Quite often, different assembly lines may be used to construct the same wff. For instance,
with the assembly line example above, step 4 could have been done before step 2. For
any given wff however, all assembly lines will have the same operator added for the last




Section 2.2 34

step. Thus the formation rules of PL ensure that each wff with more than one symbol
has a unique main operator. Hence, regardless of how we build up ~((~~p V q) = q)
its main operator will be its left-most ~ .

NOTES

If we ever need more small letters in PL than just p, g, ¥, s, t we may use subscripts with these e.g.,
P, P2, -+ ql,etc.

¢ Wff” may also be pronounced “wif” but we have been informed by Snoopy that “woof” is preferable.
For the rest of Part One, “wff” will be taken to mean “wff of PL”.

EXERCISE 2.2

1. Which of the following are wffs (of PL)?

(a) p~

(b) (»)

() & q)

(d) p&aq

(e) p&q)

) ~~~@&p)

(g) (»p ~p)

(h) (pq)

@ pV@Vr

G @Vi@Vvrn)

k) @pV(~qgVr)

m ~@ £E9

(m) (p OD2q)

(n) Dp

(o) (p =@ =0 = 9)))
() (((p&@V (D =1))

2. For each of the following assembly lines fill in the correct justification for each step,
and indicate the main operator in the fina} wff.

() 1. p (b)y 1. p
2. ~bp 2. ¢q
3. (p& ~p) 3. ~p
4. ~(p & ~p) 4, ~q
5. (~p&~q)
(o) 1. p (1. p
2. q 2. q
3.7 3. (P EQ
4. (rVag 4. ~p
5. (gOvr) 5 9~
6. (Vg =(@>Or) 6. (~p&~q)
7. ~((pVaq) =(@>r) 7. (p&q)
8. (~p&~q)V(r&q)
9. (p #Ea) E(~p&~q)V(p&q)

3. Generate the following wffs from the formation rules, showing the justification for
each step.

(a) ~~~p
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(b) (p&(@Vr))

() (~p2(@ =~q)

(d (p ED&@VD))

(e (~(p =~g)D~~(~r =q))

*4 Although our language PL has been constructed with a definite interpretation in mind,
the syntax of a language may be discussed whether or not the symbols are later to be
given any meaning. In this question and the next we have invented a couple of
languages with no interpretation in mind.

A new language DL is defined as follows:
Primitive Symbols: A 0O * 1

Formation Rules: lisa wff (B)
If a is a wff, so is a0 (RO)
If o is a wff, so is a/\ (RD
If o and 8 are wffs, so is *a*( (R*)
If a is a wff, it is so because of the above rules. (T)

(a) State whether or note the following are wffs of DL. (Answer Yes or No)
) 1ooA
(ii) *Alx1 O
(iii) LAVAVAVAS I VA\u
(b) Generate the following wff from the formation rules of DL quoting the line and
rule used for each step.

* Le LIAAx 1 O

*5 A new language TL is defined as follows:
Primitive Symbols: 0O t O =

Formation Rules: O is a wff (B)
If a is a wff so is CaO (RO
If a and B are wffs so is *af (R*»)
If « and B are wffs so is at 18 (R1)
If a is a wff, it is so because
of the above rules. (T)

(a) Which of the following are wffs of TL? (Answer Yes or No)

(1) otto
(ii) *J00O0
(iil) OxDOM O

(b) Generate the following wff from the formation rules of TL, quoting the lines and
rules used for each step.

*OQOM*x0O00 0

2.3 SEMANTICS

So far we have not interpreted the symbols of PL. We now give meaning to these
symbols by providing definitions. To facilitate understanding of the new concepts, a
comparison will be made with familiar ideas from mathematics.

In algebra the letter x is often used as a (numeric) variable. Consider for example the
expression
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x(x+1)=x2+x.

This equation is true no matter what number we substitute for x. For instance, putting
3 for x we have

33+1)=3%+3
and putting 5 for x gives
5(5+1)=5%+5.

Note that while we are free to choose any value for x, the same value must be substituted
for every occurrence of x in the expression. For example, the following equation (obvious-
ly incorrect) would not count as an instance of the algebraic expression above.

3(5+1)=92+4.

Similarly, logic uses the small letter p (or g, 7, s, t) as a (propositional) variable to denote
any proposition. For example the expression

If p thenp
is true no matter what proposition we substitute for p, e.g.,

If I am a man then I am a man.
If logic is marvellous then logic is marvellous.

In keeping with the notion of a variable, when a substitution is made, each p in the
expression must be replaced by the same proposition; thus

If I am a man then logic is marvellous

does not count as an instance of “If p then p”. It should be noted that propositional
variables range over complex propositions too, e.g.,

If I am happy and you are happy then I am happy and you are happy.
is an instance of the expression above.
Definition: A propositional variable (PV) stands for any proposition, and is represented

by a small letter in the range p, ¢, r, s, ¢. In substitution, every occurrence
of the PV in the expression should be replaced by the same proposition.

Having dealt with the first item on our list of primitive symbols we now move on to
the next: parentheses. In this case it will be to our advantage to incorporate the pragmatic
aspect. In logic, parentheses ( , ) have the same meaning as in mathematics: an expression
in parentheses is to be evaluated before operating on it from the outside. This convention
allows us to discriminate between algebraic formulae like

x+(y xz)
(x+y)xz

and logical expressions like

p and (q orr) (1)
(pand q)orr (2)

Here (1) asserts that p is true and that at least one of g or r is true: (2) asserts that either
p and g are both true or r is true. Clearly, the expression

pandq orr (3)
is ambiguous: it might be read as either (1) or (2). Let us consider an example in English.

“Earth is a star and Venus is a star or Sirius is a star.” 4)
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(o)

As it stands, this sentence is ambiguous. It could mean

(Earth is a star and Venus is a star) or Sirius is a star. (5)
which is true. since Sirius is a star: or it could mean

Earth is a star and ( Venus is a star or Sirius is a star). (6)

which is false, since Earth is not a star. In written English. a comma is often used in place
of a parenthesis. For instance (5) would be expressed as

““Earth is a star and Venus is a star, or Sirius is a star.” (7)

In spoken English a pause does the job of a comma. English sentences may also be disam-
biguated by rephrasing, but sometimes it is extremely difficult to prevent ambiguities
from creeping in. One of the nice things about PL is that its rules for adding parentheses
ensure that any wff may be read in only one way i.e. the formation rules of PL prevent
such ambiguities from occurring.
It should be realised however that there are often cases where parentheses are redun-
dant, e.g.,
(q orr) (8)
p and (g and r) )
In (8) and (9) the meaning would be unaltered by the deletion of the brackets. Although
our formation rules insisted on extra parentheses whenever another propositional variable
was added to a formula, we shall, for the sake of simplicity in reading and writing formu-
lae, altow this rule to be modified by the following agreement.

Practical Concession: Parentheses may be dropped where no ambiguity results.

One immediate consequence of this is that outer-most parentheses may be omitted from
any formula. Note that while parentheses may be omitted around “q or r” in (8), they
must be inserted before incorporating this into an expression like (1); otherwise we will
end up with something like (3) again.

In practice we will also allow, for the sake of clarity, any form of brackets to be
used, e.g., [ ], rather than just parentheses (i.e., round brackets). Thus the formula

~({(pDq)D (r2(qg>Dr))
may be replaced by the easier to read equivalent
~[(pDq)D(rD(qg>OrNl (10)

Where helpful, different colours may be used for different pairs of matching brackets. For
instance, the structure of the above formula would be more obvious if we used a different
colour for the parentheses in (g O r).

In addition, we will occasionally make use of a dot notation. In this book our main
use of dots will be to highlight the main operator in certain important formulae. In the
example below, the original formula is made more readable by first deleting the outer-
most parentheses and then introducing dots.

((p&q)2r) =(pD(q2n)
(p&g)Dr) =(pO(gOr)
(p&qg)Dr =.p2O(@>2r)
The expressions to which an operator is added in an assembly line are known as the
operands of that operator. In the above example the operands of =are ((p & q¢) D r)
and (p D (g D r)). Notice above that as dots were placed around an operator, the outer
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parentheses of each of its operands were removed.

In some cases it will be handy to use dots to highlight the main operator of sub-formu-
lae. For example, formula (10) may be replaced by

~[pDg.D.r2(qDr)]

By use of multiple dots, the dot notation may be extended to completely eliminate the
need for brackets. There are several dot notations extant, and the most popular of these
are discussed in Chapter 9.

Practical Concession: Any form of brackets (including dots) may be used instead of
parentheses.

Let us now consider the six remaining symbols in our list of primitives (viz. ~ &, V,
D, =, #). As you know, these are termed operators. More exactly, they are called propo-
sitional operators. You are already familiar with several algebraic operators, e.g., +, —
(unary); +, —, x, + (binary). The unary minus “— operates on a single number (e.g.,
5) to form another number (—5), the binary multiply “x” operates on two numbers
(e.g., 2, 3) to form another number ( 2 x 3, ie. 6). We might refer to these algebraic
operators as ‘“number forming operators on numbers”; in like fashion, our logical
operators may be described as “‘proposition forming operators on propositions”. ~ is
different from the other propositional operators in being monadic: it operates on a
single proposition (e.g., p) to form another proposition (~p), cf. unary +, —. The others
(e.g., &) are dyadic, operating on two propositions (e.g., p, ¢) to form a single proposition
(v & @), cf. binary +, —, x,.+.

Before learning any more about our operators it will be necessary to make a brief
detour through some related concepts. In chapter 1 we saw that a proposition must be
true or false (but not both). Another way of saying this is that a proposition must have
a truth value of 1 or 0 (but not both).

Definition: There are two truth values: TRUE (denoted by 1)
FALSE (denoted by 0).

We are now in a position to give meaning to the six operators in PL. The operators are
defined by their truth tables. What are truth tables? Well, the best way to answer this
question is to show you some. Here is the truth table for ~.

p ~p ~ p has the opposite truth value to p
1 0
0 1

As we know, 1 and O stand for “true’” and “‘false” respectively. You will notice that this
table has two rows of truth values (rows are always horizontal) and two columns of truth
values (columns are always vertical). The first row of values says that given any proposi-
tion p which is true, then ~ p will be faise. The second row says that when p is false,
~ p is true. In other words, ~ p has the opposite truth value to p. Strictly, it is incorrect
to speak of PVs as being true or false. However we will often speak of truth values being
assigned to PVs to indicate generally the result of substituting propositions for those PVs.

The section of the table below the heading line and to the left of the double vertical
line is called the matrix of the truth table: it lists all the permutations of truth values for
the propositional variables in the formula. When only one PV is involved there are only
the two cases: '
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4|
1
0

When two PV’s are involved however, there are four permutations:

p_| 4
1| 1
1| of
0 1
0 0
This matrix may be used to define all the dyadic operators.
p q p&q p & q is true iff both p and ¢ are true
1 1 1
1 0 0
0 1 0
0 0 0
p q pVaqg p V q is true iff at least one of p, g are true
1 1 1
1 0 1
0 1 1
0 0 0
2 q pOgq p 2 q is false iff p is true and ¢ is false
1 1 1
1 0 0
0 1 1
0 0 1
2 q | p=q p =q is true iff p and g have the same truth
1 1 l 1 values
1 0 0
0 1 0
0 0 1
p q pE q p % q is true iff p and q have opposite truth
1 1 0 values
1 0 1
0 1 1
0 0 0

Though we have used the propositional variables p, ¢ in defining the operators, this has
been for convenience rather than necessity. Often we represent propositions by wffs
which are more complicated than simple PVs, in order to show the relevant structure
of the propositions (see §2.4). So D, for instance, may be defined as follows, where
« and B are any two wffs:

o D B is false iff « is true and § is false
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An alternative way to picture the definition of D is:

1D1=1
150=0
0D1=1
0D0=1

For simplicity, “1 D 1 = 1” may be read “true hooks true, is true”; but this reading
should be understood as merely an abbreviation for “(any proposition consisting of)
a true proposition hooking a true proposition, is itself a true proposition”. A similar
comment applies to the other three lines of the definition.

An even shorter way of writing the definition for D is to use a Cayley table as shown
below.

D 10
1 10 ie. 1D1=1 120=0
0 11 001=1 0200=1

In Cayley tables, the left operand is represented underneath the operator and the right
operand is represented on the right of the operator. The values in the body of the table
show the results of the operation being carried out between the operands on that parti-
cular row and column.

Similarly, the other operators may be defined without using the symbols p and q.

While you will need to learn the definitions of the operators in PL, it will be easier
to remember them if you can associate the operators with the English expressions they
are used to translate. The next section on pragmatics will cover this. So do not bother
to memorize the definitions by rote at this point.

NOTES

We have included one monadic and five dyadic operators in PL. These are more than adequate for
most applications of propositional logic. Infinitely more propositional operators however could be
defined. There are 4 monadic propositional operators, 16 dyadic operators, 256 triadic operators,
and in general 2 (zn) n-adic operators. For a survey of propositional operators see Ch. 9.

While from the point of view of syntax, the symbols p, q, 7, s, ¢, ( ,), ~ &, V, D, =, # are pri-
‘mitive, from the point of view of semantics they are no longer primitive since they have been
defined in terms of other things. It is possible to divide semantics up into formal semantics (where
for instance the operators would be defined in terms of the values 1 and 0 but no interpretation would
be given to 1 and 0) and informal semantics (where for instance 1 and O are interpreted as the values
true and false). The dividing lines between syntax, semantics and pragmatics are sometimes drawn
differently by different logicians.

In metatheory a distinction is drawn between the use and the mention of symbols. For instance, the
word ““Australia” is used in the first sentence below but mentioned in the second.

“Australia has fourteen million people.”

¢ ‘Australia’ has nine letters.”
While quotes are often used in written English to disambiguate between use and mention, we will
frequently expect the reader to determine, from the context, in which of these two ways the symbols
of PL are being employed. For instance, in defining the propositional operators, the symbols p and q
were being used to stand for any proposition rather than just being mentioned as symbols.
The semantics we have adopted are classical 2-valued semantics. It should be noted that non-classical
semantics exist which include more than two values (e.g., 0, 1, 2) or combine values (e.g., {0 }, {1 },
{o,1}.
EXERCISE 2.3

1. Render each of the following formulae more readable by deleting outermost parenthe-
ses and making use of alternative brackets or dots.
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@ (p2q) =(pVa)
(b) (p & (g VPp)>DWqg&q)>p))
() (P2g9)D(((gOr)&(r>D5))D(pD5s))

2. Eliminate any dots and alternative brackets from the following formulae in favour of
parentheses, and insert outermost parentheses.

(a) p&q =.q&p
) @Oq)&p.O. q
(c) ~lp&(@@Vr.EZ &)V (p&r)]

3. Use the definitions of the propositional operators to complete the truth values of
~p, ~q,q O p,and p O p in the table below.

p q ||~ |~ | 92p | pPOp

11|
1| of of 1| 1 | 1
o 1
ol o

To calculate the values for each row, look across to the values of p and g in that row
of the matrix, and then use the operator definitions. As a hint, the second row is filled
in already; the values of the four formulae were obtained as follows. On row 2, p is
1 and ¢ is 0. So the value of ~p is ~1 which = 0. The value of ~¢ becomes ~0 which
=1.Next,g Dp =021 which= 1. Finally,p Dp=1 D 1 which=1.

4. Construct Cayley tables for &, V, =and #.

5. The dyadic operator C is defined as follows: p C g is false iff p is false and ¢ is true.
Set out a truth tabular definition for C.

2.4 TRANSLATION BETWEEN LANGUAGES

Having developed a new logical language it is about time we started to use it to help us
analyse ordinary arguments, which after all occur in English. The first thing to do is to
find out how English sentences may be translated into (or “mapped onto”) formulae of
PL which express the same propositions. This is precisely the task to which we address
ourselves in this section.

In algebra, many general results about numbers may be stated in terms of numeric
variables e.g., x + y =y +x. In arithmetic however, when dealing with particular numbers
we find it convenient to introduce numerals which constantly designate the same value
e.g., 1 +2 =2+ 1. Likewise in formal logic, many general results about propositions may
be stated in terms of propositional variables e.g., p D p is seen to be true for all instances
of p.

p pOp
1 ‘ 1
0 1

But when translating propositions and arguments given in English we are dealing with
particular propositions, and it is convenient to denote these by propositional constants.
These were introduced informally in §1.7, but it is now time to lay down an exact
definition.

Definition: A propositional constant is a capital letter used in translation to stand for a
particular proposition; as an aid to memory we usually pick the first letter
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of an important word in the sentence, e.g.,

S = Selena is beautiful

When used for translation purposes during a particular example, a propositional constant
will designate the same proposition throughout. In another example however, the same
constant may be used to designate another particular proposition. For instance, in one
context we might stipulate

A = Apples are delicious
and in quite a different context we might stipulate
A = The student is finally awake.
Propositional constants may thus be thought of as “contextual constants’ (i.e. they are

constant within a given context).

Although we could handle the PC analysis of particular propositions and arguments by
regarding them as instances of various forms, it certainly makes life easier if we include
propositional constants as part of our propositional language. This we now do.

Practical Concession: Propositional constants 4, B, C, etc will be allowed to feature in
the formulae of PL. A propositional constant standing alone will
be treated as a wff.

At this stage it is also convenient to draw a distinction between simple (or atomic)
propositions and compound (or molecular) propositions. Roughly speaking, a proposition
is atomic if it contains no other proposition; otherwise it is compound. Here are some
atomic propositions:

Logic is easy. (1)
The cat sat on the mat. (2)

Here are some compound propositions:

If T persevere I will understand this. (3)
Today is not Monday. 4)
Today is Monday or today is Tuesday. (5)
Today is either Monday or Tuesday. (6)

Proposition (3) contains two atomic propositions viz. “I persevere”” and “I will under-
stand this”. Both (4) and (5) contain the atomic proposition “Today is Monday”, and
(5) also contains the proposition “Today is Tuesday”. Although expressed by different
sentences, propositions (5) and (6) are identical and hence are treated in the same way.

You will notice that compound propositions can be expressed by beginning with
sentences expressing atomic propositions and adding logical words like “if”’, “not™,
“or” etc. However it is possible to express a compound proposition by a sentence which

does not contain any of these logical words. Consider the following four sentences.

“Berkeley was Irish.” (7)
“Berkeley was a philosopher.” (8)
“Berkeley was Irish and Berkeley was a philosopher.” 9)
‘“Berkeley was an Irish philosopher.” (10)

Clearly, sentence (10) expresses the same proposition as sentence (9), and proposition
(9) is a conjunction of (7) and (8). So we may regard (10) as a compound proposition
which contains (7) and (8).

Constructions like (10) need to be treated with care. As usually construed, sentence
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(11) would not express a conjunction of propositions (12) and (13).

“Timothy is a big liar.” (1)
Timothy is big. (12)
Timothy is a liar. (13)

For instance, Timothy might lie a lot (making (11) true) even though he is small (making
(12) false.

It should now be apparent that negations, conjunctions, disjunctions, conditionals and
biconditionals are all cases of compound propositions. While a propositional constant
may be used to translate the whole of a compound proposition, we usually wish to trans-
late such propositions in such a way as to show their structure in terms of the atomic
components. We now investigate how this is done with the aid of our propositional
operators.

Let us begin with negation. Consider the following (hopefully false) proposition:
There will be a third world war before 2000 A.D. (14)

From Chapter 1 we know that the negation of this is: -
There will not be a third world war before 2000 A.D. (15

If we represent (14) by the propositional constant “W”, then (15) may be conveniently
abbreviated as “not W’. We may now construct a truth table for the negation of W as

shown.
w not W
1 0
0 1

The first row of this table relates to the case (more strictly, the set of all those possible
worlds) where W is true: in any such world not W will obviously be false. The second
row considers the case where W is false: in any such world noz W will be true.

It doesn’t really matter what particular proposition we choose. The neganon truth
table will always fall into the following pattern:

p not p
1 0
0 1

Does this remind you of one of our proposmonal operators" It should! This is precisely
the way ~was defined.

p ~p
1 0
0 1

§c

So ~ corresponds precisely to negation. We may use " to translate “not” or, more
strictly, it is not the case that”. Thus (15) may be translated as “ ~W”.

Now let us turn to conjunction. You will remember from §1.4 that proposition (18)
is a conjunction of (16) and (17).

Jane studies maths. (16)
Jane studies logic. (17)
Jane studies maths and logic. (18)

If we denote proposition (16) by “M* and (17) by “L” then (18) may be written as “M
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and L”. From the first chart in §1.4 the following truth table may be constructed.

nf\ L | Mand L
1 |1 I 1
tlo o
0 | 1 | 0
0o !0 “ 0

M and L will be true iff both M and L are true. Provided “and’ is used in the sense of
conjunction (i.e. it simply connects two individual propositions which are both asserted
to be true) we may provide a general truth table for conjunction as follows:

p q pandq

1 1 1
1 0 0
0 1 0
0 0 0

Which operator does this remind you of? You’re right of course! This is precisely the way
we defined &.

p q p&q
1 1 1
1 0 0
0 1 0
0 0 0

2

So & corresponds to conjunction. We may use “&’’ to translate conjunctive uses of “‘and
(or any other equivalent expression). This should be easy to remember, since &’ is often
used in everyday English with the sense of “‘and™ (although as a connective between
nouns rather than propositions e.g., “Cobb & Co0.”). Thus (18) may be translated as “M
&L,

Besides “and”, phrases like “but™ and ““although™ are often translated in PC by “&.
A discussion of these and various non-conjunctive uses of such expressions will be given
in §2.6.

Next on the agenda are disjunctions. Consider the following sentence.
“Tom studies either maths or logic.” (19)

In the absence of information to the contrary, we should not rule out the possibility that
Tom studies both maths and logic. So we will interpret (19) in the same way as:

“Tom studies either maths or logic, or both.” (20)
Adopting the following dictionary

M = Tom studies maths
L = Tom studies logic
and treating “or” in the sense of inclusive disjunction (i.e. we allow that both disjuncts

might be true), we may write (19) as “M or L”. From the second chart in §1.4 the
following truth table may be constructed.

Mor L
1

I

1
n
0 |
0 |
0

O O =

1
1
0
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M or L will be true iff at least one of M and L are true. Provided “or” is read in the sense

of inclusive disjunction, we may write a general truth table for inclusive disjunction as
follows:

p| a| porg
R
1o 1
o|1|1
ol o 0

Which operator does this remind you of? You’re right again! This is precisely the way we
defined V.

OO ==

So V corresponds to inclusive disjunction. We may use ‘“V”’ to translate the inclusive “or”’
(or any equivalent expression). Thus (19) may be translated as “M V L”. Another phrase
sometimes used to express inclusive disjunction is “at least one of”’.

Now consider the following exclusive disjunction.
Sue studies maths or logic, but not both. (21)
If we adopt the following dictionary

M = Sue studies maths
L = Sue studies logic

then the third chart in §1.4 indicates the following truth table.
M| L | MorL butnotboth

1[1 0
1] 0 1
0 1, 1
ol o 0

M or L but not both will be true iff exactly one of M and L is true. The general truth
table for exclusive disjunction may be written thus:

p | q || porqbutnotboth
1] 1] 0
11 0| 1
0 1 ' 1
0 0 0

Which operator does this bring to mind? As the table below shows, this is precisely the
way we defined #.

p, a| p #a
1] 1 0
) 1
0] 1 1
ol o 0

So & corresponds to exclusive disjunction. We may use “ £ ” to translate “... or ... but
not both” (or any equivalent expression). Thus (21) may be translated as “M # L.
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Other phrases sometimes used to express exclusive disjunction include “or” (exclusive),
‘“exactly one of”” and ‘“‘has the opposite truth value to”.

As mentioned in §1.4, it is not always clear which type of disjunction (inclusive or
exclusive) the English “or’” is being used to express. This uncertainty is indicated by the
“1 or 0” in row one of the following table.

p| a| poral pVal|p #q

1| 1] 10r0 1 0
1] o 1 1 1
0 1 1 1 1
ol o 0 0 0

Notice that whether p or g isinclusive or exclusive, whenever its value is true so is the value
of p V q. We express this result by saying that p or q implies p V g, or more briefly as
“or implies V/’. The possibility that “or” may be used inclusively means that “or implies
# 7 will NOT be a general truth.

The above table also reveals that whether p or g is inclusive or exclusive, whenever p
#£ q is true so is p or q. Thatis, p # q implies p or q. In brief, “ & implies or”. It is NOT
generally true however that “V implies or” (Why?).

Recall from §1.4 the standard ways of negating conjunctions and disjunctions. To
negate the conjunction “Sue studies both maths and logic”” we may say

It’s not the case that Sue studies both maths and logic. (22)
or equivalently,

Sue doesn’t study maths or she doesn’t study logic. (23)
These may be translated as follows.

~(M&L)
~MV ~L

To negate the inclusive disjunction “Sue studies either maths or logic”” we could say

It’s not the case that Sue sfudies either maths or logic (24)
or equivalently,

Sue studies neither maths nor logic. (25)
Both (24) and (25) may be translated as

~(MV L)
Another way of saying this is

Sue doesn’t study maths and she doesn’t study logic. (26)
This may be translated as

~M&~L
In general, a conjunction p & ¢ may be negated by ~(p & q) or by ~p V ~¢q. A dis-
junction p V g may be negated by ~(p V g) orby ~p & ~q.

You have now seen how four of our six PL operators may be used in translation. A
more detailed discussion on this will be given in §2.6. Before investigating the other two
operators, you should work through the following exercise. Remember that ~ corres-
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ponds to negation, & to conjunction, \ to inclusive disjunction and % to exclusive
disjunction. As a general rule, translate “‘or” by “V” instead of “Z” unless you are
certain the exclusive sense is intended. In Ch. 7 this simple rule will be replaced by a more
complex but more correct approach.

Note also that &, V and # are commutative i.e. given any propositions p, g we may
treat both expressions in the following three pairs as logically equivalent: p & q, ¢ & p;

pVaq,q\Vp;
p £q9,9 £p

That this is so may be seen from the truth table definitions or by realizing that “p and g
means the same as “q and p” when “and” is used purely conjunctively, etc. So if your
translation differs from the solution in the back of the book only in the order of the two
wifs flanking &, V or #, you may count your answer as correct.

NOTES

Our treatment of logical connectives as operators on propositions rather than sentences enables (10)
to be regarded quite naturally as a conjunction of (7) and (8). Strictly speaking, conjunction is a
relative matter: conjunctions are always conjunctions of certain propositions. Almost any proposition
may be regarded as containing two or more assertions. For instance we might regard the proposition
expressed by “My daughter Selena is sweet” as asserting both that “Selena is my daughter” and
“Selena is sweet”’, and hence treat this proposition as a conjunction of these two assertions. If however
we were not interested in separating out these individual assertions, we would tend to regard this
proposition as atomic rather than compound. Again, if we are focussing our attention on the concept
of illegality, we might regard the proposition “This action is illegal’ as atomic; however if we intended
to do something with the concept of legality, we would normally use the sentence ‘“This action is not
legal” and regard this as expressing a negation, and hence a compound proposition. Thus to some
extent at least, the demarcation between atomic and compound propositions is a pragmatic one.
This will present no problems in practice if we always specify our propositional dictionary.

We have introduced the term ‘“‘possible world” briefly and informally, but will make further use of it.
For a thorough and excellent treatment of this notion consult Bradley and Swartz’s Possible Worlds.

e

In Latin a distinction was made between the two senses of “or’: ‘“vel ... vel ...”” meant “‘either ...
or ...” in the inclusive sense; “euf ... qut ... ” meant “either ... or ... but not both’. Our wedge symbol
V is simply the first letter of “vel” (it is a consonantal u, often written nowadays as a v, but pro-
nounced as a w: note that in keeping with its origin the wedge should always be written sans serif).
It’s important to realize that p V g does not imply that p & g is possible. p V g just says that at least
one of p and q is true. It is thus part of the meaning of p # q. The relation between the two types of
disjunction is best demonstrated by the fact that p Z ¢ is equivalent to (p V q) & ~(p & ). It should
be clear that p # q impliesp V q.

We have introduced the notion of implication between English and PL. This will be spelled out in
greater detail later, particularly in §2.6 and Ch. 7. Our development in this area draws heavily from
the pioneering work of Phillip Staines.

EXERCISE 2 4A

[Question 2 asks you to translate from PL to English. Although PL is unambiguous,
we have already seen that English can be ambiguous. It is important to be able to
express precisely what we want to say. Question 1 is designed to help you in this
regard, and to develop your sensitivity towards “scope ambiguity” of English words
like “not’’ (this arises when it is unclear just how much of the rest of the sentence is
modified by (i.e. in the scope of) the English word or phrase). Further examples of
scope ambiguity will be met in Quantification Theory.]



Section 2.4 48

1 2 3 4

For each of the following sentences, list those trees (from 1 — 4 above) for which the
proposition expressed would be true. If you feel the sentence is ambiguous, state the
different meanings.

(a) The tree is tall and leafy.

(b) The tree is not tall and not leafy.
(c) The tree is tall and not leafy.

(d) The tree is leafy and not tall.

(e) The tree is tall or leafy.

(f) The tree is not tall or not leafy.
(g) The tree is tall or not leafy.

(h) The tree is leafy or not tall.

(i) The tree is not tall and leafy.

(j) The tree is not both tall and leafy.
(k) The tree is both not tall and leafy.
(1) The tree is not tall or leafy.

(m) The tree is either not tall or leafy.
(n) The tree is not either tall or leafy.
(o) The tree is neither tall nor leafy.
(p) Both of these trees are leafy.

(q) It’s not the case that both of these trees are leafy.
(r) Both of these trees are not leafy.

2. Use the dictionary supplied to translate the following formulae into English.

T = The tree is tall
L = The tree is leafy
B = The tree is beautiful

(a) T

(b) ~T

(¢c) L&B

(d) TVL

() TEL

) L&B)& ~T
(g ~T&~L
(h) ~(T&L)

(i) ~(TVLY&B

3. Use the dictionary supplied to translate the following sentences into PL.

S = Linda is a student
P = Linda is pretty

G = Linda is a girl

T =Tom is a student
B =Tom is a boy
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(a) Linda is a pretty girl.

(b) Tom is not a student.

(c) Either Linda is a girl or Tom is a boy.

(d) It’s not true that Tom is not a boy.

(e) Tom is a boy student and Linda is a girl.

(f) Both Linda and Tom are students.

(g) Neither Linda nor Tom are students.

(h) It’s not the case that both Linda and Tom are students.
(i) Either Linda is not a student or Tom is not a student.
(j) Of Tom and Linda, just one is a student.

Propositional Calculus is also known as “Truth Functional Logic” since the truth value
of any proposition expressed in PL is a function of the truth values of its atomic compo-
nents. That is, for any particular assignment of truth values to the atomic components
there is a unique truth value for the whole proposition: this is evident from the truth-
tabular definitions of the PL operators. For example, given any proposition p which =0
and any proposition ¢ which = 1, then p & g must have the value 0.

Now just because propositional operators in PL have been deliberately defined to be
truth functional, this does not mean that propositional operators expressed in a natural
language like English have to be truth functional. We have already hinted that the opera-
tor “and” has non-conjunctive uses, and noted that “or’” has at least two distinct roles
(one inclusive, another exclusive). So as we now turn to investigate the English conditional
operator “if ... then ... ”” we should not be unduly surprised if we find that it fails to be
truth-functional.

Propositions of the form “if p then g often crop up in arguments, so it is important
to obtain a suitable translation for this expression. Unfortunately the English phrase
“if ... then ... ” is so ambiguous truth-functionally that no precision translation is possible.
The following examples should make this clear.

P q If p then q
1. If5 > 3then5 > 2 1 1 1
2. If 5 > 3 then Einstein was a scientist. 1 1 0
3. If5 > 3 then 5 < 2. 1 0 0
4, If 5 <2then5 <6. 0 1 1
5. If 5 < 2then5 > 2. 0 1 0
6. If5 <2then5 < 3. 0 0 1
7. If 5 < 2 then kangaroos drive cars. 0 0 0

(You may feel uneasy about our “‘natural language evaluation” of rows 2, 5 or 7. No
matter: if you disagree, this merely demonstrates the ambiguity of the expression in
another way.)

We may summarise these cases in a truth table:

p | ¢ | Ifptheng

1 1 1or0
1 0 0

0 1 1or0
0 0 1or0

Quite clearly, the English phrase “if ... then ... ” is NOT truth functional. For example,
given that p = 0 and that ¢ = 1, we cannot say that If p then g must have the value 1,
or that it must have the value 0: it could be either, depending on the particular propo-
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sitions that we substitute for p and ¢. Since all PL operators have been defined to be
truth functional, there is no single PL operator which corresponds precisely to “if ...
then ... .

However, because of the prominent role of “if ... then ... ” in logical reasoning we
need to find at least a good approximation for it. Fortunately, one of our PL operators
will prove satisfactory for most of our purposes. It is O, and we place its truth table

beside that of “if ... then ... ”” for comparison.
P | 9 § p2q |Ifptheng
1 1 1 lor0
1 0 0 0
0 1 1 lor0
0 0 1 lor0

Given that we want a truth-functionally unambiguous approximation for If p then g, then
p D g is our best available. We can demonstrate this by means of the above comparison
table. The first thing to note is that p O g agrees with If p then g on the second row. This
is crucial: if p is true and g is false it is always a mistake to assert that if p is true then so
is g. For example, the following proposition is quite definitely false:

If cats are animals then cats are plants. (27)

It is also clear from the table that whenever if p then g is true so is p O g ( consider
rows 1, 3,and 4). We may express this fact by saying that if... then... implies D>
Because of this implication there are important logical features of if. .. .then. .. that are
possessed by o . As we will see later, the three most important valid argument—forms
involving #f. .. then. .. (AA DC and Ch Ar ) are parallelled by valid argument—forms
involving DO .

The two requirements of agreement on row two, and implication by “if ... then ... ”,
uniquely determine p D ¢ as our translation for If p then q. There are other motivations
for choosing O (e.g., our translation must have the value 1 on rows one and four, other-
wise expressions of the form If p then p would be translated as false). Although “if ...
then ... implies D" it is clear from the above table that D does NOT imply if ... then ...
(Why?).

Logicians sometimes refer to the D operation as “material implication”. Thus “p D
q” is sometimes read as “p materially implies q”. This is motivated by the knowledge
that if p D ¢ is true and p is true then as a matter of fact ¢ will have to be true too.
However the connection between p and g which is expressed in English by “If p then
q” is much stronger than mere material implication. This point will be taken up in §2.6,

but we note here two important differences between D and if ... then ... :

1.~p2(>q)
If p is false then p D q is true: a false proposition materially implies any proposition
(this follows from rows 3 and 4 of the table for D e.g.,

The Earth has two moons materially implies that
the Earth has ten moons. (28)

2.q2(p@>q)
If g is true then p D g is true: a true proposition is materially implied by any proposi-
tion (this follows from rows 1 and 3) e.g.,

Today is Friday materially implies that the Earth has one moon (29)
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These two facts about D are examples of the so-called “paradoxes of material implica-
tion”. They appear paradoxical only if we blindly imagine that D captures precisely the
meaning of “if ... then ... . Despite these notorious failures of D to match exactly our
intuitive sense of “if ... then ..., we will often use it to translate conditionals into PL.
The important thing to remember is that “if ... then ... implies O”. In Chapter 7 we will
look again at this problem and indicate the general circumstances under which translation
by D is justified. For the present however, we will assume that O may be used to translate
if ... then ... into PL.

We saw earlier that &, V and # are commutative. In Ex. 2.3 you established that
p D q has a different truth table from g D p. So D is not commutative i.e. the order of the
operands around the D does matter. In §1.5 we saw that if p then q is not equivalent to
its converse If g then p. So D correctly reflects the non-commutativity of conditionals.
Because of this we often describe ¢ D p as the converse of p O q.

You will recall from §1.5 that the conditional If p then g may also be expressed as
p only if g, and that its converse If g then p may also be expressed as p if ¢. Now look
at the truth table below.

pl a | p=q|p2q| 42p | D9 &(q2Dp)
1 1 1 1 1 1
1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 1 1 1

Here we have used a common matrix to serve for four different formulae. The expression
(p 2 q ) & (g DO p), being a conjunction, will be true iff both of its conjuncts (viz.,p D g,
q Dp) are true; as can be seen from the columns for these conjuncts, this happens on
rows 1 and 4 but not on rows 2 and 3. Hence the column for (p D ¢) & (g D p) is as
shown; but this is precisely the same as the column for p = g. Therefore p = ¢ is equiva-
lent to (p Dg)&(q Dp). Thus “p = g~ may be used to translate “If p then ¢, and if g
then p”. Using the alternative readings mentioned above this becomes “p only if ¢, and
p if ¢” or more neatly “p if and only if ¢”. Hence “p = q” may be used to translate “p
iffq”.

So we now have a way of translating biconditionals in PL. If we adopt the following
dictionary

E = The set is empty
N = The set has no members

then we will translate the biconditional
The set is empty if and only if it has no members. (30)

by
\ E=N

But how satisfactorily does = capture the sense of iff? If you look at the truth table
for = you will see that p = ¢ will be true just when p and ¢ have the same truth value.
So “p = ¢ may also be read “‘p has the same truth value as q” . Because of this, logicians
sometimes refer to the = operation as “material equivalence”. Thus “p = ¢’ is some-
times read as “p is materially equivalent to q”. But equivalence of truth value is a very

weak form of equivalence. The sort of equivalence usually expressed by the phrase “if and
only if” involves a much stronger connection between the operands. Any two true
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propositions will be materially equivalent e.g.,
Earth is inhabited is materially equivalent to 1 + 1 = 2. (31)
Moreover, any two false propositions are materially equivalent e.g.,

The Earth has two moons is materially equivalent to
the Earth has ten moons. (32)

Clearly, it would not do to replace the connective “is materially equivalent to” in these
cases with “iff”.

These two examples are instances of the so-called “paradoxes of material equivalence”.
They are paradoxical only if we incorrectly assume that = captures precisely the meaning
of “if and only if”. However, just as we will mostly use D to translate if ... then ... , so
we will mostly use = to translate iff. Unfortunately there is no neat relation of implica-
tion between p iff ¢ and p = q. Each case will have to be judged separately (see Ch. 7).
Later in this book stronger forms of implication and equivalence will be discussed which
will represent more closely certain strong conditionals and biconditionals.

One further point about = is worth noting here. It should be obvious, either from
truth tables or from reading = as a matching truth value operator, that the truth table
for p = g will agree exactly with that of ¢ = p. So = is commutative. So of all our
dyadic operators, only D is non-commutative.

Well, we have now seen how all the basic types of propositions introduced in Chapter
1 (viz. negations, conjunctions, inclusive disjunctions, exclusive disjunctions, condition-
als and biconditionals) may be translated in PL by means of propositional operators
(~,&,V, #,Dand = respectively).

Having discovered basic translation uses for each of our operators, it would be helpful
to practise these uses before considering trickier cases in the next section. With transla-
tion exercises, any answer logically equivalent to the provided answer will be correct.
Logical equivalence will be discussed in depth later, but we note here two ways in which
formulae may be equivalent.

Firstly, remember that all our dyadic operators except D are commutative. For exam-
ple, the following formulae are all logically equivalent:

P& V(r =5
(q&p)Vis =7)
(s =nVig&p)

Secondly, remember that we are free to use different types of brackets and to drop
brackets when no ambiguity results. Apart from deleting outermost brackets, further
freedom with brackets follows from the fact that some of our dyadic operators are
associative. Associativity will be dealt with in more detail later, but we note here that &,
V, =, # are associative whereas D is not. Saying that & is associative means that in any
wif where & is the only dyadic operator it doesn’t matter which conjuncts we associate
first. For instance, p & (¢ & r) is equivalent to (p & q) & r. Hence it is O.K. to write
p & g & r since this is unambiguous. This corresponds to the fact that with English
sentences of the form p and q and r it doesn’t change the meaning if we place a comma
after p or after q: the sentence simply states that each of p, g, and r are true.

Similartly p Vg Vr,p = g = randp # q % rareacceptable,butp Dg Dris
illegal e.g., p D (g D r) is quite different in meaning from (p O g) D r. Note in particular
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that brackets are always required when different dyadic operators are included in the
same formula e.g., p & (g V r) is not equivalent to (p & q) V r.

To assist you with the following exercise, a summary of the main translations discussed
so far is now presented. Section 2.6 will consider additions to this list.

~p not p
it’s not the case that p
p&q p andq
both p and ¢
p but ¢q
pVaq p or q (inclusive)

either p or q
p or q or both

pDgq if p then g
ifp, q
p only if q
q°op pifq
only if p, q
P = q p if and only if ¢

if p then q, and conversely

pEq p or g but not both
exactly one of p and ¢

Remember also that expressions of the form Not both p and g may be translated as
~(p & q), and expressions of the form Neither p nor g may be translated as ~(p V g) or
as ~p & ~q.

Having done all that theory you must be anxiously awaiting some more questions to
exercise your new logical muscles. You will find just what the doctor ordered in the
exercise below!

NOTES

The fact that “material implication” lacks the logical force usually associated with the term “‘implica-
tion” has prompted some authors (e.g., Bradley and Swartz op. cit.) to recommend that this title be
replaced by “material conditionality”. Similarly it has been suggested that the term “material equiva-
lence” be replaced by “material biconditionality”. The older terms seem so entrenched in common
logical usage however, that we have retained them, while warning against reading them too strongly.

In mathematics a slash is often used instead of ~ to denote “not” e.g., x # y means ~(x = y).
Likewise p #& g means ~(p = q).

EXERCISE 2.4B

1. Translate the following PL wffs into English using the dictionary provided.
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(a) F F = Today is Friday

(b) ~F S = Tomorrow is Saturday
(c) F& s W= Today is Wednesday.
(d) FVS

(e) FOS

f)y F= S

(8) WEF

2. Given that today is Friday, which of the propositions in Question 1 would be counted
as true?

3. Given that today is Monday, which of the propositions in Question 1 would be counted
as true? .

4. Translate the following PL wffs into English using the dictionary provided.

H=1am a human
M=1amaman -
W=1am a woman

() MVW)DH
(b) H= (MV W)
(c) ~(M&W)

(d) MD(H&~W)
(e) HDO(M £ W)
(f) ~HD~MV W)
(8) HD~(M& W)

5. Translate the following sentences into PL using the dictionary supplied.

I = Logic is interesting
U = Logic is useful

B = Logic is boring

M =T"m a monkey’s uncle
N = You’re my nephew

(a) Logic is interesting.

(b) Logic is not boring.

(c) Logic is interesting or useful.

(d) Logic is interesting and useful.

(e) Logic is interesting and useful but not boring.

(f) If logic is boring then I’'m a monkey’s uncle.

(g) I’m a monkey’s uncle only if you’re my nephew.

(h) Logic is interesting or boring but not both.

(i) I’'m a monkey’s uncle if and only if you’re my nephew.
(j) Neither is logic boring nor are you my nephew.

(k) It’s not true to say that logic is both useful and boring.

6. Translate the following sentences into PL using the dictionary supplied.

FE = The number is even
O = The number is odd
P = The number is positive
Z = The number is zero
N = The number is negative

(a) The number is not even.

(b) The number is either even or not even.
(c) The number is odd only if it’s not even.
(d) The number is odd if it's not even.




55 Section 2.4

(e) The number is odd if and only if it’s not even.

(f) If the number is negative then it’s not positive.

(g) The number is not both even and odd.

(h) The number is neither positive nor negative.

(i) If the number is zero then it’s neither positive nor negative.

(j) The number is positive or zero or negative.

(k) If the number is not zero then it’s either positive or negative but not both.

(I) The number is not positive if it is negative.

(m) The number is even, non-zero, and positive.

(n) If the number is even then it is not odd, and conversely.

(o) If the number is either even or positive then it is not both odd and negative.

(p) The number is either even and positive, or odd and negative, but not both.
*(q) Only if the number is non-zero and non-negative will it be positive.

2.5 SENTENCES AND FORMS IN PL

Well formed formulae in PL may be conveniently divided into two main types: PL-
sentences and PL-forms. For the rest of Part One we will often refer to these simply as
sentences and forms.

Sentences contain at least one propositional constant, and no propositional variables.
Here are some examples: “4”; “~A4 V B”; “(4 & B) D C”. PL-forms on the other hand
contain at least one propositional variable, and no propositional constants. Here are some
examples: p; ~p V gq; (p & g) D r. Given the dictionary of propositional constants,
sentences will express definite propositions. Strictly speaking, forms never express propo-
sitions.

Given a compound proposition, there will always be more than one sentence in PL
that could be used to express it. Take for instance the following proposition.

This is easy and you’ll follow it. €3]

If for some reason we wanted to treat this as a unit we could specify the following
dictionary

T = This is easy and you’ll follow it
and translate (1) simply by the following sentence
“T’,

However, if we wish to reveal the internal structure in.which the atomic components
reside we will choose a dictionary of atomic propositions:—

E = This is easy
F = You’ll follow it

Proposition (1) may now be translated by the sentence
C‘E & F?’

We will call this sentence an explicit sentence of PL to indicate that all its propositional
constants represent atomic propositions: it unfolds as much of the proposition’s structure
as is possible in PL.

When logicians want to establish general results about the logical structure of proposi-
tions and arguments, not tying themselves down to particular propositions, they deal with
forms rather than sentences. The sentence “7” has just one form: p. The sentence “E &




Section 2.5 56

F” also has the form p (as will any sentence), but in addition it has the form p & ¢. In
general, a sentence has (is an instance of) a certain form iff it can be generated from that
form by replacing propositional variables in that form with sentences, where all occur-
rences of the same variable must have similar replacements (i.e. the substitution must be
uniform).

For instance, “E & F” can be generated from p by replacing “p”" with “E & F”. Also,
“E & F” can be generated from p & ¢ by replacing “p”’ with “£” and “¢’" with “F”.
Note that “E & F’ does not have p & p as one of its forms, since both occurrences of
p must be replaced by the same sentence for it to qualify as a form. For instance the
sentence “E & £ does have p & p as one of its forms.

Let’s look at another proposition.
If this is easy you’ll follow it, and it is easy. (2)
Its explicit sentence will be
“EDF)&E”
This has four forms:

rog)&p

P2a)&r

p&gq

p
The first of these is obtained from the sentence by substituting variables for constants,
introducing new variables in the alphabetic order p, g, ... but using the same variables for
the same constants: this form provides the maximum information on the structure of the
sentence and is called its explicit form. Although sentences may have many forms, they
will have just one explicit form.

We may now define the explicit form (in PL) of a proposition as the explicit form of
its explicit sentence (in PL).

NOTES

Unlike some authors, we do not allow propositional constants to feature in PL-forms. Besides
sentences and forms, a third class of PL-wffs does exist viz. PL-hybrids: these contain at least one
variable and at least one constant e.g., 4 D p. Discussion of forms is simplified by excluding hybrids.
We will have no use for PL-hybrids in this text.

Quotes will often be used to distinguish reference to sentences (e.g., “E' & F”’) from reference to
propositions (e.g., E & F). Quotes will usually be avoided with propositional forms.

The explicit form of a sentence is sometimes called its “specific form™ or its “skeleton”.

In speaking as if a proposition has a unique explicit sentence we have assumed there is a unique
answer to the question as to what the proposition’s atomic propositions are (see Notes to §2.4).
Secondly we have ignored trivially different sentences arising from different choices of letters for the
propositional constants e.g., (2) could be symbolized by “4 & B’ rather than “F & F”. Thirdly, if it
is argued that operand order around commutative operators is not a criterion for propositional
identity (e.g., that £ & F is the same proposition as ¥’ & E) we have ignored such differences in order.
The second of these qualifications is of course not needed to establish the uniqueness of a proposi-
tional’s PL-form.

Although propositions (1) and (2) can be shown to be truth-functionally equivalent (see Ch. 3), and
involve the same atomic propositions, they have different explicit forms and hence are not the same
proposition. (For a treatment on identity rather than mere equivalence of propositions see Bradley
and Swartz op. cit. pp. 94-97) .
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EXERCISE 2.5

1. Provide explicit sentences (in PL) for the following propositions.

(a) Romeo is happy if and only if Juliet is.
(b) I’'m not worried but I am concerned.
(c¢) Ifit’s Monday or Tuesday then it’s not Wednesday.

2. For each of your answers to Question 1, write down:

(a) the explicit form
(b) the other forms

3. Two certain propositions have the same explicit form. Must they be the same proposi-
tion? Give an example to back up your answer.

2.6 TRANSLATION: SYNONYMY, EQUIVALENCE AND IMPLICATION

When English sentences are translated into PL-sentences, two conditions should ideally
be satisfied. Firstly, the PL-sentence should express the same proposition as the English
sentence i.e. the two sentences should be synonymous. Secondly, the PL-sentence should
display the atomic propositions involved and their attendant logical operators (except
when, for reasons of efficiency, compound propositions are treated as a unit). By “atten-
dant” logical operators we mean those operating on the atomic propositions.

In practice these two requirements for an exact translation are rarely met. In the
first place, it can sometimes prove awkward to select a dictionary of propositional
constants that exactly matches all the atomic propositions involved. More importantly,
the operators of PL, defined in §2.3 by means of truth tables, often fail to capture the
precise meaning and nuances of the English operators they are used to translate: the most
notorious failure in this regard is the use of “D” as a translation for “if ... then ... 7, as
discussed in §2.4. Despite these problems, a great deal can be accomplished. By becoming
acquainted with the types of problems that can arise and methods for overcoming them,
we will be able to make effective use of PL for analysing propositions and arguments.

To appreciate that a problem can arise when choosing a dictionary of atomic proposi-
tions, let’s consider the following valid argument.

If love is alive then there’s hope for the world.

Obviously, love is alive.

So there’s hope for the world. (1)
Strictly speaking there are three different atomic propositions here, which we might
symbolize as follows:

L = Love is alive

H = There is hope for the world
O = Obviously love is alive

That L differs from O should be clear if we compare their negations:

Love is not alive. (2)
It’s not obvious that love is alive. (3)

It should be clear that (2) and (3) are quite different, and that (4) is different again.

Obviously love is not alive. (4)

Argument (1) may thus be abbreviated as follows:
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If L then H
(0]

H (1a)
This has the following form:

If p then ¢q
r

q
Now since not all arguments of this form will be valid, translating (1) as (1a) fails to
expose the valid structure of (1). What needs to be seen is the logical connection between
L and O. This can be made clear by using the notions of equivalence and implication. We
have met these notions before, and will have a lot more to say about them in future chap-
ters, but for the moment let us agree that p is equivalent to q iff p and q must always
have the same truth value, and that p implies q iff whenever p is true so is q.

If you think about it you will see that O implies L. Another way of expressing this is
to say that L is an implicant of O. Moreover, O has identical truth conditions to the
conjunction O and L: whenever O is true so is O and L; and vice versa. So O is equivalent
to O and L. In general, any proposition will be equivalent to a conjunction of itself and
an implicant (this conjunction is sometimes called a “conjoint product” of the original
proposition).

Since the logical classification of propositions and propositional relations (including
validity of arguments) depends only on truth conditions, it is permissible for purposes
of such classification to translate sentences of English into equivalent sentences of PL.
Such translations may be called equivalent translations. Some but not all equivalent
translations will be synonymous translations.

Any translation which is either equivalent or synonymous will be called an accurate
translation.

Here is one equivalent translation for argument (1):

If L then H
O and L

H (1b)

Now the valid structure of (1) is apparent, because O and L implies L, and L combined
with the first premise yields the conclusion.

Quite often, logicians adopt a simpler approach still in translating propositions for
logical analysis. Rather than translating from English to a synonymous or equivalent
PL-sentence, they sometimes translate to a weaker PL-sentence which is implied by the
English, provided this is adequate for their purposes. Such translations may be called
implied translations. For instance since O implies L, and L is sufficient to establish
validity, O may be translated simply as L for purposes of assessing argument (1). Thus
(1) may be presented as:

If L then H
L

H (lc)
which is obviously valid.
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Having considered the translation of atomic propositions, let’s have a look now at the
translation of logical operators. In most cases when English operators are translated into
PL-operators, the translation will be equivalent or implied rather than synonymous. With
negation however, exact translations are usually found. For instance, given the dictionary

R = It is raining

each of (5) and (6) is synonymous with (7).

It’s not raining. (5)
It’s false that it’s raining. (6)
~R (7N

In some cases it is convenient to translate phrases like “can’t” and “impossible”, which
imply negation, simply in terms of “~ . For example argument (8) is more easily seen
to be valid from the implied translation (8a), using the dictionary:

C = His theory is correct
P = Computers feel pain

If his theory is correct then computers feel pain.
It’s impossible for computers to feel pain.

Hence his theory is incorrect. (8)
If C then P
~Pp

o~C (8a)

However, as we will see in Chapter 3, there are cases where a sharp distinction needs to be
drawn between “not” and “not possible”.

Now let’s look at conjunctions and related cases. When translating with “&”, synony-
my or at least equivalence will usually be attainable. Given the dictionary

H = Hindus believe in a God
M= Muslims believe in a God

the conjunction (9) translates exactly as (10).
Hindus believe in a God and Muslims do too. (9)
H&M (10

The next example is more than a simple conjunction, because it contains an element of
contrast.

It’s humble, but it’s my home. (11
The atomic propositions here may be symbolized:

H = It’s humble
M = It’s my home

“But” is often used to “discount’ the proposition before it in favour of the following
proposition. Notice the difference between (11) and (12).

It’s my home, but it’s humble. (12)

Despite these differences, both (11) and (12) are truth-functionally equivalent to (13):
each is true iff both H and M are true. So for purposes of logical analysis (11) would
usually be bluntly translated as (13).

H&M (13)

Similarly, the subtler aspects of many other English conjunctives will usually be ignored
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in logical translation (unless these aspects have a bearing on the logical task at hand). For
instance, given the dictionary

B = She’s the firm’s best engineer
W = She’s a woman

the proposition

She’s the firm’s best engineer even though she’s a woman. (14)
would normally be translated as

B&W

even though the connective “even though” goes beyond the meaning of “&’” in suggesting
that it is unusual for the best engineer to be a woman.

A word or two needs to be said about the translation of “because™ or “since”. If p
because q is merely one premise in an argument, then it is often acceptable to translate
it simply as p & q. You might feel that g & (¢ O p) would be more correct, but it is easy
to show by truth tables that this is equivalent to p & g (you will learn how to do this in
Ch. 3). If however, p is the conclusion of the argument we should instead display p
because q as

q

T
A similar comment holds for propositions of the form p since g. Note that the “___" and
.7 are not symbols of PL but they are part of the symbolic notation adopted within
PC for the analysis of arguments.

As indicated in the notes to §2.4, it is sometimes useful to treat sentences with one
verb as expressing conjunctions, if the separate assertions can be made explicit by para-
phrasing. For example (15) and (17) might be rephrased as (16) and (18) respectively.

It’s raining in spite of the sun’s shining. (15)
It’s raining and the sun is shining. (16)
Looking through a telescope, Halley saw a comet. (17
Halley looked through a telescope and saw a comet. (18)

Quite often the word “and” is used to convey more than conjunction. In ( 19)ithasa
temporal sense indicating he ate the pizza before he got the tummy ache.

He ate a pickled pizza and got a tummy ache. (19)

In §2.4 we noted that & is commutative i.e. in all cases p & ¢ is equivalent to ¢ & p. That
“and” is not commutative can be seen by comparing sentences (19) and (20).

He got a tummy ache and ate a pickled pizza. (20)

If you try swapping the atomic propositions in (18) you will notice that there too “and”
has the sense of “and then”. In such cases “and’ will commonly be translated as “&”
unless the temporal aspect is logically important.

Not every use of “and” will imply &. Consider the following proposition.
You do me a good turn and I'll do you a good turn. (21)

Here “and” acts as a conditional rather than a conjunctive operator. The same proposition
could be expressed as:

If you do me a good turn then I'll do you a good turn. (22)
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Rather than mechanically replacing words with symbaols, a little common sense is needed
to ensure that we translate what is expressed by the English.

Care should also be taken when negation and conjunction are combined. Given the
dictionary

E = The Earth is a planet
S = The Sun is a planet

how would you translate the following propositions?

The Earth and the Sun are not both planets. (23)

Both the Earth and the Sun are not planets. (24)
It should be clear that (23) and (24) are not equivalent. Proposition (23) allows that one
of the Earth and the Sun may be a planet: it simply denies that both of them are planets,
and hence may be translated as the negated conjunction (25).

~(E & 5) (25)

On the other hand, the sentence (24) would normally be construed as saying that neither
the Earth nor the Sun is a planet: hence it may be treated as a conjunction of negations,
as follows.

~FE&~S (26)

On this account, (23) is a true proposition and (24) is false, since we know that the Earth,
but not the Sun, is a planet. Notice that the sentences (23) and (24) are identical except
for the position of “both”. It is not uncommon for a change in word position to lead to a
change in meaning: part of our job as logicians is to make ourselves more sensitive to such
differences.

Earlier we saw that “not” could sometimes be used as an implied translation for
“impossible”. To say that two propositions are incompatible is to say that it is impossible
for both of them to be true (though one might be true): this implies that they are not
both true. Consider the following example.

The Earth’s being a planet is incompatible with the Sun being a planet. (27)

This implies that the Earth and the Sun are not both planets. So in some cases (25)
might be used as an implied translation for (27). An exact treatment of the notion of
incompatibility (or inconsistency) will be given in Chapter 3.

Let’s spend a minute or two now on disjunctions. Recall that inclusive disjunction is
handled by V, and exclusive by % . With expressions of the form “p or q or both” or the
legal “p and/or ¢, the disjunction is clearly inclusive. Some uses of “or” are clearly
inclusive and some are clearly exclusive: ~when in doubt we treat it as inclusive ( a
more sophisticated approach will be given in Ch. 7).

In some sentences, “or’ is used with the sense of “that is” e.g.,
Incompatibility, or inconsistency, will be examined later. (28)

Manifestly, or implies V here also, so V could be used in an implied translation: much
later in the book the identity relation “="" will allow an exact treatment of such cases.

An important logical phrase not yet considered is “unless’”. Consider the following
proposition.

Your diet will be useless unless you exercise. (29)

This implies, and is perhaps equivalent to:
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If you don’t exercise, your diet will be useless. (30)
This seems equivalent to:

Either you exercise, or your diet will be useless. (31)
Choosing the dictionary

D = Your diet will be useless
E = You exercise

and for safety-sake treating the “or” in sentence (31) as inclusive, (31) may be trans-
lated as:
EVD
Since V is commutative, this is equivalent to:
DVE
By virtue of the linkage between (29) and (31), which is at least as strong as implication,

this will usually be taken as an acceptable translation for (29). In other words, “D unless
E” translates as "D V E”’. Sometimes “unless’ is placed at the front instead of between

e.g.,
Unless you exercise, your diet will be useless. (32)
This is equivalent to (29) and hence may be translated in the same way. In general, our
normal practice will be to translate expressions of the form p unless q or Unless q, p
simply as p V g. Because V commutes, it is also usually permissible to translate Unless
p, q simply asp V q.
As a final note on V, recall from Chapter 1 that expressions of the form neither p nor

q are equivalent to negated inclusive disjunction and so may be translated as ~(p V ¢)
or the equivalent ~p & ~q.

Exclusive disjunctions of the form p or g but not both may be exactly translated by
p # gq. When just two alternatives are involved, the phrase “just one of” may also be
handled by # . For example, given an obvious dictionary, (33) translates as (34).

Just one of John and Bill is a cricketer. (33)
J £ B (34)

Unfortunately, when more than two alternatives are involved it gets more complicated.
For instance (35) is not equivalent to (36)

Just one of John, Bill and Tom is a cricketer. (35)
JEB ET (36)
(36) is true not only when just one of J, B and T is true but also when all three are true
(this may be shown with the aid of a truth table). So (35) may be translated by (37).
[(UEB) ETI&~(U&B&T) (37)

Let’s turn now to conditionals and biconditionals. From earlier work (§1.5), we can
say that each of (38) to (41) may be treated as the same conditional. By comparison with
sentence (41) it is clear that sentence (42) also expresses the same conditional.

If Karen is at home then the stereo is turned up. (38)
If Karen is at home the stereo is turned up. (39)
The stereo is turned up if Karen is at home. (40)
Karen is at home only if the stereo is turned up. 41)

Only if the stereo is turned up is Karen at home. (42)
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The atomic propositions involved may be symbolized as:

K = Karen is at home
S = The stereo is turned up

In this conditional K is the antecedent and S is the consequent. Notice that when used,
“If” precedes the antecedent and “only if”’ precedes the consequent. This is generally
true. As speech acts, the “if”” form of the conditional might be contrasted with the “only
if” form as follows: the “if”” form emphasizes that if the antecedent is true then so is the
consequent; the “only if”” form emphasizes that if the consequent is false then so is the
antecedent. This serves to remind us that frue conditionals have these two features: a
true antecedent yields a true consequent, and a false consequent yields a false antecedent.

Recalling from §2.4 that “if ... then ... ” implies O and that D is the PL-operator
nearest in meaning to “‘if ... then ... ”, each of (38) to (42) may be given the implied
translation

KDS (43)

Conditionals are sometimes expressed using “whenever” or “when’. For example,
both (44) and (45) may be translated as (43).

Whenever Karen is at home the stereo is turned up. (44)
When Karen is at home the stereo is turned up. (45)

Care must be taken though with “when”. If the atomic sentence it precedes refers to a
specific past or future event it will rarely mean “whenever”. Consider the following
case.

When I was at the bank I deposited my pay cheque. (46)

Here “When” means “On the previous occasion” : it conveys both conjunction and
temporal coincidence. The use of “when” in relation to future events usually indicates
the speaker’s belief that the event will occur. Compare the following:

When I pass the exam, we’ll celebrate. 47
If I pass the exam, we’ll celebrate. (48)

This difference is sometimes emphasized by the phrase “Not ‘if’, but ‘when’ ”. In cases
like this, “when” is better translated by & than by D, but the temporal connection is
still Tost.

A proposition of the form “If p then ¢” may sometimes be expressed by saying that
p is a sufficient condition for ¢ (since given p, g follows), or by saying that’g is a
necessary condition for p (since you can’t have p without also having g). As with “if ...
then ... 7, the best we can do in PL is use D to provide an implied translation. For
example both (49) and (50) may be translated by sentence (43).

Karen’s being at home is sufficient for the stereo to be turned up. 49)
The stereo being turned up is a necessary condition for Karen’s being
at home. (50)

Notice how noun phrases or “nominalizations’ are used instead of full sentences here to
express the actual conditions. This is fairly common.

Since “p if ¢ means “p is necessary for ¢”, and “p only if ¢”’ means “p is sufficient
for g7, it follows that “p iff ¢”” may be rephrased as “p is necessary and sufficient for
q”. Just as we use = as an implied translation for “iff”’ then, we may use it to translate
““is necessary and sufficient for”.
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That’s enough for now on translating English phrases into PL-operators. You will find
a list of the translations we have discussed (plus a few others) in the summary of §2.8.
You may find this list helpful as a translation aid, but don’t use it mechanically: it is
simply a general guide which may be overriden when we detect that the English phrase
is being used in a different sense.

Bracketing:

Before getting your teeth into the translation exercise that follows, here are two
strategies that might assist you with bracketing: these may be called the top-down
method and the bottom-up method.

Let’s consider the top-down method first, and use the following proposition as an
example.

If the Prime Minister supports the policy and the Cabinet does not, then the
Prime Minister will either give way or resign. (51)

First we detect the main operator and symbolize it. We ask, “What is the proposition as
a whole?” Our example is a conditional. So we symbolize the main operator and leave the
rest as it is, to produce the following hybrid (i.e. combination) of English and PL:

The Prime Minister supports the policy and the Cabinet does not D the
Prime Minister will either give way or resign (52)

Since outer brackets are redundant it is not necessary to enclose this hybrid with brackets;
if the main operator was ~ however and its negand was a compound proposition, it
would be necessary to enclose this negand in brackets. From this stage onwards, every
time we symbolize with a dyadic operator of PL or with a ~ that has scope over a com-
pound proposition it will be necessary to insert brackets. With this in mind, we now look
at the untranslated parts, symbolize the “‘main operator” of each part, and continue this
procedure until the only untranslated parts are atomic propositions. Looking at the ante-
cedent of (52) we see that it is a conjunction so we symbolize to get:

(The Prime Minister supports the policy & the Cabinet does not) O the
Prime Minister will either give way or resign (53)

Then the consequent, which is a disjunction, is symbolized:

(The Prime Minister supports the policy & the Cabinet does not)
D (the Prime Minister will give way V the Prime Minister will resign) (54)

Given our preference for atomic propositions that are affirmative, the second conjunct of
the antecedent will be treated as a negation and hence symbolized as follows:

(The Prime Minister supports the policy & ~ the Cabinet supports the
policy) D (the Prime Minister will give way V the Prime Minister
will resign) (55)

We can now set out a dictionary for the four atomic propositions:

S = The Prime Minister supports the policy
C = The Cabinet supports the policy

G = The Prime Minister will give way

R = The Prime Minister will resign

Using this dictionary we get:
(8&~C)D(GVR) (56)
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The top-down method not only helps us to see the logical structure of a proposition,
but also gives us a dictionary. However in some cases, especially in logic text books and
examinations, a dictionary is provided. For example we might be given the following
dictionary and be asked to symbolize the proposition set out under it.

N = There will be a nuclear accident

M = Many lives will be lost

R = Money will be spent on research

W = A safe waste disposal system will be discovered.

Either there will be a nuclear accident and many lives will be lost or
both money will be spent on research and a safe waste disposal system
will be discovered. (57)

In a case like this, the bottom-up method can be used. First we use the propositional
constants to get:

Either N and M or both R and W (58)
This then leads to

Either (N & M) or (R & W) (59)
and finally

N&M)V(R&W) (60)

In practice, either the top-down or the bottom-up method may be used with any
translation. You may like to combine the methods. One highly recommended technique
is to first establish your dictionary of propositional constants (underlining parts of the
original English sentence can help you find the atomic propositions), substitute these
in, and then work top-down to provide the operators and brackets. The emphasis in the
top-down method of searching for the main-operator is very helpful.

Notice how the use of “either” and “both’ in (58) disambiguates the sentence by
fixing where the brackets must be placed. If we leave them out we get:

N and M or R and W (61)

This is highly ambiguous. Can you spot five different ways of bracketing (61)? Links

between words like “either”” and “or”, “both” and “and”, and “if” and “then’ assist us

a great deal in deciding where to place brackets. See how you go with inserting brackets
in the following example: use the letters “C”’, “L”*, “H”’, “M” and “D” for your diction-
ary.

If either both Confucius and Lao Tzu were alive or both Hobbes

and Mill then there would be an amazing debate. (62)

If you haven’t already done so, complete the translation with the aid of PL-operators and
then check your answer with (63).
[(C&L)YV(H&M)] DD (63)

Don’t forget that commas often give a clue as to where brackets should be inserted.
Remember these two examples from §2.3?

Earth is a star and Venus is a star, or Sirius is a star. (64)
Earth is a star, and Venus is a star or Sirius is a star. (65)

Using the letters “E”™, “V”’and “S” for our dictionary, (64) translates as
(E&V)VS (66)
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While the sentence (65) is mildly ambiguous, it would be usual to translate it as expressing
the following proposition: ‘

E&(VVS) (67

Well, off you go now (at last!) to try out your new logical muscles on the following
exercise. Don’t forget the translation guide in the next section is there to help you.

NOTES

A useful discussion of equivalent and implied translations is contained in Appendices C, E and F of
Elementary Applied Symbolic Logic by B. L. Tapscott. We will treat the notion of implied translation
at greater depth in Ch. 7.

If you look at sentence (62), the use of “were” and “would” instead of “are” and “‘will” indicates the
conditional is cast in the subjunctive mood. Subjunctive conditionals are often “‘counterfactual™ i.e.
they are understood to imply that the antecedent is counter to fact (i.e. false). Clearly, (62) is a
counterfactual conditional. Some subjunctive conditionals are not counterfactual conditional e.g.,
“If I were to win the lottery I'd go on a world trip”: this leaves the question open as to winning the
lottery. Subjunctive conditionals usually imply their indicative counterparts, which in turn imply
D conditionals, so in some cases we may translate subjunctive conditionals in terms of O (we did this
when we translated (62) into (63) ). Be careful not to assume 2 conditionals are equivalent to counter-
factuals however, because then all counterfactuals would automatically count as true. For instance the
counterfactual “If I were to have green hair then I would have blue hair” is plainly false; but the
implied translation “I have green hair O I have blue hair” is true simply because the antecedent is
falseand 0 D...= 1. :

In this section we have discussed some of the nuances of English that we intentionally disregard in
translation into PL. In real-life communication these nuances can play'an important role. Unfortunate-
ly, space limitations prevent us from detailing such matters in' this text, which emphasizes formal
rather than informal logic. For a nice exposition of this topic, including a treatment of “‘conversational
implication” (what is tacitly implied by our linguistic conventions), see Ch. 1 of Understanding Argu-
ments by R. J. Fogelin, as well as Paul Grice’s paper “Logic and Conversation” which is included as an
appendix in Fogelin’s text. A complete treatment of communication would need to take into account
also the various aspects of non-verbal communication‘and body-language.

EXERCISE 2.6

1. Translate the following PL sentences into English using the dictionary supplied.

H = People will be happy

D = The inflation rate drops

E = People empathize with one another
U = People understand how others feel
S = People are selfish

(a) U= E
(b) (SV~D)D~H

() ~D = (S&~U)
(d) SD~(DV H)

*(e) ~(H = (U&D & ~95))

2. Given the dictionary of Question 1, symbolize the following into PL.
(a) If people are selfish they will not empathize with one another and will be unhappy.
(b) Unless people are selfish, the inflation rate will drop and they will be happy.

(¢) It is false that if the inflation rate drops but people are still selfish, they will be
happy.
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(d) People are unselfish only if they neither empathize with nor understand one
another.

(e) Provided people are unselfish they will not only empathize with one another but
will be happy as well.

3. Translate the following into PL using the dictionary supplied.

C = Paul eats the chips
F = Norma has a feed
P = Paul eats the popcorn
(a) Norma has a feed when Paul eats the chips.
(b) It’s not the case that Paul eats both the chips and the popcorn.
(c) Paul eats the chips but not the popcorn.
(d) Norma has a feed unless Paul eats the popcorn as well as the chips.

*(e) Given that Paul eats the chips, Paul’s eating the popcorn will be a sufficient
condition for Norma’s going without a feed.

*(f) Unless Norma misses out on her meal, Paul will eat the chips or popcorn but not
both.

*(g) For Norma to go hungry it is necessary that Paul eats both the chips and the
popcorn.
(h) Norma has a feed only if Paul doesn’t eat both the popcorn and the chips.
(i) Paul eats the chips whenever he misses out on the popcorn.
(j) If Paul eats neither the popcorn nor the chips, Norma has a feed.
(k) Norma goes hungry if and only if Paul eats the chips and the popcorn.

(1) Either Paul doesn’t eat the chips or he doesn’t eat the popcorn or Norma doesn’t
have a feed.

(m) If Norma has a feed then Paul either goes without the chips or goes without the
popcorn.
*(n) Paul’s eating the chips is a necessary but not sufficient condition for Norma’s
missing out on a feed.

4. A = Superman appears
D = Clark Kent disappears
I = Clark Kent is Superman
L = Lois becomes suspicious

Using the above dictionéry, translate the following into English.

(a) D&A) DL

(b) AD(~L = ~D)

Using the above dictionary, symbolize the following.

(c) If Superman appears while Clark Kent doesn’t disappear then obviously Kent is
not Superman.

*(d) The combination of Superman’s appearance with Clark Kent’s disappearance is a
necessary though insufficient condition for either Lois becoming suspicious or
Kent being Superman.

5. Translate the following sentences into PL, providing your own dictionary.
(a) This is an easy one.
(b) This one is harder but not much harder.

(¢) Sam sliced the sausage and Sue slid on the slippery slime.
(d) I will be more satisfied if I watch less TV and read more books.
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(e)
(f)
*(g)
(h)
6]
*(j)
(k)

(D

I’'m not sure that I like all the examples in this book.

Once you do a bit of logic you find it’s both interesting and enjoyable.

‘Even though logic is difficult sometimes, you will find it rewarding provided you
make an effort.

Neither is Mars a star nor is Alpha Centauri a planet.

Exactly one of Saturn and Neptune lies between Jupiter and Uranus.

My being a man is a sufficient but not necessary condition for me to be a human.
My brother stayed up watching TV last night till 8, but I beat him ’cause I stayed
up till <“96”°.

Every time the six million dollar man lands after jumping from a great height his
legs should spear his upper body.

(m) The next program is unimaginative and neither Norma nor Paul nor David nor

(n)

*(o)

Linda nor Selena nor I will watch it.
It’s false that, I will watch the next program if and only if Norma, Linda and
Selena all watch it.

Given that Paul and David watch the next program but Selena doesn’t, it’s not
true to say that provided Norma doesn’t watch it Linda’s watching it guarantees
that I watch it.

*6. Translate the following into PL using the suggested letters as propositional constants.

(a)
(b)
(c)

(d)

(e)

To be religious it is neither necessary nor sufficient that you believe in God.

(R,B)

It can’t be that just one of Anderson, Belnap and Cantor is a logician. (4,B,C)

In spite of the fact that not only Aquinas but also Descartes produced proofs for
God’s existence it is clear that, unless he lied about his religious stance, Marx was
an atheist. (4,D,L,M)

It would be erroneous to assert that only if you are a Buddhist can you be both
religious and agnostic; whereas it is true that being irreligious implies that you
aren’t a Buddhist. (B,R,4)

You work hard at logic and, provided you apply it in everyday life, it will improve
both your thinking and your sense of humour. (W, 4,7, H)

Puzzle 2.

On visiting an old country town
Mr C.T. Slicker found a wooden post
with a message engraved on it as shown.

Despite his post-doctoral qualifications in
linguistics he was unable to decipher the
message.

Can you help him?
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2.7 SUMMARY

A wff of PL can be assembled using only these formation rules: p, g, #, s, t (with or with-
out subscripts) are wffs; if a is a wff so is ~ «; if a and § are wffs so is (a * §) where * is
one of &, V. D, #. Later we relaxed (or added to) these rules by allowing propositional
constants. different style brackets, and omission of brackets when no ambiguity resulted.

We use p,q,r,s,t as propositional variables, A, ..., Z as propositional constants, and 1 and 0
as truth values (true, false). Our propositional operators are as follows.

OPERATOR | SYNTACTICAL NAME | OPERATION NAME |USED TO TRANSLATE
~ tilde negation not
& ampersand conjunction and
V wedge (inclusive) disjunction or (inclusive)
D hook material implication if ... then ...
= tribar material equivalence if and only if
%= slashed tribar exclusive disjunction ... or ... but not both
The operators are defined by the following truth tables:
p ~p
1 ” 0
0 1
plal|lp &a | PpVag| PDqg| qgDp| p=q|p #q
1] 1 1 1 1 1 1 0
110 0 1 0 1 0 1
0| 1 0 1 1 0 0 1
0l 0 0 0 1 1 1 0

Although one column is sufficient for the defining of hook, we have set out two to
make it clear that hook is not commutative.

A wif’s main operator is the last operator inserted in assembling it by the formation
rules.

&, V, =, & are commutative but Disnote.g., p & g is equivalent to ¢ & p but
p O q is not equivalent tog D p
&, V, =, # are associative but D is not, e.g.,

p & (q & r) is equivalent to (p & ¢) & r but

p D (g Dr)isnot equivalent to(p Dg) Dr

A proposition is atomic if it contains no other propositions; otherwise it is compound.
PL-sentences contain no propositional variables: they express propositions e.g., 4 & B.
PL-forms contain no propositional constants e.g., p & ¢. In an explicit PL-sentence, each
propositional constant represents an atomic proposition. In the explicit PL-form of a
proposition, each occurrence of the same propositional variable relates to the same
atomic proposition. For example, given that 4 and B are atomic, the explicit PL-form
of the proposition 4 & (BV A)isp & (¢ V p).

When translating from English to PL we aim for synonymy (same meaning) or equiva-
lence (same truth conditions), but must sometimes be satisfied with implied translations
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(proposition expressed in English implies that expressed in PL).

Translation into PL may be done in a top-down fashion (begin with the main operator of
the whole proposition then proceed through the “main operators” of the components,
ending with the atomic propositions), or a bottom-up fashion (the reverse), or a combina-
tion of the two. Brackets are normally required when symbolizing a dyadic operator, or
a “not” which has scope over a compound proposition. Clues to bracketing are provided
by word links such as those between “either’” and “or”, “both” and ‘“and”, and “if”” and
“then”, as well as by commas.

The translation guide below lists samples of English expressions and the way they are
usually translated into PL. In some cases these expressions may need to be translated
differently: here your sensitivity to English usage and your purpose for making the

translation will be your guides.

~p Notp
It’s not the case that p
It’s not true that p
It’s false that p
It can’t be thatp
p&q pand q p;q
Both p and ¢ p,; however g
p butgq p, nevertheless g
p although ¢ p, moreover q
p even though ¢ p,yetq
p in spite of g p notwithstanding g
p and also ¢ p whereas g
Not only p but also ¢ p while q
p aswell as ¢ p because g (but see §2.6)
pVag por g p and/or g
Either p or g At least one of p and ¢
p or g or both Unless p, g
p unless g p except when ¢
pDOgq If p then ¢ Provided that p, g
Ifp, q On condition that p, g
p only if g p is sufficient for g
p implies g For q it is sufficient that p
Whenever p, g p guarantees that g
Given that p, ¢ p only in case that g
Hadp, ¢ When p, g (but see §2.6)
qDp pifq p is necessary for q
p if and when ¢ For g it is necessary that p
Only if p, g p provided that q
p given that g p in case g
p = p if and only if ¢ p is necessary and sufficient for ¢

p when and only when ¢
If p then g and conversely

p just in case g




p £q p or g but not both
Exactly one of p and ¢
Just one of p and ¢

~(p &q) Notbothp andgq
p is incompatible with g

~(p Vq) Noteitherporg
Neither p nor g
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S Truth Tables

3.1 INTRODUCTION

Having gone to some pains to develop our new language (PL), and in the process tidied
up various matters about communicating in the English language, we now begin to
exploit the marvellous clarity and efficiency of PL by using it to simplify the analysis of
propositions and propositional relations. In the next chapter we will use it to simplify the
analysis of arguments. Once you have learned a few easy rules on how to apply the
methods and had some practice at the problems, you will be well on the way to mastering
the techniques of Propositional Calculus.

In this chapter we investigate some of the uses to which truth tables may be put. After
finding out how to calculate the “main column” of a formula’s truth table, we will apply
this knowledge to test certain properties of propositions and certain relationships
between propositions. As a spin-off, this will enable us to list various “logical truths”
which play a key role in later work.

3.2 THE MAIN COLUMN

To simplify later discussion we now introduce the term “propositional letter” as a
generic term covering both propositional variables and propositional constants. For
example, both “p” and “A’ are propositional letters when they are used in PL-wffs.
We may thus regard PL-wffs as being composed of three different types of symbols:
letters, brackets and operators.

We have already dealt with truth tables for simple formulae with just one operator,
but we haven’t had much practice with tables for longer formulae. The general procedure
for building tables is roughly as follows. We begin by noting the propositional letters in
the formula, then writing down the matrix and the formula itself. Columns of truth
values for the letters and operators within the formula are then evaluated and placed
directly underneath the evaluated symbol. The order of this evaluation is bottom up: it
is the same as the order in which the formula would be built up by the formation rules
of PL. The final column calculated (known as the “main column’ because it is under the
main operator) is then identified by placing an arrow underneath it. Before summarizing
this procedure in a formal way, let’s look at an example.
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Example 1: To compute the truth table for ~ (p O q) we begin by writing down the
matrix and the expression as shown.

Pl a | ~p20

o1

1 0 I

0 1

0 0 ”

The wff may be built up from the formation rules as follows:
1. p B

2. q B

3. (prDg) 1,2,RD

4. ~(pOq) 3R~

We should therefore enter the truth values of the table in the following
order: p, q, (p O q), ~(p O q). This is done in the table below.

pl a4 | ~@2q

1| 1 o111

1l of1100

o 1 o011

0 o|0010
T

Note that the values of p are placed right underneath p, the values of ¢
below ¢, the values of (p D q) below D, and the values of ~ (p D g) below
~. Since ~ is the main operator, the column under ~ is the main column
and it gives the values for the expression taken as a whole: it is identified by
an arrow as shown.

In filling out values under the expression it is not necessary to show the values of the
letters, because they are already shown in the matrix. Thus the table for ~(p D g) would
usually be written:

Pl a | ~®29
1 10 1
1 o1 o
o 1|0 1
o o] o 1

*

Also, it is not necessary to write down an assembly line for the formula every time we
construct a truth table. The order of the steps is best worked out mentally by imagining
the order in which you would insert the operators in an assembly line for the formula.
You may wish to use the following rules of thumb to ensure you evaluate the operators in
a correct order.

Rule: Evaluate bracketed expressions before their adjoining operators.

Rule: Evaluate ~ before the other operators unless this breaks the above rule.
Rule: Evaluate consecutive ~ s right to left.

Here are some examples of these rules in action. The numbers underneath the operators
indicate the order in which the operators should be evaluated (starting at 1).
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p & ~q ~({@Vaq)

21 2 1
~(p&q)Or r=@Vr@&qe) ~ ~ ~p
2 1 3 3 2 1 3 2 1

One consequence of the first rule is that inner brackets must be treated before outer
brackets (see the fourth example above).

Here now are two harder examples. For each of these there is more than one possible
assembly line, and hence more than one correct order for the operators (two samples are
given for each). The main operator of a formula is the last operator inserted in any
assembly line for the formula. Consequently, the main operator is the final operator
evaluated. Since the main operator is unique, the final operator evaluated in the examples
below must be the one shown.

(P& ~q) O ~(@Vp) ~((p&q) Or) D ((p>O(g>Or))
2 1 5 4 3 3 1 2 6 5 4
4 3 52 1 5 1 3 6 4 2

For any formula that has an operator, its main column will be underneath its main
operator. If a formula has no operator (i.e. if the formula is simply a propositional letter)
then it has only one column underneath it and this is its main column. In either case, the
main column is the last one calculated.

The method of constructing truth tables for formulae may now be summarized.

Method: 1.  Write down the matrix and the formula.
2.  Evaluate the formula in assembly line order (see above rules), placing
truth columns directly under the relevant symbol.
3.  Identify the main column by an arrow underneath.

Example 2: Now let’s try a harder one: the formula (p V q¢) D (p & ~ g). We begin in
the normal way.

p a4 @VO2I(p&~aq)

1 1

1 0

0 1 ]

0 0 |

Two possible evaluation ordersare:  (p Vq) D (p & ~q)
1 4 32
3 4 21

For this formula, ~ must be evaluated before &, and D must be evaluated
last. This yields the following result.

| a [@VeOp&~q)

1 1 1 0 00

1 0 1 1 11

0 1 1 0 00

ol o 0 1 01
T

Example 3: Now look at the formulap & g & ~p.

The absence of brackets is allowable because of the associativity of &, i.e.
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r&qg)&~p (1)
is equivalent to
p&(q & ~p) (2)

whenever we have a case like this it doesn’t matter which of the equivalent
forms we choose. Reading the original formula as (1) gives

(p&q)& ~p
1 00

o OO
d=NeNe]
—_—— O

while the second reading gives

p | a|r&l@&~p)

1 1 0 00

1 0} 0 00

0 ll 0 11

010 0 01
1

Even though the tables are different because of the different orders in which
the formula was evaluated, the main columns are in agreement. It is better for
the sake of clarity to insert your choice of brackets (as we have done) when
drawing a truth table for an associative expression.

Example 4: The expression p = (g V r) has three letters. How do we set up the matrix
for it?

As mentioned in the previous chapter, the matrix lists all the permutations
of the truth values of the letters in the formula. Here the letters are p, g,
and 7. We know that there are four cases with just p and g; since each of these
may be associated with r true and r false there must be eight rows in our
matrix. It doesn’t really matter in which order we put these rows. However
in this book the following order will be adopted:

i

OO == OO —IQ
O = O~ O O |

QO OO F = = =

We can now compute the truth table for our formula. Larger truth tables
involve no more tricks; they are just longer. Check through the table below
to see that you agree with it.
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p=(@Vr)

—_ | Y
OO == |RQ
O =, O = | ™
O = =

[l e e
OO = =
O~ O =
O = =

>, OO0 O = = =

Matrix Order:

The matrix order adopted in this book is based on a “tree structure’ as indicated
below. Each pathway from the left to the right of the tree provides one matrix row.

p q r

1
1<O

<2

1< (1)
S

It should be clear that each time a new letter is added the number of rows doubles,
since each of the previous rows can be associated with the values 1 and O for the new
letter.

No. of letters in formula 1 2 3 4 5
No. of rows in truth table 2 4 8 16 |32

This fact may be summarised thus:

A formula with n letters has 2" rows in its truth table.

For example, a formula with 4 letters will have 2% ( = 2x2x2x2) or 16 rows in its truth
table.

Once we know the number of rows, the matrix for any formula may be systematically
filled in from right to left as follows. Fill the rightmost matrix column with alternating
I's and O’s ie. 1,0, 1, 0, ... . Now fill the second rightmost column with alternating
doubles of 1’s and 0’s i.e. 1,1, 0, 0, ... . Now fill the third rightmost column with alter-
nating quadruples i.e. 1,1,1,1,0,0,0,0, ... . Continue this “doubling up” procedure for
each column added to the left, until all the propositional letters have been catered for.

Check this procedure for yourself on the sample matrices shown below.
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P play Pl ajpr]s
1| 1 1i 1] 1 1] 1
0| 1] o 1l 1] 1] o
0| 1 1| 1] o] 1

0ol o0 I T T ¢ O

1l o] 1] 1

4 4 r 1 0 1 0
1] 1] 1 1l ol of 1
11 1] o 1] 0] o] o
} g (1) o 1| 1] 1
ol 1| 1] o

ol 1] 1 ol 1] o] 1
ol 1] 0 o] 1| o] o
01 ot o| of 1] 1
ol oo ol of 1] o
ol o ol 1

ol ol ol o

Pairing Brackets:

Our rules for evaluating wffs of PL correspond to the following priority convention:

p,q, ..
O

&3 V’D7 E, ;

(For simplicity, propositional constants and different style brackets have been omitted.)
In mathematics and computing, the dominant practice is to classify dyadic operators into
different priority levels e.g., x has higher priority than+so 8 +4 x 2 =8 + 8 = 16. More-
over, it is usual to evaluate dyadic operators of equal priority (e.g., +, — or x, <) in left-
to-right order unless brackets override this e.g., 8 +4 x 2=2 x 2 =4, In PC however, all
dyadic operators have the same priority and no left-to-right order convention is adopted
e.g..p D g Vrisill-formed and cannot be evaluated. As a consequence of this, brackets
tend to be more numerous in formulae of PL than in mathematical formulae. With longer
PL-wffs this may lead to some difficulty in pairing up brackets or in deciding which
bracketed subformula to evaluate next.

A systematic way of pairing brackets is as follows. Begin at the left of the formula and
move right until you meet the first right bracket: pair this with the prevous left bracket.
Move right until you meet the next right bracket: pair this with the previous unpaired left
bracket. And so on. Use this method to check the matching of parentheses in the below
example.

~(((p2(@Vr))&s) =(tDq
'(!___.‘—-—il | —_

~

)
|

Another way to indicate the order of pairing brackets is to index the brackets as in the
below example. Check that the indexing agrees with our pairing order.

53 2 1 12 3 4 45
((~(q2~(r&~p&q))Va)&(~pVr))

Once parentheses have been paired, the formula can be made more readable by using
brackets of different shape or colour and by deleting outermost parentheses (if any).
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This pairing technique can be combined with our evaluation rules to provide the
following automatic procedure for evaluating wffs of PL:

1. Substitute truth values for the propositional letters.

2. Move from left to right stopping at the first <)’ : the expression bet-
ween this and the previous “(’’ is the next subformula to be evaluated.
If no brackets were met the whole formula may now be evaluated.

3. Evaluate ~’s.
Evaluate dyadic operators.

5. Replace (subformula) or whole formula with its value. If whole formula
now evaluated then stop; else go to step 2 (begin move right from the
replacement point).

Where different style brackets are used, “)” and “(” in the above procedure should be
replaced with “right bracket™ and “left bracket” respectively.

NOTES

Some logicians do adopt priority conventions for dyadic operators in propositional logic (e.g., &
before V). Alternative conventions and notations are discussed in detail in Ch. 9.

At step 4 in the procedure above, there will be at most one dyadic operator or multiple occurrences of
the same associative dyadic operator. In the latter case any evaluation order may be adopted, though
left to-right is usually recommended.

For details of a computer program for evaluating wffs of PL according to the procedure discussed in

this section see Halpin, T.A., “PC Formulae Evaluation in BASIC” in The Australian Logic Teachers
Journal Vol 5 No 2 (1981 Feb).

EXERCISE 3.2

1. For each of the following formulae, place numbers under the operators to indicate the
order in which they should be evaluated.

(a) ~(@>p)
(b) p = ~q
() pDq) E(~q&Dp)
(d pVagVr
e P& V(O ~s)

2. Draw truth tables for the formulae in Question 1.

3. (a) Draw the matrix for a formula containing the variables p, q, r, s, t.

(b) How many rows are there in the truth table for an expression containing seven
propositional letters?

4. For each of the following formulae, index the brackets according to the systematic
evaluation order discussed in this section, then evaluate the formula for the following
assignments of values to the PVs:

p=0
q=1
r=1
s =0

(@) (((p&g)Dr)Dp)
) ~(@VpPp=r)D~r&qg))
) ~(~(~qg=(6EVpI2~(p&~q)Vr))DW®Dq))
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*#5. [For those with some knowledge of computer programming)

(a) Write a computer program to print the matrices for formulae W1th the followmg
PVs.

(i) p,q
(i) p g, r st

(Hint: Use nested loops with a step of -1)

(b) If your computer language has logical operators for AND, OR, NOT write a
. program to-print the truth table for the following formula: -

PVag)V~(q&r)

3.3 CLASSIFYING PL-FORMS -

Once the main column of a PL-form has heen calculated, the formula may be classiﬁed
into. one of three types according to whether ]ust 1’s, just O’s, or both 1’s and O’s are
present -

PL-form Main-column values

tautology all 1
contradiction -~ - all 0
contmgency some 1, some 0

Example 1: Compute the mam-column of the followmg PL-forms and then classify them
on that basis.

pOp, p&~p, p&p

p]{p3p|p&~p1p&p

1” 1 l 00 1

0 1 01 0
0 ) 0

p Op istautologous
p & ~p is self-contradictory
p & p iscontingent

Notice how a common matrix was used for the three formulae, to save space.
Note also the adjectival versions-of the three classifications.

It is not always necessary to complete the main column when testing a PL-form. As
soon as we get one 0 we know it is not a tautology. As soon as we get one 1 we know it is
not a contradiction. As soon as we get one 1 and one 0 we know it is a contingency.

Example 2: P agp D~g
1|1 oo
1 0 ‘ 11 .. p D ~q is contingent.
0 1 v )
0 0

Once you’ve done a couple of truth tables you’ll find them quite easy (provided you
follow the rules!) With longer formulae you might like to save some work by using a few
short cuts, as discussed below.
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When evaluating a formula or sub-formula whose main operator is &, V or D we will
often be able to assign a value as soon as know the value of one of the operands. Consider
for instance the following conjunction:

p&[qgD(r&s)l

0
Suppose, as is indicated above, that we know that p = O on the row being evaluated.
Recall that a conjunction = 1 iff both its conjuncts = 1. The fact that p = 0 then, implies
that the conjunction will be false regardless of what value [¢ D (r & s)] might have. So
we may write 0 under the & without having to evaluate the right conjunct.

p&[gD(r&s)]
00

This example is an instance of the general result that: if the left conjunct is false the
whole conjunction is false. Let us abbreviate this as: 0 & ... = 0.

We call the above result a “one operand evaluation rule” since it allows a dyadic
expression to be evaluated from the value of one operand. There are six such rules for our
operators, as summarized below. Their justification is given on the right. Do you see why

there are no such rules for = and # ?

0& ..=0 . . . .
A conjunction = 0 if at least one conjunct = 0
.. & 0=0
1V . =1 .. . . ..
V1=1 A disjunction = 1 if at least one disjunct =1
0D ..=1
JOfB=11 i = =
51 =1 }a B=1if eithera=0orf=1

Notice that such rules apply only for certain values of the operands. For example, if one
conjunct is evaluated as 1 we have to determine the value of the other conjunct as well
before we can evaluate the whole conjunction.

Example 3: Classify (p & ~ ¢q) 2 (p V ~r) as a tautology, contradiction or contingency.
(p&~q)2(pV~r)

1

RS ]
Q
~

1
1
1

O O O O = rt =t
OO == OO = -
O - O - O =0 -

© O oo
e N N T B S S R

.. tautology

On the top 4 rows p = 1: therefore (p V ~r) = 1. On the bottom 4 rows
p = 0: hence (p & ~ g) = 0. The main column follows immediately by
applying therules ... D 1=1,and 0D ...=1.

s

gency” used to classify propositions. Though there is a connection with the use of these
terms to classify PL-forms, the connection is not a simple one. The differences will be
explained later.

In later sections you will find the terms “‘tautology”, “contradiction” and “contin-
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NOTES

The stipulative definition given in logic to the word “tautology” is significantly different from the
dictionary definition “saying the same thing twice over in different words”.

In this section we have dealt with the classification of PL-forms, but not the classification of proposi-
tions. The former problem may be regarded as answerable within 2-valued formal semantics (in formal
semantics 1 and O are just uninterpreted values rather than ‘“true” and “false’). The latter problem
raises other questions (e.g., the adequacy of PL to display the relevant structure of propositions)
and should be regarded as a distinct problem.

As we use the terms, the language PL consists of the infinitely many wffs which may be assembled by
the formation rules of PL; the system PC includes the formal semantics whereby wffs of PL may be
assigned values and divided into tautologies and non-tautologies.

For reasons to be discussed later, some authors use the term ““‘indeterminate” rather than “contingent”
when classifying forms. After considerable deliberation however, we have decided to retain the term
“contingent” for this use, partly because it seems firmly entrenched in the literature, but mostly
because from the point of view of formal semantics it is a fully determinate matter whether the value
of a PL-form is contingent (dependent) on the values given to its PVs. The distinction between “con-
tingent” as applied to forms and “‘contingent’ as applied to propositions will be carefully drawn later.

EXERCISE 3.3

1. Classify each of the PL-forms in Question 1 of Exercise 3.2 as a tautology, contradic-
tion or contingency.

2. Using either complete or shortened truth tables, classify each of the following as
tautologous, self-contradictory or contingent. To save writing, a common matrix may
be used to test several formulae with the same PV’s.

(a) ~p

(b) ~~p

(c) pVp

() p=p

() p#£p

H ~meVp

(g) ~(r&p)

(hy po~p

(i) p=~p

() p&yg

(k) gop

h ~p=gq

(m) po(g>p)

(n) ~po(p>o4q)

(o) po(pvy

(p) (po@&ip&~q)

(@ p=(#n

M ~l(p&>(pvn)]

L g =~ (p o ~q))

O “rypsigy~Ip 2 &~p)
*3. By inspection of the formula, and logical deduction, classify the following formula

without the aid of a truth table.

~(p&~(q@Vp))
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Outline the steps in your deduction.

*4. If you managed Question 5 (b) of Exercise 3.2, modify your computer program to
include a test as to whether the formula tested there is a tautology, and have the result
printed out.

3.4 MODAL PROPERTIES OF PROPOSITIONS

In this section the logician’s notion of “possible worlds” is briefly explained with the
aid of examples. This concept will then be used to define a classification scheme for
propositions (as distinct from PL-forms) in terms of their ‘“modal properties”. The terms
‘“contradiction” and “‘contingency” will appear again, though with a somewhat different
connotation as they apply to propositions. Finally we will use our educated intuitions
on what counts as possible, to determine the modal properties of a variety of propositions
expressed in English. In the next section, we will investigate how truth tables may be
used to assist us in such determinations.

Let’s begin now with the notion of possible worlds. Clearly, our universe, the actual
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