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PREFACE 

YOU will have gathered from tlie title page that this is tlie second edition of a text in 
deductive logic. N'liile airned primarily at students undertaking an introductory course in 
formal logic at either tertiary or upper secondary level, i t  will also be of use to  the general 
reader who wislies t o  improve his skills a t  reasoning and communicating and who already 
knows or is prepared to discover that working with symbols can be both entertaining and 
illuminating. 

Althougll the text provides a comprehensive introduction t o  classical First Order Logic 
(Propositional Calculus and Quantification Theory), i t  does not  proceed to the theories of 
identity. definite descriptions and relation-types. We plan t o  produce a supplementary 
volunle which will cover these extensions t o  QT as well as otlier topics in logic e.g., 
further set theory (finite and transfinite], recursion, modal logic and dynamic logic. It is 
anticipated tliat cliapters of this supplement will also be available individually. A 
Teachers' Manual t o  accompany the text is also planned for subsequent publication. 

Major changes and revisions have been made t o  the first edition (1975). Several new 
techniques and fresli approaches have been adopted, making the text significantly 
different from otlier works in its treatinent of the subject matter. Notable features 
include: e~:?pioyinent of possible-world semantics; use of Staines arrows to determine 
adequacy of forri~al translation: extensive treatment of logic diagrams: enhancements t o  
s t a ~ d a r d  esva!i:arion :?:ethods 4e.g.. possible-truth tables, method of assigning possible- 
~raiues: possible-truth :rees. r'iie one-iiee !rletbod~ use of deciabi i i ty  theorems for QTh 

. . eas ic -  !l<iie;op121ecl :?i' ;CiT thrr  .iiigr --:I ;iic?r .. - . ! i i - ~ ! ~ ~ c ~ f ~ c a . ~ i . o i ~ s ;  -- 0 -,~,izzle-soking ke;pislics ail$. 

:no:,l-:?ij::p <.~ !;!:a~te: pi~z7les: !>-!3cj.jficaliofl, 
" ,  DL:; ,;;e:c:-< ci< ;sres$nialioc %21!:;5s iop-jc;;,lfi s~Droar;~i-3; carefu: &siincti;n 

. . 
- > 

L C :  " %, oc., 7 :  : 3 u s ,  4 : .  2 2: 3 ; <:FlapL?. 
, - 

> ~ j : > * ~ : ~ ~  L C '  
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5c:sskderable <pace I(: discussing :he re1ario~shi.p between pg.opositions (2nd argd~-nents) 
- .  7 erxpressea lil hnglisli 2 r d  their cocr?te~parrs ic the fom:ai la~:gnages. The experie~sce c;f 

, . 
- itacikSag ,~~ Q R o  secondary school studeqts in QaeensIand ipdica*,ed tila: i?: vjas preferabi-, 
to  provide a firm foundation ic Ft'3onadic QT beroore goirig on  t o  QT properr: airnest all t l ~ e  
evaluation techniques can be introduced with monadic predicates, witl-iout confronting 
the complexities of translations involving polyadic predicates. 

Permission from the Board of Secondary School Studies (Queensland) t o  include 
problems from past Senior Logic Examination papers (1971-1981) is gratefully acknow- 
ledged. The text has made considerable use of the highly original theoretical work b y  
Phillip Staines in the areas of translation adequacy and indirect use of diagrams. Use 
has also been made of  the tree resolution technique of Ian Hinckfuss and the QT transla- 
tion taxonomy of Corinne Miller. We also wish t o  record our appreciation for the helpful 
comments we have received from our students. Finally, we would like t o  thank our 
families for putting up  with our preoccupation during the writing o f  this book. 
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3niroducf ion 

1 . 1  WHY STUDY LOGIC? 

You probably know that logicians delight in the analysis of arguments. Such analysis 
is not  only intellectually stimulating bu t ,  as we shall see, of great practical importance. 
Seven arguments are given below: some of these are quite all right and some are not .  
Try your intuitions out  on them now, explaining any defects that you find. 

If Raquel is a woman, then Raquel is a person. 
Obviously, Raquel is a woman. 
So Raquel is a person. 

If Fred lives in Queensland then he lives in Australia 
But Fred does not  live in Queensland. 
Hence Fred does not  live in Australia. 

Anyone who takes my magic elixir will never need to ge t o  t h e  doctor. 
Smith never needs to go to the doctor. 
W e  may infer that Smith takes rfiy magic elixir. 

Tom has a blue Holden. 
A11 Holdens are cars. 
So Tom has a blue car. 

Namu is a small whale. 
All whales are mammals. 
So Namu is a small mammal. 

David is taller than Linda. 
Paul is taller than David. 
I t  follows that Paul is taller than Linda. 

Nothing is better than chicken casserole. 
But dogfood is better than nothing. 
It  follows that dogfood is better than chicken casserole 

Jo t  down your own ideas about these before reading on.  

Of the first three arguments, only (1) is logically correct. One way of showing an 
argument is logically defective is t o  imagine a case where the conclusion (the point 
being argued for) is false even when the other information is correct. For  instance, with 
(2) Fred might live in Tasmania; with (3) Smith might take other medicines or might be  
naturally very healthy. One reason for studying logic is that it assists us in drawing 
appropriate corzclusiorzs from the information available. 



Another important benefit deriving from a sruily of logic is an increased sensitivity 
to  the role that language plays in reasoning. The subtle difference in structure betwee:) 
the logically correct argument (I-) and the !ogically incorrect argument (5) may illnsirate 
this point. Whereas the phrase "blue Rolden" may be analysed simply as '"chject wiiich is 
blue and a Holden",the phrase "small whale" means "whale which is srnai! relative to 
whales". Wamu might be three metres long. which is small relative to  whales but  not small 
relative to  mammals. 

Many senrences in English are ambiguous: they may be read in more than one way. 
People often misinterpret what another is trying t o  say. Sometimes two people might be 
engaged in a lieated dispute, not  knowing each is trying t o  say the same thing in different 
words. People sometimes f a l i n t o  logical error by sliding from one meaning t o  another 
during the course of an argument: occasionally this is done deliberately t o  trap the 
unwary: argument (7) is a humorous case in point. Provided we accept as understood the 
transitive nature of the "is taller than" relation, argument (6) is logically impeccable. 
Argument (7) is obviously defective because of its preposterous conclusion, but  t o  logically 
untutored eyes the source of the error may not  be obvious because on  the surface (7) 
appears t o  have the same form as (6). You may have seen that the trouble lies with the 
first sentence: it could be read as "Chicken casserole is the best food" or as "Having n o  
food is better than having chicken casserole". With the first reading the sentence is 
plausible; but  it is the second, highly implausible reading which is needed t o  tie the 
argument into a logically correct structure, since that is the way "nothing" is t o  be read 
in the second sentence. 

W i l e  the ambiguity of English is useful for poetry (conjuring up many images) and 
jokes (long live puns!), there is no place for it in rational discussion. Wil.hin logic a numbei- 
of special ianguagcs have beep developed wki& are f < j t ~ . " l ~  unainbig~oiis. Given a selitepce 
sr argumen; in English. 1cgii:lans arc ca rekr  I:, asceitair: its exact meaniilg; ifil-;eipf_.:i. 

+-,a>- ,i , , , , jc:3 gi' ! ~ g j ~ s !  l a p l g ~ z g e ~  ~e[r/r":esliiig it. f i i s  j, ~ i h a :  
- .  be 3,;ing esoli. T r :  17;s~:. 13 3i~,3:?:'; c ~ r ~ p z i e n i  1. SIJC:? ira.?rial?cfl .~0 ;1  v~il! >e f(~::c" :1:) 

sfo,g a,& ;-,$Jr?k 2h:;u; what the L-irgljsh :*eaiiy iTzeaqs. Frzctice at illis will help you fc both 
irqteppret w h ~ r  .rrhe!ps sgy 2nd expr.ess j~ouqe~cle~rly. 

fi &I:? -. legaid p o p o s i t i ~ n s  expressed iul English, logic helps us to not in!y ciarlfy 
them alsc assess their stvuci-ure and the relatl'oi?ships they bear t o  s n e  another. Ccn- 
sider for instance the three propositions expressed below. 

Today is Monday, 
Today is Tuesday. 
Today is either Monday or not  Monday. 

.-7 

a"Jliicli of these has goi to  be :rue under any circumstance? Whicil two of these could 
not possibly be true a t  the same ti~ize'l Fro111 your answers it sllould be obvious tllai any- 
one who believed tha t  (10) was faise. or that both (8) and (9) were simultaneously true, 
would be logically inconsistent. Part of the aim of logic is t o  help us be as consisterzt as 
possible in our beliefs. Might one maintain that both (8) and (9) were false and still be 
consistenr? 

As will now be apparent, logic is intimately concerned with propositions and argu- 
ments. 011 the one hand it helps us t o  draw conclusions from a given set of facts (e.g., 
constructing proofs in mathematics. science, philosophy, everyday life) : on the other 
hand it assists in spotting errors in reasoning. Thus it facilitates both good reasoning and 
the detection of bad reasoning. Briefly, logic may be described as the scierzce and art (3.f 



reasoning correctly. This does not imply that a person untrained in formal logic is neces- 
sarily a poor thinker; one can be a good judo player, for instance, without knowing the 
physical and physiological principles involved in throwing a person. However there is no 
doubt that anyone who studies logic with the attitude of applying it in one's everyday 
thinking will improve one's reasoning power and competency at communication (both 
active and passive). Herein lies the essential relevance of logic. One may treat logic purely 
as an intellectual discipline and derive much satisfaction from it ;  indeed, doing symbolic 
logic is like playing "mathematical games" and we can get a lot of fun out of it. Logic 
is more than a game however; it is the basis of all fields of rational pursuit. So let's 
enjoy the game and apply it. 

1.2 PROPOSITIONS 

The term "proposition" is a familiar enough one. As a noun it is often used for "state- 
ment", sometimes for "scheme proposed", and sometimes for other things. In logic we 
give the term a precise meaning and stick to this meaning whenever we use the term. The 
most important thing about the word "proposition" as it is used in logic was emphasized 
by the brilliant German philosopher and mathematician Cottfried Wilhelm Leibniz in his 
short paper "The Nature of Truth" (c. 1686): 

I think that this principle is to be sought in the general nature of truths, 
and that we are to hold to  this above all: every proposition is either 
true or false. 

If in uttering a sentence a person is actually declaring something to be the case. that 
something which he asserts is the proposition he is expressing. Some examples fhoenld 
make this clear. Consider the following sentences. 

""Earth is a planet." 
";John Locke was a philastopher." 
'"arth is a star." 
"In 11999 i-hustralia was a republic." 

Of these, (1) and (2) express true propositions and ( 3 )  and (4) express false propositions. 
What about the next two sentences? 

"Earth is the only planet with life on it." 
"John Locke loved sailing." 

For each of (5) and (6) we do not know whether what is asserted is true, or whether it 
is false. But we do know it must be either true or false. With (5) for example we know 
that either 

I t  is true that Earth is the only planet with life on it. 

I t  is false that Earth is the only planet with life on it. 

Hence (5) and (6) do express propositions. What is expressed is either true or false. 

A sentence is declarative or indicative if it declares or indicates that something is the 
case. If a sentence is not declarative, it doesn't make sense to preface it with "It is true 
that" or "It is false that"; here are some examples. 



"'Can you understand this?" 
"Let 'L' stand for 'Logic is great'." 
"The green thoughts sipped procrastination." 
"Hooray for John Locke! " 
"Would that people were more tolerant." 
"Please come inside." 
"Shut the door." 

With each of these cases it is clear that what is expressed is neither true nor false. Thus 
some sentences do ?zot express propositioizs. The above cases are examples (in order) of 
the list below. 

questions 
stipulations 
nonsense 
exclamations 
wishes 
requests 
commands 

While questions, stipulations and nonsense never express propositions, the situation 
with exclamations, wishes, requests and commands is less straightforward. Consider the 
following exclamation. 

"Logic is fabulous! " (7) 

This obviously expresses a true proposition. Now consider the three sentences below. 

'.a- I lorma wishes you 2 merry Christmas." 
sL"p it.tay y2.u I12ve a m e r q i  Christmas." 

~ G ;  : ,ijlsfi ~~ y,/o:! e : ~ 4 i ~ ; .  Ci".,zjs"cmas."' 

(8,: --.- -..--. , ' .r...: 
. . ,., i 4 t ~ C - L i a  ck;ilL-r 2. ,%i./is~: bu.: is :?I: ?';seiC used m ~ i e  ;. wisi;: jt s i ~ y ~ i y  e;<pr.ess-s 

a ~;oposit.ion. It ",oesri9i maice sense fo preface (9) \nyith is t r ~ a e  that" or ''It is f & , c  
thai"; we w o d d  ~3t:ahy regard (9) as expressirg a iwisi&i but not s proposition. 1; does 
make senss to 9refas;e (30) xsjith ""I is that" rjr "'11 is False 1 3 7 8 3 " '  , : it s.eens i.eas~~abie 
to s q i  ?ih;zt(ii'S) is used not e;dy to maks a wish but also reye;!; about it ( c f 4 j 3 ) ) :  s~ we 
could xgue  that (19) expresses both a wish and a propositinn. The analysis of requests 
and comsllands is similar t o  that of wishes. You will notice that a propositional aspect 
seems t o  be brcu.ght out with these when the speaker refers t o  himself e.g., "Irequest  
that . . .", "'I command you t o  . . .". 

W ~ a t  we have said about the logician's use of the term "proposition" may be sum- 
marized in the  following definition. 

Definition: A proposition i s  that which is asserted when a sentence is uttered; it is always 
true or false (but not both). 

Note that the same proposition may be asserted by different sentences, e.g. 

"Honshu is a Japanese island." 
"Honshu is an island of Japan." 
"HonshG wa Nihon no shirna desu." 

As sentences, these are different, but the proposition they express is the same: they 
' m y  the same thing in different words". 



Note also that the same sentence may express different propositions e.g., 

"Today is Monday." 
"I am happy." 
"Brisbane is in Australia.': 
"The monk kicked the smoking habit." 

The proposition expressed by (1 1) is different for different days; (12) depends on 
both the speaker and the time; (13) depends on whether the Brisbane referred to is the 
capital of Queensland or the town of that name in California etc.; and (14) could mean 
the monk kicked the habit (garment) which was on fire, or that the monk gave up smoking. 

Note on referring to propositiolzs and sentences: 
To prevent longwindedness we will frequently, when there is no danger of ambiguity, 

abbreviate the phrase "the proposition expressed by the sentence (n)" to "the proposi- 
tion (n)" or just "(n)". With indented examples, we will usually include quotes to indicate 
we are referring to the sentence inside the quotes, and omit quotes to indicate we are 
referring to  the proposition expressed by the sentence. For instance, sentence (15) 
expresses proposition (16). 

"Logicians like to laugh." 
Logicians like to laugh. 

You are now ready to start the first exercise. To derive maximum benefit from these 
questions you should make a serious attempt to provide your own answer before refer- 
ring to the mswers in the back. Any problems of a particularly chdenging nature are 
marked with an asterisk. 

NOTES 
authors ase the r-j.Tn ""sratemeni" in :he way ,we have used ""poposition" 

"Rhetoricai i jues t ion~ '~  may express propositions, since tlze'i are really assertions disguised as questions 
for dramatic effect. For instance, a minister of religion who asks rhetorically "What can cause a good 
man to  lose hope if he belleves in a sewaxding life after death?" It is really stating that  no  such 
person could lose a 4  hope. 

Not all logicians would agree with our t ~ e a t m e n t  of the nature of propositions. An overview and useful 
bibliography on this matter is to  be found in "Propositions, Judgments, Sentences, and Statements" 
by R. M. Gale in The EncycEopedia o f  Philosophy Vol. 6 ,  ed. Paul Edwards (Macmillan, 1967). Two 
more recent sources worth consulting in this regard are R. Bradley and N. Swartz's Possible Worlds 
(Blackwell, 1979) Ch. 2, and S. Haack's Philosophy o f  Logics (Cambridge U.P., 1978) Ch. 6. For a 
contrary view see T. J. Richards' The Language ofReason (Pergamon, 1978) pp 122-126. 

Our inclusion of a propositional aspect for "explicit performatives" such as sentence (10) would no t  
appeal to  many logicians. For a clear exposition of how sentences may be used to  perform many 
functions besides stating facts see R. J .  Fogelin's Understanding Argulnents (Harcourt Brace Jovano- 
vich, 1978) Ch. 1 and J. L. Austin'spaper "Performative Utterance?" which isreprinted as an appendix 
in Fogelin's text. 

Logicians draw a distinction between "tokens" and "types", the former being instances of the latter. 
In ihis terminology, the point that "the same sentence may express different propositions" may be 
rephrased as "tokens of the same sentence-type may express different propositions". 

EXERCISE 1.2 

1. Which of the following sentences express propositions? 

(a) The baby is laughing. 



(b) What's that noise? 
(c) Barnard's star may have some planets about it. 
(d) 1 + 1 = 3 .  
(e) Let "I" denote "Inflation is a problem". 
(f) Get out of here! 
(g) He ran in the race but slipped on  a banana peel. 
(h) What a glorious day it is! 
(i) Santa Clause is jolly. 
(j) To  fail t o  achieve the  impossible is not t o  fail. 
(k) Please pay attention. 
(1) All triangles have four sides. 
(m) The next prime minist.er will be a woman. 
(n) Suppose that x is an even number. 
(0) What are you thinking? 
(p) If it rains then there is moisture in  the  air. 
(q) Super-sausage had a hamburger for lunch. 
(r) I wish t o  be immortal. 
(s) Neither circumstances nor criticism will prevent my progress. 
( t )  Won't you close the door? 
(u) Santa Claus is a fictitional character. 
(v) Let x mark the spot. 
(w) Your wish is my command. 
(x) Would that  there were peace. 
(y) Define ""proposition" t o  mean "bearer of  one truth value". 

2. For each of the following sentences list at least two propositions that  it might be 
used t o  express. 

(a) John made the mince with his own hands. 
(b) The lamb is too  hot to ezc. 
(c) Visiting relatives can be a nuisanc-,. 
(6) S'rrrdeen~s dislike boring ?esturers, 
(e) Sorile dogs do not sn~ell.  
(fd He is speaking on the subject of old tongues. 
( g )  The cricket stopped when the  bat began t o  squeak. 
(h) Only sons are spoilt. 
(i) He addressed the chair from the floor. 
(j) Because of the wind the  bowler flew off the handle. 
(k) Tom the indian would try. 

3. Ambiguities often find their way into newspapers. Indicate where they occur in 
the selection below. 

(a) Crash courses are available for those wishing t o  learn t o  drive very quickly. 
Eastbourne Gazette 

(b) A doctor has compiled a list of poisons which children may drink at  home. 
Ottawa Journal 

(c) The man dropped the grammophone while running, but the  policeman 
eventually caught him. It  was stated that the defendant had a record. 

Belfast Telegraph 

(d) At the other end of the building . . . is the section where devotees [of a Hare 
Krishna group] prepare and eat their meat, fish and egg-free diet of honey- 
dipped nuts and grains, curried vegetables, yoghurt, milk and rice. 

The Sunday Mail 



4. Which of the following pairs of sentences may be taken as expressing the  same 
proposition? 

(a) Jack saw Sue. Sue was seen by  Jack. 
(b) Vince has a brother. John is yince's brother. 
(c) Brisbane is south of Mackay. Mackay is north of B rishane. ' ' 

(13) Canning Downs is bigger than Wales. Canning Downs Is at least as big as Wales. 
be) Norma is Seiena's mother. One of Seiena's parents is Norma. 
jf) Neither John c o r  Susan is responsible. John is not resporisible and Susan is 

not responsible, 
(g,! Seven is larger than fiiie. Five is smaller than seTiezi. 
(h) Adam stood between Brian and Dougai. Between Brian and Dougal stood 

Adam. 
(i) Yesterday today was tcrcorrr;iv. Today :#as "ismorrow yesterday. 

*(j) Either the 9us has goile o r  my watch is fest. :f the bus has not gone then my 
watch is fast. 

5, tk'hich of the foliowing are true? 

Ail propositions are true, 
All propositions are true or  ail propcsitlons are false. 
Every proposition is either true or false. 
if a sentence does not express a truth then it expresses B falsehood. 
No sentence expresses something that i s  both True arzd false. 
Every proposition is known t o  be true or known t o  be fake. 
Some sentences can express different propositiocs at  different times. 
No -two sentences in different languages ever express ihe s a n e  proposition. 
""2- 2 = 4'' & ~ p l e s s e ~  the sarrls prepcsitjon as ""t+?ic.s t',~!@ are 5o;i:'". 
i i  a comn-:and is cbcyed then il- is :rue 

lI Cretans are l ~ a r s  

The philosopher Eprmen~des of Crete once said that 
'"A11 Cretans are llars " What he meant was "Cretons 
always lle ' When he uttered thls sentence did he 
express a propos~tion,  and if so must ~t be true or 
must it be false? 



1.3 DENIALS 

In this and the next few sections we familiarise ourselves with some of the more 
important types of sentence constructions as well as some ltey terms which assist in des- 
cribing and contrasting various types of propositions. We turn first to  ways in which a 
proposition may be denied. 

The most straightforward way of denying a proposition is t o  state its negation. In 
English this is usually handled by  inserting the word "not". For  instance 42) is the negation 
of (I). 

Linda is wide awak.e. 
Linda is not wide awake. 

There are many ways in which the negation may be expressed. Each of (3) and (4) 
is also the negation of (1). 

It's false that  Linda is wide awake. 
It's not the case that Linda is wide awake. 

The proposition being negated is called the negand. Thus (1) is the negand in (2). 
In general, if we have some proposition p. then Not p is the negation of p ,  and in this 
negation p is the negand. 

A proposition and its negation form a pair of contradictoiy propositions. This means 
that in terms of truth or falsehood they must be opposite. For  example, (1) and (2) are 
contradictories. If kirida is wide aWaKe then ( 7 )  is true and (23 is false; if she isn't wide 
awake then (1) is false agd ( 2 )  is true. 

Ar;other \;,,ay .sf .en>G:?g a pr3position is :o state ,Jire cf iis zonrra~ez. For instance, 
each cf (5) zrzd (5; i s  r contrary sf j :). 

T-il~da i.; haif asieep, 
Linda is sound asleep. 

Like ~ o r t r a ~ l c t o r i e s ,  contraries can'i both b: true: >inlike contradictories however. 
centraries caa both be false. For  example, while (1) and (6) can never be true together, 
if Linda is half asleep they will both be false. 

A further example will help clarify things. Consider the following proposition 

Karen is taller than Susan. (71 

(8) is denied by each of the following; 

Karen is not  taller than Susan. 
Karen is shorter than Susan. 
Karen is a t  least 5 cm shorter than Susan. 

Of these. (8) is the negation and so a contradictory of (71, and (9) and (10) are each a 
contrary of (7). Note that (8) and (9) express different propositions. In the situation 
wlzere Karen and Susan are both the same height (8) will be true and (9) will be false. 

Now consider proposition (1 1). 

Karen is shorter than or the same height as Susan. (11) 



We do not count this as the same proposition as (8) since (1 1) contains certain concepts 
not preseiit in (8). Vet ( I  I )  wil! clearly be true whenever (8) is true and false whenever 
(8) is false. So (1 1 )  is a contradictory. but not the negation, of (7). 

Sonletirnes prefixes are used to  make denials. For instance (12) and (13) form a pair 
of contradictories. 

His action was legal. 
His action was illegal. 

Use of prefixes is not always clearcut, however. Consider the following propositions: 

Suzi is popular. 
Suzi is unpopular. 

Are these contradictories or just contraries? Is it possible for Suzi t o  be neither popular 
nor unpopular? What if Suzi is a newcomer who has just joined a class? Does this mean 
she is currently unpopular with her classmates? Is "unpopular" ambiguous? A sensitivity 
towards common usage of words is something that all logicians find it necessary to  
cultivate. 

Before getting on to  the exercise, let's summarize the main points reached in this 
section. In this summary, the phrase "can't both be true" means "can't'both be true at 
the same time": this allows that one might be true in one situation and the other might 
be true in a different situation. 

Main Points: Not p is the negation oj'p 
p is the negund in NG? p .  
Contradictory propositions can't both be true, and can't both be false 
Contrary propositions can't both be trijeg but may both be false. 

NOTES 
Some authors may wish to  include both contradictories and contraries as negations. Our preference 
has been to treat both as denials, but to  classify negation as a special type of contradictory. 

\Ve will show later that any proposition has just one negation, but  has an infinite number of contra- 
dictories as well as an infinite number of contraries. In everyday dialogue, the use of the phrase "On 
the contrary" may be seen as heralding the statement of either a contradictory or a contrary. We 
choose to  define "contrary" in such a way that it must be possible for a pair of contraries to  both be 
false. Thus "contradictory" and "contrary" are mutually exclusive descriptions; in particular, contra- 
dictories will not be treated as a subset of contraries. 

EXERCISE 1.3 

1. Which of the following pairs of propositions are contradictories, and which are 
contraries? 

(a) Susan is at home. Susan is not at home. 
(b) All men are mortal. No men are mortal. 
(c) All philosophers are fallible. Not all philosophers are fallible. 



(6) Rrisbace is !ess than 600 kiloinetres from Sydney. Brisbane is more than 
700 kilometres from Sydney. 

i -  \ , 2 1  No Martians are green. Some Martians are green. 
(f)  30th H e n y  and Robert will b:eak the reccrd. Nzither Benry nor Robert will 

break the recc~c?. 
(g) Either it lvi!l rziri cr there lvill be a dust storm. It will neither rain nor will 

Shere be a dust storm. 
()a? ,sv,san fell do:.ia S : j s a ~  gesr:$r feii dr,wfi. 

fTn;-  ,aLl, and AbeS were 30th yc;jng, Cain arid A l x l  were not both young. 

j C2in afid Abp,i were both young. Abe! ,&zs riot ycuny.  
i?:~' , - I  Rlis-ia:rch>~s v i s s  .the firat tr; ~;:cpcse ti.ic: heliocecti-i:: :~iodcj. Herakleides -jiizs 

i2.e fkst prcpnse the heliocentric mo6-1. 

'a) Jehi: is sick. 
(b)  Jack is 9i33's b;~iher .  

[c) zr>d j"ii1 are both :gill-cliinbers. 
( C j  WaSec is smaliar than Queensland. 
< - (e) jack k fikc$rral;sn asd Jill is Scattish. 
( f )  It :leser rains. 
(g) All r~:,en are mortal. 
(I?) it is ~ e s s i b l e  thaQ!roil leA i: ir the tralc. 
(i) .Coals are a.ic5, 
(3) Some strident. are very wise. 

, ;a) Prcvf: t4.a'; SOP 811)i giver? proposjticr? s, 4: a c o a t r a y  cf I; is :rue then so is 
each contradic!3!.y -yf pF. 

(b) 9.' a contradictony of p is true then what, if anything, may be deduced about 
the set of contraries of p? 

" 5 .  Consider the following two propositions: 

Logic is very interesting. 
Logic is very uninteresting. 

(a) Are they a pair of contradictories? 
(b) Are they a pair of contraries? 
(c) Provide a negation for the first proposition (i.e. negate the true proposition 

in the pair!). 

$5. Explain why the following two propositions are not contradictories. 

Tom passed the exam. 
Tom failed the exam. 



7 .  Which of the following are true? 

(a) If the first proposition is contrary to the second, then the second is contrary 
to the first. 

(b) If the first proposition is contradictory to the second, then the second is 
contradictory to the first. 

*(c) If the first proposition is the negation of the second then the second propo- 
sition is the negation of the first. 

8, (a) Explain why the word "inflammable" was replaced some years ago by the 
word "flammable". (Hint: Latin prefixes are sometimes ambiguous). 

(b) In which of the following words is the prefix "in" used for negation: 
"infamous", "incorrect", "invaluable"? Elaborate. 

1.4 CONJUNCTIONS AND DISJUNCTIONS 

With the aid of the word "and", any number of assertions can be made in a single 
English sentence. For instance, both (1) and (2) are asserted by (3). 

The bus is gone. 
I have no money. 
The bus is gone and I have no money. 

There are many phrases in English, such as "but" or "although" which we can use 
instead of "and" to say several things within the one proposition. Each of (I), (2) and 
(4) are asserted in (53. 

My friend will give me a lift. (4) 
The bus is gone and H have no money but my friend will give 
me s lift. (5) 

'The iradi.ii$s?ai assertions ivhich haiis beerL c ~ ~ j o i n e d  (joined together) in the one 
proposition are in this context referred to as conjuncts, and the overall proposition is 
texcled the conjunction of these conjuncts. Thus (3 )  is the conjuprction of ( I )  and (2 ) ;  
(I) ,  ( 2 )  and (4) are the conjuncts in (5) 

Sometimes words like 'knd" are used between nouns, adjectives or other parts of 
speech. Usually we can rephrase the sentence SO that such words lie between sentences. 
For example, (6) may be reworded as (7). Proposition (6) may thus be viewed as a 
conjunction of (8) and (9). 

John and Vince are acupuncturists. 
John is an acupuncturist and Vince is an acupuncturist. 
John is an acupuncturist. 
Vince is an acupuncturist. 

This is not always the case however. Consider the following three propositions. 

John and Vince are brothers. 
John is a brother. 
Vince is a brother. 



If (10) means that John is the brother of Vince, then it clearly says more than the 
conjunction of (1 1) and (12). Further case studies warning of "logical conjunctivitis" 
will be discussed in Chapter 2. 

With the aid of the word "or", individual propositions may be expressed as alter- 
natives within a single English sentence. For instance, (13) and (14) are listed as alternatives 
in (1 5). 

Logic is interesting. 
Logic is useful. 
Logic is interesting or logic is useful. 

The alternatives are called disjuncts and the overall proposition is said to be a disjurz- 
tion of these disjuncts. We say the disjuncts have been disjoined to form the disjunction. 
Thus (13) and (14) are disjuncts which have been disjoined to form the disjunction (15). 

Disjunctions are usually expressed in English by means of the construction "either ... 
or ... ", or just "or". Here are some more examples which place the "or" between nouns 
or adjectives. 

Jane is doing either maths or logic. 
His favourite colour is red or green. 

There are two kinds of disjunction: inclusive and exclusive. Inclusive disjunction 
allows that both disjuncts might be true e.g., when we assert (15) above we should 
certainly consider it possible that logic is both interesting and useful! Another obvious 
case of this is (1 8). 

The winner of the logic prize will be either very bright 01- 
very hard working. 

'#hen 16 emplras~ze 'that b ~ " ; ~  difjnl;c:c migffL be ?;.us: we ssme.ibnes add 
phrase "ccr both", as in ( 7  9). 

Her chubbiness is due to  either overeating or lack of exercise or both. d 4 9) 

In legal documents this job is performed by the phrase "and/or". A familiar case from 
mathematics is the following definition: 

The union of sets A and B is the set of all elements in either A or B. (20) 

Here, elements common t o  both A and B are included in the union. 

Whereas with inclusive disjunction we claim merely that at least one of the two alter- 
natives is true, with exclusive disjunction we claim that just one of the two alternatives 
is true. We will postpone discussion of exclusive disjunctions of more than two alternatives, 
as complications arise there. Here are some examples of exclusive disjunction. 

Jane had either cake or ice-cream but not both. 
Terry was born in 1946 or 1948. 
Any whole number is either odd or even. 

It should be clear that when we exclusively disjoin two alternatives we state that one of 
the disjuncts is true but definitely not both. 



13 Section 1.4 

Because it may be used both inclusively and exclusively, "or" may be ambiguous in 
certain contexts. For the moment, if it is not clear that a disjunction is exclusive we will 
treat it as inclusive. T h s  simple policy of taking the minimum interpretation is not always 
appropriate however, as will be discussed in detail in Chapter 7. 

Besides being able to detect conjunctions and disjunctions, we should also be able to  
detect their negations. For example, take the following conjunction: 

Jane studies maths and logic. (24) 

For this to  be true Jane must study both. But there are four possibilities. Jane might 
study both. or just maths, or just logic, or neither. (24) is true only for the first of the 
four possibilities. We can set out the four possibilities in a chart. 

Now consider (25), which is the negation (and hence a contradictoly) of (24). 

Studies logic Does no t  
study logic 

Jane does not study both maths and logic. (25)  

Studies maths 

Does not  
study maths 

435) is -true in all cells other thar, the top left. Ii is tsue in the top right and. 'the b3itom 
l e f t  (:ells becsuss there J a ~ e  dces [lot s';cdy 30 th~  9.18. It is ';rue in the boetirfi? rigkU<- 

berniiccl. -i- .\-- 
d.,A. .,o .-,o* L,j.,>8 e j2112 sidclie:, :?ei:tiix. 

(24) 

Jane studies neither maifis nor logic. (26) 

As indicated, (24) is true only in the top left cell. 

Just the bottom righi ceEi. Propositions (24) and (26) cannot both be true i:: any ceil, but 
both wi31 be false ii? the bottom left and top right cells. So (24) and (24) are cont~aries, 
not contradictories. 

Can you see that, given any one cell in the chart, the other three cells collectively 4i.e. 
taken together) provide a contradictory to  it, but individually (i.e. taken one at a time) 
provide a contrary to  it? 

Consider now the following inclusive disjunction. 

Tom studies either maths or logic. (27) 

We can use a chart again to see that (27) is true in three of the four possibilities. 

Studies logic Does no t  
study logic 

Studies maths 

Does not  
study moths 



(27) is false only in the bottom right cell, where neither maths nor logic is studied. So a 
contradictory of (27) is: 

Ton1 studies neither maths nor logic. ( 2 8 )  

Another way of putting (28) is: 

Tom does not study maths and he does not study logic. (29) 

Exclusive disjunction is more complicated. Take the proposition: 

Sue studies maths or logic, but not both. (30)  

(30) is true in just two cells, as shown. 

Studies logic Does nor 
study logic 

Studies maths 

Does not  
study maths 

A contradictory of (30)  is: 

Sue studies both maths and logic, or  she studies neither. ( 3  1) 

Notice that the contradictories (30) and (31) are true along opposite diagonals of the 
chart, It should be obvious ffom the above chart that two contraries to (30)  are: 

Sue studies both maths and logic. 
Sue studies neither rnalhs POP logic. 

That's enough a'corit conjr-ncilons an6 d i s j ~ i ~ c ~ o i ~ s  for ihe moment, Let's revieui the 
main ideas of this section. To simplify fhingslet us use p and q to  denoee any two proposa- 
fions, and assume that ""add" and 6ior9i have the senses described earlier. 

Main Points: p and q is the conjunction of p, (a 

p, q are conjuncrs in p and q 

p or q is the disjunction of p, q 
p, q are disjuncts in p or q 

p or q or both is the inclusive disjunction of p, q 
p or q bur nor both is the exclusive disjunction of p, q 

or should be read as inclusive unless it is obviously exclusive 

Two standard ways of negating a conjunction: 

Not (p and q )  : Not both p and q 
Either not p or not q 

Two ways of negating an inclusive disjunction : 

Not (p or q )  : Neither p nor q 
Not p and not q 



EXERCISE 1.4 

1. Identify the conjuncts in each of the  following conjunctions 

(a) The workmen put down their tools and Brown made a speech. 
(b) Michael is slow but careful. 
(c) Alan is here and Betty is here and so is Colin. 
( d )  The gates are not locked and neither the side door nor the back door is closed. 
(e) The burglar is not in the house but he will be either on  the road or on the moors. 
(f) If anyone is sick they should see the doctor, and it is clear that Bill is not  well. 
(g) If the bus has gone then my watch is slow, and if my watch is slow then the  tower 

clock is slow. 

2. In which of the following is "and" used merely for conjunction? 

(a) Jane and Mary are girls. 
(b) Jane and Mary are sisters. 
(c) Jane and Mary share a room. 
(d) Jack is tall and handsome. 

*(e) Jack and Jill went up the hill. 

3. What are the disjuncts in each of the following disjunctions? Also state whether the 
disjunction is inclusive or  exclusive. (Hint: When in doubt treat the disjunction as 
inclusive) 

(a) James went either t o  the library or to  the club. 
(b) Mary is t o  enroll in either mathematics o r  physics, but not both. 
(c) Be studied French or logic. 
id) The number is either less than 10 or greater than 20. 
( e )  The person who chose that colcur scheme was either coiour-blind or lacking in 

aesthetic taste. 
(0 Either the rail? will ccme and the crop wiii be p l a ~ t e d  or we wili sell the farm. 
i;) The r?iii~:her is elthe: not more t ha r  13 cr greater than 6. 

. . 
h )  Ei:i?e; Marj, takes inatl;err.atics a a b  logic or she takes 3apanesa an.' cejcp-illng, 

7 U i  lZOt b0':h. 

4. iX~lc?lhicir of the following pairs of propositions are contradictories and which are con- 
r ra r i s?  

(a) 1 will go either to Brisbane or t o  Perth. 
H will go neither t o  Brisbane nor t o  Perth. 

(b) 1 will go t o  50th Brisbane and Perth. 
I will not go t o  both Brisbane and Perth. 

jc) I will go t o  both Canberra and Cairns. 
I will go t o  neither Canberra nor Cairns. 

( d j  I will go t o  both Canberra and Cairns. 
Either I will not go t o  Canberra or I will not go t o  Cairns. 

(e) You will go to  Goondiwindi or Gunnedah. 
You will not go t o  Goondiwindi and you will not go t o  Gunnedah. 

5.  In your own words set out the negation of the following. 

(a) Susan is either a clerk or a teacher. 
(b)  Sandy is both a fariner and an accountant. 
(c) The bus is slow and time is running out.  
(d) Either the bus is slow or I am impatient. 
(e) Both Robin and Chris are mechanics. 
(f) Cathy is not beautiful but she is attractive. 
(g) Either you will finish your homeworl< before 9.30 or you will notvwatch T.V. 

after 9.30. 



1.5 CONDITIONALS AND BICONDITIONALS 

The proposition expressed by 

"If the clock is slow then we are late." 

is a conditional. The sentence itself is also called a conditional. Conditionals are so named 
because they make the following type of claim: on the condition that one proposition is 
true, a second (usually different) proposition is true too. They are often expressed by 
means of the sentence construction If. . . then The senrence immediately preceded 
by "if '  is called the antecedent. So, in (1) the antecedent is 

"The clock is slow." ( 2 )  

The other sentence, preceded by "then", is called the colzsequent. The consequent in 
(1) is 

"We are late." ( 3 )  

The propositions expressed by the antecedent and consequent of a conditional sentence 
are called the antecedent and consequent of the conditional proposition. 

There are other ways of expressing a conditional. Instead of sentence (1) we could 
have 

"If the clock is slow we are late." (4) 

The "then" is simply left out. It is a bit like the "either" in "either . . . or---- -". It may 
often be left off. We can express exactly the same conditional with 

"We are late if the clock is slow." (53 

The "iiis' still precedes the same antecedent. and the other sentence is th-e coiisequeaat. 
. ~ 

'Cn the same way, the next three sentences express the same :;iiniii;ia;iai p:!jp~~iti('iii. 
s < j r  
i~ the parcel arrives today then it was postzd vzsterd:iy ' (6; 

b C B C  J 
11 the parcel arrives today i t  was p s t e i i  yesterday." (7: 

' T h e  parcel was posted j~esterday i".t arrives ~odiay." i 8; 

In each case the antecedent is 

""The parcel arrives today." 

and the consequent is 

""The parcel was posted yesterday." ( 10) 

In each of the conditionals above, the "if '  has marked out the antecedent by preceding 
it. But there are other ways of expressing conditionals. One way involves the phrase 
"only ij". 

"The clock is slow only if we are late." 

This sentence expresses the same conditional as (1). SirniIar!j!. 

"The parcel arrives today only if it was posted jzsterday. " ( 1 2 )  

expresses the same conditional as (6). In these "only i f '  conditionals the "if '  marks out 
the consequent. So, "Only i f '  marks out the consequent while "if '  by itself marks out 
the antecedent. We must look to see whether "if' is by irself or with "only". Here are 
some more pairs of sentences, both expressing the same conditional, one with "if" by 
itself, the other with "only if'. 

"If John has ten dollars then John has some money." (13) 



"John has ten dollars only if John has some money." 
"If John is not a t  home he is down at the club." 
"John is not a t  home only if he is down at  the club." 

Every conditional has a converse. The converse of 

If John has ten dollars then John has some money. (17) 

is 

If John has some money then John has ten dollars. (18) 

We get the converse of a conditional by swapping tlze antecedent and the consequent. The 
converse of If p then q is If q therz p. The same applies t o  "only if '  conditionals. The 
converse of 

John has ten dollars only if he has some money. (19) 

John has some money only if he has ten dollars. (20)  

It is very important t o  notice that a conditional arzd its converse do not say the same 
thing. Can you see the difference? 

So, if we want t o  assert a conditional and its converse, it is n o  use just asserting the 
conditional. One way of asserting both is to connect the conditional sentences by the 
conjunctive "and" e.g., 

"If the set is empty then the set has n o  members and 
if the set has no members then the set is empty." 

Now consider the following sentence. 

' T h e  set is empty i f a n d  only if the set has no members." (22)  

Does ( 2 2 )  express ihe same pi-opositioc as (?I)? Well, let's see. it s'nouid he clear :hat 
( 22 j  expresses "tie same propositior, as (2% does. 

""The set is empty if the set Bas no members, and 
the set is empty only if the set has no members." (23) 

From the earlier work in this section, we can see that  the ""if' conditionai in (23)  
expresses the same proposition as 

""I the set has no members then i t  is empty." (24) 

and that the 'kn iy  if '  conditional in (23) expresses the same proposition as 

"If the set 1s empty then it has no members." (25) 

Hence ( 2 2 )  does express the same proposition as (21). Thus (22) asserts two conditionals. 
For this reason, any sentence formed from two simpler ones by  means of  the connective 
"if and only i f  ' is called a bicot~di.tiotzoi. The proposition expressed by such a sentence 
is also called a bico~dit ionai  ( i i i s  reaily s special type of conjunction viz. a conjunction 
of two condi t io~a ls  w.lrI?ich are converses of each other). 

Logicians comniody  abbreviate "'if and only if" t o  " i f f ' .  But when you read '"iff" 
out loud, read it in full as "if and only if'. 

Main Points: if p the?? q is a conditiolzil2 where p is the unfecederlt 
and q is the corzsequent 

The conditional u ' p  fhen q nlay also be expressed as: 
p only i f  q 



if P, q 
4 i f p  

The converse of If p then q is I f  q then p. 
p iff q is a biconditional. 
p iff q may be expressed as If p then q, and if q then p. 

EXERCISE 1.5 

1. For each of the following conditionals, write down first the antecedent and then 
the consequent. 

If taxes are cut people will spend more money. 
If Snoopy is a dog then Snoopy is an animal. 
If Tom believes that he is being helped then he is acting in a strange way. 
Fuzzy is a bear only if she is hairy. 
Fuzzy is an animal if Fuzzy is a bear. 
If neither Brown nor Jones breaks the law then they have nothing t o  fear. 
The wheat will grow only if it is planted. 
If it rains then either there will be a flood or  the crops will be spoiled. 
The experiment will not be successful if conditions are not completely sterile. 

2. Select those of the following for which both members of the pair express the same 
conditional, 

(a) If Sue comes home Bil! will be happy. 

Ib; 

c) 

, . 
i r l  

' __ \  

(a)  The number ik even if and only if the number is divisible by two. 
(b) There inrill be an election if and only if the Governor-Generai signs the writs. 
(c) The experiment wiil be a success if and only if the correct procedures are followed. 
(d) We will go on  a picnic if and only if it doesn't rain. 

Consider the following two propositions. 

Freddo is a frog. Freddo is green. ( 1 )  

It's quite possible for both of these t o  be true, since Freddo could be a green frog. Any 
set of propositions which can all be true together is said to  be consistent. S o  (1) is a 
consistent set. 

Sometimes we meet a set of propositions which can't all be  true at once. Logicians call 
this an inconsistent set. Any pair of contradictories will be inconsistent e.g., 

Freddo is a frog. Freddo is not a frog. ( 2 )  



Though we can imagine situations in which either of tile two propositions in ( 2 )  might 
be true by itself. it is just not possible that they should both be true together. And the 
same applies t o  contraries e.g., 

Tam is tailer than Suzy. Toin is shorter tb.an Saz:~. ( 3 )  

It's impossible to  have both of these true. Any set of propositions wiih a pair cf contra- 
dictories or a pair of contraries will be inconsistent. 

John is a philosopher. John has not read Plato's Republic.  14) 

There is nothing inconsistent about this. It  may be unlikely, but nevertheless it is possible 
that both propositions in (4) are true. So (4) is a consistent set. What about the following 
set? 

If John is a philosopher then he has read Plato's Republic.  
John has not read Plato's Republic.  

This set is consistent too. But now let's unite sets (4) and (5): 

John is a philosopher. 
If John is a philosopher then he has read Plato's Republic.  
John has not read Plato's Republic. (6) 

Not all of 46) can be true. Anyone wlto belie~!ed (6) would be Logically in error; he would 
have an incoxistent  set of beliefs. 

,- L ~ O ; F ;  Carelr\illp that k;r a set of propositions to  be inconsistent it is not  generally neces- 

sary fpr each of :hF; p,-opositions to  be impossib!e. Consider the individual propositions 

in " 3 )  9,) end (6) :.:; instance, 3;: is poj$ib:f i.lex;er.rne:ess 70 'aiie 2. ~ k g i e  prop~si t?oI? !A/> t 

.* , I  3Nl l ic f i  . 1 b7.r I:ts,sIf' i-. :n:"nsis'ien: e.g.. 
( 7 %  
$ ,  

r ,  rzcn  m e  of us should aim fo: consistency in oiir :veb of beliefs. This is no: an ezsy 
task! 

Main Points: A set of propositions is consistent iff they can all be true together. 
A set of prapositions is incoizsiste~zt iff it's not consistent. 

NOTES 
The  termc "incompatible" and "se!f-contradictory" are often used instead of "incons~slent". though 
6 ' .  ~ncompatibie is reserved for sets of at least two propositions, and "self-contradictory" is used ~ncsrly 
liii!: unit sets. '~ljhere there are at leas: two propos~rions, "consistent" is sometimes replaced by 
"cornparihle". One of :be pliilosophz;~ to make iiizciai use of the ~ i o t i o ~ ~  of consistency was 
Leii>iii~. who coined the term "compossible" w11i~:h capture.: nicely the idea of being possible tosether. 

EXERCISE 1.6 

!. Which of the following sets of propositions are inconsistent? 

!a) My car is old. My car is new. 
{b j  Sorile numbers are even. Some numbers a1.e odd. Some _?umbers are divisible by 

three. 
!c) If iiltier had i~ivaded England then his army would have taken Lonclor~. Hitier's 



army did not take London. Hitler did not invade England. 
(d) If it rains there is high humidity. It  is raining. The humidity is not high. 
(e) Karen takes either Japanese or Indonesian. Karen does not take Japanese. Karen 

does not  take Indonesian. 
( f )  Michael takes mathematics and physics. Michael does not  take mathematics but 

he does take physics. 
(g) Senator Hall is neither Labor, Liberal nor Independent. Senator Hall is not  

Country Party. Senator Hall is Independent. 
(h) Unless the Parliament stops the Bill it will become law on  Tuesday. The Parlia- 

ment will not stop the Bill. The Bill will become law on  Tuesday. 
(i) Oranges are fruit. No cats are dogs. All bachelors are unmarried. 
(j) The wheat crop will be good only if it rains in July. It rained in July. The wheat 

crop will not be good. 

1.7 ARGUMENTS AND LOGICAL FORM 

You may have gathered from 5 1.1 that when logicians use the term "argument" they 
d o  not mean a heated discussion. A logical argument involves the presentation of  evidence 
or reasons (technically known as premises) in support of some point (technically known 
as the conclusion). 

Definition: An argumend consists of a set of propositions, one of which (the conclusion) 
is claimed to follow from the others (the premises). 

In this book VIF: are exclusively concerned with arguments where the conclusion is 
ciairned to fo!lo\nr wit11 ceurainty {rrarhei- tb3il ~USI high probabiliiy) the preilrises. 
More 17j j j l  be said abol-~t :his in the flex? secrion. 

Befc2r-e assessing a;gri?:eilts -,ccur b English {'";~iid argi;nlen:ls" :Is Brian i$iedifi 
iai ls  the1:q-i). :ve peed to t a i ~ ~ e  theiii. 'This i!ivoives separaring ou'L the premises and ille 

conclusion. and putting the argument into sfosandard form. Consider the following example. 

The burglar went out  either by the window or by the  door. 
The burglar did not  go out  the door, so it follows that 
he or she went out by the window. (1) 

The phrase "so i t  follows that" clearly heralds the conclusion, which is: 

The burglar went out  by the window. 

The premises are then the other two propositions: 

The burglar went out either by the window or by the door. 
The burglar did not go out  by the door. 

The whole argument may now be written down in standard form as follows: 

The burglar went out either by the  window or by the door. 
The burglar did not go out  by the door. 

.'. The burglar went out  by the window. ( l a )  

Notice that an unbroken line is used t o  separate premises from conclusion. The premises 
are always placed above this line and the conclusion below it. Notice also the use of .'. as 
an abbreviation for "therefore", which is always placed in front of the conclusion: this 
indicates the claim that the conclusion follows from the premises, but is not itself part of 
the conclusion. Whenever we run across a phrase like "so it follows that", "therefore". 



"hence", "thus", "so", "clearly" etc. we can be almost sure that the conclusion comes 
immediately after it. For this reason such phrases are sometimes called "conclusion 
markers". 

There are also "premise markers". Three conlmon ones are "because", "since" and 
"as". When we come across one of these we can be almost certain that a premise comes 
immediately after. Sometimes the conclusion comes immediately before one of these 
premise markers. and sonletimes the conclusion comes after the premise which follows 
this marker. These two situations are illustrated, respectively, in arguments (2) and 
(3) below. 

The figure is a circle, because it's either a circle 
or a square, and it's not a square. 

The burglar went out either by the window or by the door. 
Since the burglar did not go out by the door, he or she 
went out by the window. 

In standard form, argument (2) becomes: 

The figure is either a circle or a square. 
The figure is not a square. 

.'. The figure is a circle. 

You probably noticed that argument (3) is really the same as argument ( I ) .  

Sometimes arguments in English have no obvious conclusion markers or premise 
markers. But our English intuitions will usually stand us in good stead here. Practice on 
the exercises in this book will help yoil tame such arguments. If the proposer of the 
argument really was unclear in his presentation and if he is available, you should ask him 
to clarify his argumeni for you. '4s a general rule, try to sort out ihe conciusion first. 
Then concentrate on the premises. 

O x e  the argument is in standard fc?rrii Twe go z step further iq o u r  er*alysis cf it. This 
involves abbreviating sentences ~~hicb:  express certain propositions in the argument to 
sir~gie capital Beirters. The choice of these letters is up to  us; but our choice will be easier 
to remember if we pick the first letter of a key word in the sentence. We set out our 
choices in a dictionmy. For example, a suitable dictionary for argument ( la)  would be 

W = The burglar went out by the window 
D = The burglar went out by the door. 

Here "=" stands for "is our abbreviation for". Argument ( la)  may now be displayed as 

W o r D  
Not D 

:. w ( l b )  

Notice that we did not abbreviate the first premise to a single letter because it contains 
simpler propositions (W, D) which occur either independently or in a different surrounding 
structure elsewhere in the argument. A similar comment holds for the second premise. 
The upshot of this is that the role played by the key logical words (here "or" and "not") 
is displayed. 

Argument (2a) may likewise be exhibited as follows. 

Dictionary: C = The figure is a circle 
S = The figure is a square 



C or S 
Not S 

You will notice that ( l b )  and (2b) have a similar pattern or logical form. The only dif- 
ference is in the abbreviated propositions; and the "insides" of these propositions have n o  
bearing on the logical correctness of these arguments. This common logical structure of 
arguments (1)  and (2) may now be shown with the help of small letters like p and q .  

P or q 
Not q 

. . P  

This display is known as an argument-form. Because many arguments share common 
logical forms logicians often conserve energy by focussing their interest on argument- 
forms rather than treating each individual argument as an entirely new example. 

It  should be noted that the order in which the premises of an argument are stated is 
irrelevant. Thus. logical forms of arguments will not  be changed merely by changing the 
order of the premises. 

NOTES 
In this introductory section we have spoken about just one logical form for each argument. In fact, 
an argument usually has more than one form and it will be necessary later in the book to  take this 
into account. 

Brian Medlin is Professor of Philosophy at  Flinders University, South Australia 

1. Pair each of she foliowing abbreviated. argv-ments -,vii;h another of "the same logical 
f ~:.fi*~. 

(a )  A 

.'.A or B 

(c) Not (A and B) 
A 

:. Not B 

(e)  If  D then not  E 
If F then D 

.'. F only if not E 

(g) A only if B 
B only if not C 

.'. If A then not C 

(3) If A the;? 3 
Not B 

(f)  Not D 
If C then D 

:. Not C 

(h) D 
Not (D and C) 

:. Not C 

2. Each of the following arguments may be paired with one other which has the same 
logical form. Set each argument out  in standard form, using the letters suggested for 
abbreviation. Then match the pairs. (Not  all of these arguments are logically correct). 

(a) If Phaedo is a dog then Phaedo is a mammal. If Phaedo is a human then Phaedo 
is a mammal. Since Phaedo is either a dog or a human, it  follows that he is a 
mammal. (D, M, K )  

(b) It  will rain only if there is moisture in the air. There is moisture in  the air. Hence 



it will rain. ( R ,  M) 
If no other site than Lake Pedder can be found for generating power, then Lake 
Pedder will be flooded. Since no site can be found for power generation other 
than Lake Pedder, the lake will be flooded. (N, F )  
John is not enrolled for both Philosophy and Classics. Since he is enrolled for 
Philosophy, it is clear that he is not enrolled for Classics. (P, C) 
If Fig. A were of a triangle it would have three sides. But Fig. A does not have 
three sides. So Fig. A is not of a triangle. (T, S )  
Either George will apologize and Harold will accept his apology or they will have 
a prolonged dispute. We will not get both George apologizing and Harold accepting 
the apology. So they will have a prolonged dispute. ( G ,  H, D )  
If militants controlled the Union there would be strikes. But there will be n o  
strikes, because militants d o  not  control the union. (M, S) 
If I am thinking then I exist. Why? Because if I am thinking then it is not  possible 
t o  doubt that I exist, and if it is not  possible t o  doubt that I exist then I am 
absolutely certain that I d o  exist, and if I am absolutely certain that I exist then 
I d o  exist. (T, E, N, C) 
James can know that the theory is adequate only if the theory is, in fact, adequate. 
So if the theory is, in fact, not adequate then James cannot know that the theory 
is adequate. (K, F) 
There will be a good wheat crop only if there is rain. There is rain. Hence there 
will be a good wheat crop. (G, R )  
If sample 756 were of copper then it would conduct electricity. But it  does not  
conduct electricity. So it  is not  copper. (C, E )  
If Mike were a dog then he would be an animal. But he is not an animal because 
he is not  a dog. ( D ,  A )  
If salary rises are refused then profits will be cut. The reasons for this are that if 
salary rises are refused then the union will not call off the strike, and if a strike is 
not  called off by the union then valuable production t i n e  will be lost, and if such 
time is lost then profits will he cut. (91; CC fV> 1,) 
Brown wilI net be a mernbsr of both the Lilueral and Labcr Parties. Since he is a 
member of the Liberal Party it fsi?o~.;s that he is not a member of the Labor 
Party. ( I ,  A )  
Some actions will count as selfish only if some actions count as unselfish. So if it 
is false that some actions count as unselfish then it is false that some count as 
selfish. ( S ,  %r) 
If it rains then the lawn will be watered. If the hose is turned on then the lawn 
will be watered. Since either it rains or the hose is turned on, it follows that the 
lawn will be watered. (R ,  L,  I f )  
Either the Prime Minister will resign and the Cabinet will fail t o  elect a new Prime 
Minister or the Senate will bring the Government down. We will not  get both the 
Prime Minister resigning and Cabinet failing t o  elect a new Prime Minister. So, the 
Senate will bring the Government down. ( R ,  F, D) 
If no one is willing t o  volunteer, then we will have t o  draw lots. Since everyone is 
unwilling t o  volunteer, we will have t o  draw lots. ( V, L)  

1.8 ASSESSING ARGUMENTS 

When an argument is proposed in everyday life there are usually two types of claim 
made (or at least understood). One claim is factual. the other logical. The factual claim 
is simply that the premises are all true. If even one premise is false. a factual error has 
been committed. Consider the following arguments about the famous Greek philosopher 
Aristotle. 



Aristotle was a nnan or a woman. 
Aristotle was not  a woman. 
So Aristotle was a man. (1 )  

Aristotle was Chinese or Greek. 
Aristotle was not Greek. 
So Aristotle was Chinese. 12) 

Argument ( I )  is free of factual errors, but (2) has a factual error in its second premise. 
Even one relevant factual error will prevent an argument from establishing its conclusion. 

An argument's logical claim is that the premises support the conclusion in a particular 
way. If this claim is false then a logical error has been committed. The logical claim may 
be for validity: 

whenever the premises are true, the conclusion is true 

or for iviu'uctive strength: 

whenever the premises are true, the conclusion is probable 

"Probable" here means "likely but not certain". Arguments (1) and (2) make validity 
claims whereas (3) claims inductive strength. 

Almost all galaxies discovered so far, exhibit redshifts. 
So probably, the next galaxy discovered will exhibit a redshift. ( 3 )  

The word "probably" is not counted as part of the conclusion of (3). Inductive strength 
is assessed by  that branch of logic known as inductive logic. Since this text is devoted t o  
deductive logic, we will consider only those arguments involving validity claims. Fiii~m 
now on, ihil i-em 'brgumear" will be used in this wsrr7icted sertse. 

- ,  
bLiidfly. i ~ g ~ . , ~ - e i i ?  (1,) vGia. > l o ~ e  -,~zliui;y does not <ercyDre ihst [he preiqlses c:c 
TI' .~b,. >a a n  argument is valid iHjuse sup~srang the premises are true, :he conciusior! iullaws. 
T* lnus argui-ne~t (2) is also vaiid, eves thougln it has a false premise and a false conclusion. 
80th (1) and ( 2 )  have the same logical form: neither commits any logical error. 

An argument which is not valid is said to be invaiid~ Here it is possible far  the prennises 
t o  be true without the conclusion being true. Arguments (4.) and (5) are both invalid. 

Some people are Hindus. 
Hence all people are Hindus. 

Some dogs are cats. 
So all dogs are cats. 

Note that argument (1) has n o  errors, (2) has just a factual error, (4) has just a logical 
error, while (5) has both factual and logical errors. What kinds of  error (if any) are made 
by Arnold and Bertha in the cartoon below? Has either presented a valid argument? 



All women are illogical. Some men are illogical. 
You're a woman. 

Arnold Bertha 

You should have assessed Arnold's argument as valid (no logical error), but factually in 
error (1st premise is false). Bertha's argument has no factual errors (all the premises are 
true), but  i t  is invalid (the conclusion doesn't follow). Because each has made at  least one 
relevant error. each has failed t o  prove the conclusion argued for. 

In order for an argument t o  establish its conclusion it must have n o  relevant errors. 
The only irrelevant errors would be factual errors which have n o  bearing on the conclu- 
sion. We should aim for an argument which is not only valid but  which has all its premises 
true. Such an argurnent is called souizd. Sound arguments will always have true conclv.sions. 

Definition: A sound argument 4s a -/%lid argameat with all its premisss true. 

At riiis point yoij, ma:/ 5~"iei;r;g a ii'i'rie ;lneasy at the way we have been rising the 
term "vaiid". It doesn't make recse, you might say., that a valid argument can have a 
false conclusion. If you do feel this then it is probably because you are reading .kalid7' 
as *'correct", the way it is often used in everyday speech, What you  need to realise is 
that this is ~ o t  the way the word is used in logic. Just as with "'proposition" and 'krggu- 
ment", the terms "'valid" and "sound" are defined in a precise? special way for  technical 
use in logic. The logician's use of "sound" is probably closer t o  the everyday use(s) of  
"valid". Note that while premises and conclusion will b e t r u e  or false, it is incorrect to 
speak of arguments as being true or false. Arguments are valid or invalid, sound or un- 
sound. Validity is a logical relation between premises and conclusion. With a valid argu- 
ment ,  if the premises are true then the conclusion will be true too; but  if the premises 
are not all true we have n o  such guarantee. On the other hand, if the conclusion is true 
this does not guarantee we have a valid argument: consider the following argument. 

Some people are vegetarians. 
Therefore Sydney has an opera house. 

Here. both premise and conclusion are true, but  the argument is invalid because the 
conciusion does not  follow from the premise i.e. it is logically possible for some people 
t o  be vegetarians without Sydney having an opera house, as it was in 1950. 

It  is the primary business of logic t o  examine logical errors (errors in reasoning) rather 
than factual errors. Nevertheless. since many "facts" are deduced with the aid of reason 



from other facts, logic helps to reduce factual errors too. And, as we shall see later, logic 
can detect inconsistencies arising from factual errors. 

in formal logic we often assess arguments for validity only. The premises are usually 
invented simply to provide a specimen exercise, and there is rarely any claim made for 
their truth. In everyday life however, arguments are used with the intention of establish- 
ing their conclusions, and consequently the premises are presented as facts. Thus, every- 
day arguments should be assessed for soundness: we should question both premises and 
reasoning i.e. we should search for both factual and logical errors. 

NOTES 
There is considerable controversy about the difference (if any) between deductive and inductive 
arguments. Our position is explained more fully in 52.5 of Inductive and Practical Reasoning by 
R. A. Girle, T. A. Halpin, C. L. Miller and G. H. Williams (Rotecoge, 1978). 

In this introductory section, the discussion of validity has been somewhat simplified. In particular 
we have avoided the cases of inconsistent premises and necessary conclusions. A more rigorous treat- 
ment which includes these cases will be provided in Chapter 4. An exact definition for validity which 
makes use of our work on  consistency is: An argument is valid iff the set of premises and negated 
conclusion is inconsistent. 

EXERCISE 1.8 

1. Describe each of the following arguments by selecting an appropriate letter from the 
Key provided. 

Key A. No errors 
W. Factual error only 
C. Logical error only 
D. Both logica! and factual errors 

(a) ~ e r t r a n i  Russell was a brilliant philosopher 
So Bertrand Russell ~ w a s  a philosophe:.. 

(b; Ail cats are animals. 
Therefore all animals are cats. 

(c) Apples are either oranges or lemons. 
But apples are not oranges. 
Hence apples are lemons. 

(d) Some people are vegetarians. 
So some people are not vegetarians. 

(e) Some students are women. 
Some women are koalas. 
So some students are koalas. 

2. Which of the arguments in Question 1 are valid? 

3.  Which of the arguments in Question I are sound? 

4.  Set each of the following arguments out in standard form. Then use your intuitions 
to decide which are valid. 

(a) If Spinoza was a Queenslander, then he was an Australian. 
Since he was a Queenslander, he was an Australian. 

(b) Hitler was a fascist. Why? Because he just was. 
(c) You can't be both a Christian and a Communist. 

Since you're not a Christian it follows that you're a Communist. 

(d) God is imperfect. Let me tell you why. If the universe is part of God then God is 



imperfect. But if the universe is not part of God then God is imperfect. 
And the universe is either part or not part of God. 

(e) Queensland is hot ,  but the Northern Territory is hotter.  
Obviously the Northern Territory is very hot.  

5 .  Which of the following are true? Where false, give an example 

(a) A valid argument must have true premises (i.e. all its pre~xises  inust be true). 
(b) A valid argument must have a true conclusion. 
(c) A sound argument must have true premises. 
(d) A sol-~nd arg~lrnent must have 2 true ~ a i i i k ~ ~ i o i i .  
(e) If a valid argument has true premises it must have a true conclusion. 
(f) If a valid argument has a false conclusion it must have at  least one false premise. 
(g) If a valid argument has a true conclusion it must have at  least one true premise. 
(h) An invalid argument must have a false conclusion. 
(i) If an invalid argument has true premises it must have a false conclusion. 
(j) If the premises are true and the  conclusion is false the  argument is invalid. 
(k) If an argument is invalid it must have true premises and a false conclusion. 
(1) A valid argument may have factual errors but  has n o  logical error. 
(m) A sound argument has neither factual nor logical errors. 
(n) An invalid argument must have a factual error. 
(0) An invalid argument must have a logical error. 
(p) If the conclusion of an argument is also one of the premises then the argument is 

invalid. 
(q) If one of the premises is removed from a valid argument, the resulting argument is 

invalid. 

6. Use your intuitions t o  assess the validity of the arguments in Exercise 1.7. 

L.9 SUMMARY 
. .  . The ar t  of summanslng 1s .\re?)/ usePc?. lo .develop 5drtfier. year 9.ji.r~ 2i:iiity i.~i si-$n:mar- 

ise, you S ~ G L I ! ~  prepare your cwr? chapter wr;imsries before referring to tilose supplied 
in this text. 

A proposition is that which is asserted when a seriferice is uttered; it is alj.ways either true 
or false (but not both). 
Propositions are usually expressed by sentences in the indicative mood. Some sentences 
$0 not  express propositions (e.g., all bona fide questions, stipulations, nonsense; some 
exclamations, some commands, some requests, some wishes). 
The same proposition may be expressed by different sentences, and the same sentence 
may be used t o  express different propositions. 

Not p is the negation of p. and p is the negand in Not p. 
Contradictories can't both be true and can't both be false 
Contraries can't both be true but can both be false. 

Given the usual sense of "and" and "or":- 
p and q is the conjunction of p, q. p, q are conjuncts in p and q. 
p or q is the disjunction of p, q. p, q are disjuncts in p or q. 
p or q or both is the inclusive disjunction of p, q. 
p or q but not both is the exclusive disjunction of p, q. 

or should be read as inclusive unless it is obviously exclusive. 

Not  (p and q)  may be expressed as: Not  both p and q ; Either not p or not q 



Not ( p  or q) may be expressed as: Neither p nor q ;Not  p and not q 

If p then q is a conditional where p is the antecedent and q is the consequent. 
If p then q may be expressed as: if p, q ; q i f p  ; p only i f q  

p iff q is a biconditional 
p iff q may be expressed as: if p then q, and if q then p 

A set of propositions is consistent iff the propositions can all be true together. 
A set of propositions is inconsistent iff it is not consistent. 

An argument consists of a set of propositions, one of which (the conclusion) is claimed to 
follow from the others (the premises). 
In standard form an argument is set out thus: premises 

conclusion 

Sentences denoting propositions may be abbreviated to  capital letters, and logical forms 
of arguments displayed by replacing these letters with p, q, . . . Different arguments may 
have a comnlon argument-form. 

Only deductive arguments are considered in this book. Here the conclusion is claimed to 
follow with certainty from the premises. If this logical claim is met the argument is 
valid; otherwise it is invalid. In everyday life the further claim is made that the premises 
are all true. If this factual claim is met. and the argument is valid, then the argument is 
sound; otherwise it is unsound. Sound arguments will always have true conclusions, but 
the same cannot be said for valid arguments. 

Invalid arguments contain a logical error, False premises contain a facluel erxor. While 
formal logic is cou?cei.~l~d primarily wi.th logical errors. day-to-day argumerils should be 
searched for both types 3C ei rcr .  
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2. B INTRODUCTION 

For most of the next eight chapters our attention focusses on the logical system 
known as Propositional Calculus (PC). The name derives from the fact that we can do 
calculations in PC to establish properties of and relationships bemeen propositions, 
including validity of arguments. PC is also called "Classical Propositional Logic". Its 
modern form derives principally from the work of Gottlob Frege (1848-1925) and 
Bertrand Russel1 (1872-1970). 

7 r h i ~  chapter lays the groundwork for Part One by introdneing the special Iogica! 
1a;z~uagz used PC: facfi;ltate i t s  work.  IF, ~\;~ii l  refer :rc tS..:is as our .Proposizio;.zat2 
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"I,-- - ,,iriiid~,lirll rjciW;j-ei; PC 2nd esb.er yy::istems such as se: ::Fiecry 2nd s*+!j.!itr,!?-ing calcul~.lus. 
In Psr-c Tiyo: add i t l~ns  zre :qadl-3 to PC ko Fsrm a more pcwe;fu.I sysieln, capable of 
rlrfidiirrg a wide;. i.llgl-3 of ijroposiiions and arg~~~snez;,:~. 

Some students may find the first half of this chapter a little difficult because of the 
abstract way in which it Is dwelcped, We ask these people to  make a patient effort, as 
there is a good reason for structuring the content in this way; the point of the symbolic 
game will soon be made clear. The reader will gain an insight into the structure of this 
chapter if he follows the discussion in the next paragraph. 

Any language contains a set of symbols (e.g., Engllsh contains the letters "a", "b", 
etc.) and you will say hello to  some interesting new symbols (e.g., "I)", " $ ") in the 
course of learning PI.. The general study of symbols is called semiotic and this may be 
roughly divided into three sections as shown. 

SYNTAX (study of symbols as uninterpreted objects) ' SEMANTICS (study of the meanings of symbols) SEMIOTIC - 
\ 

PRAGMATICS (study of the intended use of symbols) 

We begin by studying syntax, playing around with strings of symbols but not reading 
anything into them (i.e.. treating them as nothing more than marks on paper). Then we 
!nave on to semantics where we now give the marks some meaning: in particular we will 



talk about the symbols denotitzg (or "standing for") something and, most importantly, 
we will be concerned with truth and falsity (since certain strings of symbols will denote 
propositions). Having done all this we will then find out how to use the symbols t o  our 
advantage: this is puagn~atics. 

NOTES 
Propositional (:alcuiu c is also known as Sentential Logic. Truth-functional Logic, or 2-1 alucd Logic 

An ancient form of propositional logic was developed in the third century B.C. by the Stoic philouc- 
phers, especially Chrysippus (280-205 B.C). George Boole (1 815-1864] in his Laws of Thought (1847) 
developed an algebra which is structurally in agreement with PC. Fregc '~  seminal paper. tile Begrijys- 
schrift, was published just over a century ago (1879). Russell's major works on logic mere The 
Principles of Mathematics (1903) and, with his former teacher Alfred North Whitehead as co-author, 
Principia Mathematics (1910-1913). 

2.2 SYNTAX 

To  get under way we write down a list of the primitive symbols that make up PL and 
name any that are unfamiliar. They are called "primitive" since they are not defined in 
terms of any thing else. 

Primitive Symbols: 

small letters, from p to t ,  with or without subscripts 

left and right parentheses 

tilde 

ampersand 

wedge 

hook 

rribar 

slashed tribar 

In English some combinations of words are counted as grammatically correct sentences. 
e g.. 

The cal sat on the mat 

whereas others are not, e.g 

mat cat sat the on the. 

Likewise in PL certain strings of symbols will constitute well forn~ed formulae, e.g., 

( P  & 4 )  

and others will not. e.g.. 

p4( 

To save a bit of writing we will introduce the abbreviation "wff '  (pronounced "woof") 
for 'well formed formula". Also ive will use the Creek letters cc (alpha) and P (beta) to 
represent wffs in general. A well fornled or grammatically correct sentence in English is 
one that obeys the rules of English grammar; analogo~isly. a well formed formula in PL 
is one that obeys the fomzatiorz rzrles of PL. 



Formation Rules: 

Basis Clause: p, q, r, s, t taken individually, are wffs (B) 

Recurswe Clauses 1frr1snm;f 701s-a 

If a an? $ are wffs, so 1s to- C? $ 1  

ia \ /  8) 
( a  1 p\ 
(0: = 0) 
ca $ PI 

Terminal Clause: If cr is a wff. it is so because of the above rules. (T) 

In building up  Wffs, the basis clause gives us something to start with, the recursive 
clauses allow us t o  make longer and longer wffs, and the terminal clause prevents us from 
writing down just anything and calling it a wff. The names of the rules are shown in the 
right hand column. Constructing wffs from the rules is fun. We use assembly lines. These 
are just like assembly lines in factories, but  we construct formulae of PL out  of the 
primitive symbols by using the formation rules. 

Example : 
1. P B 

2. - p  1 , R -  

3.  ---p 2 ,  R - 
4 4 B 

5 .  ( - - - p V q )  3 , 4 ,  R \J 

6 i i - - p V q ) - - 4 :  5. 4. R 
7 -(( --p V 0 )  z q i  S , R -  

You will notice a column of working on  the right. This sho~vs the justificatioiz for each 
step by quoting i-he lixes and rules used. Before going any further, have a go yourself a t  
generating some well formed formulae, and include a justification column beside your 
assembly line. 

The rules enable us t o  decide whether or not  a formula is a wff. If it can be construc- 
ted from the rules it is a wff; if it can't. i t  is not  a wff. The best way t o  understand this 
is t o  work through some problems, checking your answers-and referring back t o  the rules 
if you make a mistake. 

Tlie following six symbols of PL are known as operators: -, &. V ,  3. = . g. The 
reason for calling them this will be explained in the next section. You should be able t o  
see from the formation rules of PL that every wff with more than one symbol in it will 
have at  least one operator. Now the last operator added in building up a wff is called the 
!?lain operator of the wff. We indicate the main operator by placing an arrow underneath 
e.g.. 

Quite often, different assembly linesmay be used t o  construct the same wff. For instance, 
with the assembly line example ai~ove. step 3 could have been done before step 2. For 
any given wff !lowever. all assembly lines will have the same operator added for the last 



step. Thus the formation rules of PL ensure that each wff with more than one symbol 
has a unique main operator. Hence, regardless of how we build up  - (( - - p  V q) - q)  
its main operator will be its left-most - . 

NOTES 

If we ever need more small letters in PL than just p, q, r, s, t we may use subscripts with these e.g.. 
P I ,  P 2 ,  . . . I  4 1 ,  etc. 

' Wff" map also be pronounced "wif" but  we have been informed by Snoopy that "woof" is preferable. 
For the rest of Part One. "wfi" will be taken to mean "wff of PL". 

EXERCISE 2.2 

1. Which of the following are wffs (of PL)? 

(a) P - 
(b) (PI  
(c) ( P  & 4 )  
(dl  P & q  
iel P & 4 )  
( f )  --- (P  & P I  

(8) ( P  - -PI  
(h) ( p q )  
(i) P V ( 4  V TI 
i j> (P V ( 4  V 
(k) ( p  V ( - g  V v j j  
(1) - IP  $4) 
(m) (p 3 2 4) 
In) 31: 
(o) {p (?? E ( t  s)>) 

(p) ((((p a, (q '\I (7 3 (f -))>) 

2. For each of the following assembly lines fill in the correct justification lor  each step, 
and indicate the main operator in the final v ~ f f .  

iai 1.  P ih3 1. P 
2. - p  2. 4  
3. ( P  & - P I  3. - p  
4 .  - - ( P & - - P )  4.  - q  

5 .  ( - p & - 4 )  

3. Generate the following wffs from the formation rules, showing the justification for 
each step. 



(b) (P & (q V r 1 1 
(c) ( -P 3 ( q  - -4)  ) 
(dl  ( (P $ q )  & (4  V 7) 
(e) ( -(p - - q )  3 --( - p  E q) ) 

*4 Although our language PL has been constructed with a definite interpretation in mind, 
the syntax of a language may be discussed whether or not the symbols are later t o  be 
given any meaning. In this question and the next we have invented a couple of 
languages with n o  interpretation In mind. 

A new language DL is defined as follows: 
Primitive Symbols: q * 1 
Formation Rules: 1 is a wff (B) 

If a i s  a wff, so i s a m  (RO)  
If a is a wff, so is an ( 
If a and p are wffs, so is *a*p (R*) 
If a is a wff, i t  is so because of the above rules. (T) 

(a) State whether or note the following are wffs of D L .  (Answer Yes or No) 

(i) l m A  
(ii) *&*_LOO 

(iii) *IAAA*~ADo 

(b) Generate the following wff from the formation rules of DL quoting the line and 
rule used for each step. 

* * l * l n n t l o o  

"5 A new language TL is defined as follows: 
P~lmit ivz  Symbols: q I' 0 * 
F.;umaticn Rules: C is a l ~ f f  (B? 

If a is a wCf so is OaO iR0)  

If oc and /3 are wffs so is *I$ (R*) 
If a and /? are wffs so is af ?‘P (Rf) 
If a is a wff. it is so because 
of the above rules. (TI 

(a) Which of the following are wffs of TL? (Answer Yes or No) 

(i) o t f  

(ii) *UOOO 

(iii) o*0001 ' f  

ib )  Generate the following wff from the formation rules of TL, quoting the lines and 
rules used for each step. 

* 0 0 C ~ f * ~ 0 ~ 0 [ 3  

2.3 SEMANTICS 

So far we have not interpreted the symbols of PL. We now give meaning t o  these 
symbols by providing definitions. To  facilitate understanding of the new concepts, a 
comparison will be made with familiar ideas from mathematics. 

In algebra the letter x is often used as a (numeric) variable. Consider for example the 
expression 



This equation is true no matter wliat number we substitute for x. For instance, putting 
3 for x we have 

3(3 + 1) = 32  + 3 

and putting 5 for x gives 

5(5 + 1) = s2 + 5. 

Note that while we are free to choose any value for x, the same value must be substituted 
for every occurrence of x in the expression. For example, the following equation (obvious- 
ly incorrect) would not count as an instance of the algebraic expression above. 

3 ( 5  + 1) = 9* + 4. 

Similarly, logic uses the small letter p (or q, r, s, t )  as a (propositiorzal) variable to  denote 
any proposition. For example the expression 

If p  then p  

is true no matter what proposition we substitute for p, e.g., 

If I am a man then I am a man. 
If logic is marvellous then logic is marvellous 

In keeping with the notion of a variable, when a substitution is made, each p in the 
expression must be replaced by the same proposition; thus 

If I am a man then logic is marvellous 

does no6 count as an instance of "If p then p". 99 should be noted that propositional 
variables range over complex propositions ton, e.g., 

if a_7i happy end you are happy then 1 am happy and You are ~ P P Y  - 

Definition. A propositionaa ~ ~ i r i a b k  (PV) stands for asx) proposition, and is represented 
by a small letter in the range p, g, r ,  s, t. In substitution, every occurrence 
of the BV in the expression should be replaced by the same proposition. 

Having dealt with the first item on our list of primitive symbois we now move on to 
the next: parentheses. In this case it will be t o  our advantage to incorporate the pragmatic 
aspect. In logic, parentheses ( , ) have the same meaning as in mathematics: an expression 
in parentheses is to be evaluated before ~clprating on it from the outside. This convention 
allows us to  discriminate between algebraic formulae like 

and logical expressions like 

p  and ( q  or r) 
( p  and q )  or r 

Here (1) asserts that p is true and that at least one of q or r is true: (2) asserts that either 
p and q are both true or r is true. Clearly, the expression 

p and q or r ( 3 )  

is ambiguous: it might be read as either (1) or (2). Let us consider an example in English. 

"Earth is a star and Venus is a star or Sirius is a star." (4) 



As lt stands. t h ~ s  sentence is a n ~ b ~ g ~ l o u s .  It could mean 

(Earth is a star and Venus is a star) or Sirius is a star. ( 5 )  

;~.I~icli js true. since Sirius i~ :I star: (11- i t  ~ ( ~ t ~ l d  IIJCIII 

Earth is a star anci (Venus i s  a star or Sirius is a star).  ( 6 )  

v:liicii is False. since Earth is nor a star. In ivritten English. a ci~~nnza is often used ir i  piace 
c i a  paren:liesis, Fcir irista:i,ce ( ? ?  c'o::id he c:ipressed as 

"Earth is a star and Venus is a star. or Sirius is a star." ( 7 )  

In spoken Englisll a pause does the job of a comma. Englisl~ sentences n1ay also be disam- 
biguated by rephrasing, but sometimes it is extremely difficult t o  prevent ambiguities 
from creeping in. One of the nice things about PL is that its rules for adding parentheses 
ensure that any wff may be read in only one way i.e. the fornzation rules ofPL prevent 
such ambiguities from occurring. 

I t  should be realised however that there are often cases where parentheses ai-e redun- 
dant. e.g., 

( q  or r )  
p and ( q  and r) 

In (8) and (9) the meaning would be unaltered by the deletion of the brackets. Although 
our formation rules insisted on extra parentheses whenever another propositional variable 
was added t o  a formula. we shall, for the sake of  simplicity in reading and writing formu- 
lae. allow this rule t o  be modified by the follo\ving agreement. 

Practical Concession: Parentheses may I-re dropped where no a~nbiguity results 

One immediate consequence of  this is that outer-most paven!izescs nzqv be or7zittedfiom 
ally finnulo. Note rhat while parentheses may be onlitted aro~rild "q or r" i n  ('81, they 
iliust be inserted before incorporating this into an expression iike ( 1 ) ;  oiilerwise i ve  will 
end up wit11 sonrething like ( 3 )  again. 

Bn practlce we wrll also allow. for the bake !if clarity any forin of brackets to he 
used. e g . [ 3 ,  rather than just parentheses (I e round brackets). Thus the formula 

- ( ( p  3 q )  3 (r 3 bq 3 ~ 1 ) )  
may be replaced by the easier t o  read equivalent 

- - I i p 3 q ) 3 ( ~ 2 ( q 3 r ) ) l  

Wilere llelpt'ul. different c,olours may be used for cliffel-ent pairs of r~a tch ing  brackets. For 
Instance. the structure of the above formula would he  ;):ore obvious if we used a different 
iolour for rhe parentheses in ( q  3 r).  

111 addition. we will occ;~sionally n u k e  use of a dot  i iotat ioi l .  In tliis book our main 
uai .  oi' dots will be t o  liigliligi~~ ! l~e  main operator i l l  certain itliporrant fo'orrnrllae. In the 
cxaii~ple below, the original formula is made more readable by first deleting tile outer- 
most pare~itlleses and then introducing dots. 

T!ie expi-asions to  ~vhich an operator is added in an assenlhiy line are known as the 
ol~cmiztls oi' that operator. In the above example ille operands of E ai-e ((13 & q)  3 r )  
anti (i? 3 ( q  3 r ) ) .  Nolice above that as dots were placed ~rround an opel-ator. the outer 



parentheses of each of its operands were removed 

In some cases it will be handy to use dots to highlight the main operator of sub-firmu- 
lae. For example, formula ( I  0) may be replaced by 

- [p 3 4  .3 .  r 3  (q >r ) ]  

By use of multiple dots, the dot notation n ~ a y  be extended to completely eliminate the 
need for brackets. There are several dot notations extant, and the most popular of these 
are discussed in Chapter 9. 

Practical Concession: Any forn: of brackets (including dots) may be used instead of 
parentheses. 

Let us now consider the six remaining symbols in our list of primitives (viz. --, &, V ,  
3, 5 $ ). As you know, these are termed operators. More exactly, they are called propo- 
sitional operators. You are already familiar with several algebraic operators, e.g., +, - 
(unary); +, -, x, + (binary). The unary minus "-" operates on a single number (e.g., 
5) to form another number (-5), the binary multiply "xx operates on two numbers 
(e.g.. 2, 3) to  form another number ( 2 x 3, i.e. 5). We might refer to these algebraic 
operators as "number forming operators on numbers"; in like fashion, our logical 
operators may be described as "proposition forming operators on propositions". -- is 
different from the other propositional operators in being monadic: it operates on a 
single proposition (e.g., p )  to form another proposition ( - p ) ,  cf. unary +, . The others 
(e.g., &) are dyadic, operating on m o  propositions (e.g., p,  q) to  form a single proposition 
(P c5r q), cf. binary +, -; x, +. 

Before learning any- more about our operators it wi!i be necessary to make a brief 
detour througl some related cancep~s. Iri chaptec I cje saw that a preposition must b:, 
+-,.- ~ i u c  or false (bi;? n:l bdt:~) bnocje! yjzy af sayi-g this is that a nroiositicr: ;r_usl haxis 

- .  

a miti: ;yak:? sf 1 Q? Q (but rag: 5st;;). 

Defkmrhi.cyn: There zre r&c n.u;h Yajues. TRUE a$enoeed by 1 j 
FALSE (denoted by 0). 

We are now in a position Is give meaning to the s h  operators in PI,. The opemtors are 
d e m e d  by their Ornth fables. W'lfia'i are truth tables? Well, the best way to answer this 
question is to show you some. Here is the truth table for -. 

- - p  has the opposite truth value t o p  

0 

As we know, 1 and 0 stand for "true" and "false" respectively. You will notice that this 
table has two rfiws of truth values (rows are aiways horizontal) and two columns of truth 
values (columns are always vertical). The first row of values says that given any proposi- 
tion p which is true, then - - p  will be false. The second row says that when p is false, 
- - p  is true. In other words, --p has the opposite truth value t o p .  Strictly, it is incorrect 
to speak of PVs as being true or false. However we will often speak of truth values being 
assigned to PVs to indicate generally the result of substituting propositions for those PVs. 

The section of the table below the heading line and to the left of the double vertical 
line is called the matrix of the truth table: it lists all the pennutations of truth values for 
the propositional variables in the .fornula. When only one PV is involved there are only 
the two cases: 



When two PV's are involved however, there are four permutations: 

This matrix nlay be used t o  define all the dyadic operators. 

p & q is true iff both p and q are true 

0 0 

p V q is true iff a t  least one of p, q are true 

p 3 4 is false iff p is true and q is false 

p -q is true iff p and q have the same truth 
values 

p $ q is true iff p and q have opposite truth 
values 

Though we have used the propositional variables p, q in defining the operators, this has 
been for convenience rather than necessity. Often we represent propositions by wffs 
which are more complicated than simple PVs, in order t o  show the relevant structure 
of the propositions (see 52.4). So 3. for instance, may be defined as follows, where 
a and 0 are any two wffs: 

oc 3 /3 is false iff a: is true and is false 



An alternative way to picture the definition of 3 is: 

For simplicity, "1 3 I = I "  may be read "true hooks true. is true"; but this reading 
should be understood as merely an abbreviation for "(any proposition consisting 00 
a true proposition hooking a true proposition, is itself a true proposition". A similar 
comment applies to the other three lines of the definition. 

An even shorter way of writing the definition for 3 is to use a Cayley table as shown 
below. 

In Cayley tables, the left operand is represented underneath the operator and the right 
operand is represented on the right of the operator. The values in the body of the table 
show the results of the operation being carried out between the operands on that parti- 
cular row and column. 

Similarly, the other operators may be defined without using the symbols p and q.  

While you will need to learn the definitions of the operators in PI,, it will be easier 
t o  remember them if you can associate the operators with the English expressions they 
are used to translate. The next section oil pragmatics will cover this. So do not bother 
to memorize the definitions by rote at this poin:r. 
NOTES 
: x j m  .2 . j?;iif_ ii.c!'ded , 31:~ -r;on;d;c :'he 6:1:.nrc s.r;eratn;-s 1-: PL. These n ~ e  rnc:e [hail :idequate Lol 
l~;gs? apy?llia:io~s sf prcp3s;;1~1~ai logii  :?i'rai!~;~r !-;ore ~io",,;rZort~! zpet.ar:,c? c ~ . i : v - j ?  ts;!:d ce 
<!filtP(,i. -'.'.C i y<-,.-, 0 ," ;;->* -. el~-r--.i. 

~ L ; \ , A .  L,A- o:jL- ,JxaJ -,)> - u ~ ~ , . , - .  :6 djr?3i(: ~ : j ~ r a t o z - ,  256 tli26ic <>cer;:td: 
and in genera? i (2'r) 6-adic operatois. For a i1xve:f cC pr3positionai operzioi.~ see ?I:.. 9. 

- . ." 
W n i i a  iror?; the point o; view oi- syniax, the syi7k501s p, 4,  i.. 5, . ( . ), -, &; V, 3, E, a x  p i -  
mitive, fiolr: tht: point of view of semal~rics thay are 'o lo-;_eez prlnitiue cinc-, h e y  :?we be-- 

defined in Terms of other things. I t  is possible to divide semantics up into for~nai semaniics (~vhere  
for insrance the operators would be defined in terms of the values i and 0 but no interpretation wouic! 
be given to  I and 0 )  and in formJ semantics (where for instance 1 and 0 are interpreted as the values 
t m e  and false). The dividing lines between synlax, semantics and pragmatics are sometimes drawn 
differently by different logicians. 

In metathecry a distinction is drawn between the use and the mention of symbols. For instance, the 
word "Australia" is used in the first sentence below but  mentioned in the second. 

"Australia has fourteen million people." 
" 'Australia' has nine letters." 

While quotes are often used in written English to disambiguate between use and mention, we will 
frequently expect the reader to determine, from the context, in which of these two ways the symbols 
of PL are being employed. For instance, in defining the propositional operators, the symbols p and q 
were being used to stand for any proposition rather than just being mentioned as symbols. 
The  semantics we have adopted are classical 2-valued semantics. It should be noted that non-classical 
semantics exist which include more than two values (e.g., 0,  1, 2) or combine valuer (eg . ,  (0) .  (1  }, 
Co. 1 1,. 
EXERCISE 2.3 

1. Render each of the following formulae more readable by deleting outermost parenthe- 
ses and making use of alternative brackets or dots. 



(a) ((P 3 4)  (v V q)) 
(b) ((P & (4 V PI) 3 ( ( s  & 4)  3 PI) 
(c) ((P 3 4) 3 (((4 3 r) & (r  3 s)) 3 (P 3 3))) 

2. Eliminate any do t i  and alternative brackets from the following formulae in favour of 
parentheses, and insert outermost parentheses. 

(a) p & q  . - . q & p  
(b) ( P > ~ ) & P . > .  
(c) - [P & (4 V r )  . $ .  (P & 4) V (P & r ) l  

3. Use the definitions of the propositional operators t o  complete the truth values of 
-p, -4, q 3 p,  and p 3 p in the table below. 

T o  calculate the values for each row, look across t o  the values of p and q in that row 
of  the matrix, and then use the operator definitions. As a hint,  the second row is filled 
in already; the values of the four formulae were obtained as follows. On row 2, p is 
1 and q is 0. So the value of --p is -1 which = 0. The value of -q becomes -tl which 
= 1. Next, q 3 p = 0 3 i which = 1. Finally, p 3 p = 1 3 1 which = 1. 

4. Construct Cayley tables for &, V, -and f 

5.  The dyadic operator C is defined as follows: i? C q is false iff p is faise and q is truc. 
Set out a truth tabular definitiozl for C, 

En algebra, many general results about numbers rnap be stated in terms oi'numeric 
variables e.g., x + j /  =jt + x. In arithmetic however, when dealing with particular numbers 
we find it convenient t o  introduce numerais which constantly designate the same value 
e.g., 1 + 2 = 2 + I .  Likewise in formal logic, many general results about propositions may 
be stated in terms of propositional variables e.g.: p 3 p is seen t o  be true for all instances 
of p. 

But when translating propositions and arguments given in English we are dealing with 
particular propositions, and it is convenient t o  denote these by propositional constants. 
These were introduced informally in 5 1.7, but it is now lime t o  lay down an exact 
definition. 

Def i~ t ion :  A proposi&ionab constant is a capital letter used in translation to stand for a 
particular proposition; as an aid to memory we usually pick the first letter 



of an important word in the sentence, e.g., 

S = Selena is beautiful 

When used for translation purposes during a particular example, a propositional constant 
will designate the same proposition throughout. In another example however, the same 
constant may be used t o  designate another particular proposition. For  instance, in one 
context we might stipulate 

A = Apples are delicious 

and in quite a different context we might stipulate 

A = The student is finally awake. 

Propositional constants may thus be thought of as "contextual constants" (i.e. they are 
constant within a given context). 

Although we could handle the PC analysis of particular propositions and arguments by 
regarding them as instances of various forms. it certainly makes life easier if we include 
propositional constants as part of our propositional language. This we now do. 

Practical Concession: Propositional constants A, B, &: etc will be allowed t o  feature in 
the formulae of PE. A propositional constant standing alone will 
be treated as a wff. 

At this stage it is also convenient t o  draw a distinction between simple (or atomic) 
propositions and compound (or molecular) propositions. Roughly speaking, a proposition 
is atomic if it contains tzo oL4er proposition; otherwise it is compound. Here are some 
atomic propositions: 

Logic is easy. 
T 

( 4 )  
i h e  cat sat on the mar. ( 21 

I f  I persevere 4 wii? understand this. 
m 

'i oday is so"tMonday. 
,.- 
I ~ d a y  is Monday or today is Tuesday. 
-r 1 odey is either Monday c r  Tiuesday. 

Proposition ( 3 )  contains two atomic propositions viz. -7 persevere" and ''I will under- 
stand this". Both (4) and (5) contain the atomic proposition "'Today is Monday", and 
(5) also contains the proposition ""Today is Tuesday". Although expressed by different 
sentences, propositions (5) and (6) are identical and hence are treated in the same way. 

You will notice that compound propositions can be expressed by beginning with 
sentences expressing atomic propositions and adding logical words like "if ' .  "not". 
"or" etc. However it is possible t o  express a compound proposition by a sentence which 
does not contain any of these logical words. Consider the following four sentences. 

"Berkeley was Irish." ( 7 )  
"Berkeley was a philosopher." (8 )  
"Berkeley was Irish and Berkeley was a philosopher." (9) 
"Berkeley was an Irish philosopher." (10) 

Clearly, sentence (10) expresses the same proposition as sentence (9). and proposition 
(9) is a conjunction of (7) and (8). So we may regard (10) as a compound proposition 
which contains (7) and (8). 

Constructions like (10) need t o  be treated with care. As usually construed, sentence 
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(1 1) would not express a conjunction of propositions (12) and (13). 

"Timothy is a big liar." (11) 
Timothy is big. ( 1  2 )  
Timothy is a liar. (1 3 )  

For instance. Timotlly might lie a lot (making (1 1) true) even though he is small (making 
( I  2) false. 

It should now be apparent that negations, conjunctions, disjunctions, conditionals and 
biconditionals are all cases of compound propositions. While a propositional constant 
may be used to translate the whole of a compound proposition, we usually wish to  trans- 
late such propositions in such a way as to show their structure in terms of the atomic 
components. We now investigate how this is done with the aid of our propositional 
operators. 

Let us begin wlth negation. Conslder the following (hopefdly false) proposition: 

There wrll be a third world war before 2000 A.D. (14) 

From Chapter 1 we know that the negatio~l of this is: 

There will not be a third world war before 2000 A D .  

If we represent (14) by the propositional constant "W", then (15) may be conveniently 
abbreviated as "'v?ot W". We may now construct a truth table for the negation of W as 
shown. 

W not 61' 
- 

FI;e &-sf ;ow cf r h i s  :abie relates I<; the case ( ~ Q I . .  s;yic:l-., "12 :-: ar .;hose E O S S ~ ~ ~  

x7L2;", j c  t r l i e :  i,- :r,*,.i s ~ , , ~ :  l> j f3 t . : c '  
.,- k'/ ,.Ji?' >p..:-.-- - 

. . .a ._, .. I,~s~;J ,)e c25i~. TrAe ~ e c a p i  
7 3 ~ 2 ~ 1  (;gnS:d3fS !fie eas- xui;ele :4.'!: ;-- , - ;rrAv ~ ~ . , h  wCf13 ;:Q; ;L: >,ib: he to..-.  

-(. ucGsn't ,A p- really matr-,1 wi?,ai gart icui~r proposition we ciiaosc. The negation truth 
tabif: wfil always fall inlo iiie foilowing pattern: 

0 / I  1 

Does this remind you of one of our propositional operators? It should! This is precisely 
the way --was defined. 

So -- corresponds precisely to negation. We ylzajl use " - " t o  translate 'hoot or, more 
strictly, "it is not the case that". Thus (15) may be translated as " - WW". 

Now let us turn to conjunction. You will remember from 5 1.4 that proposition (18) 
is a conjunction of (16) and (1 7). 

Jane studies maths. 
Jane studies logic. 
Jane studies maths and logic. 

If we denote proposition (16) by " M ' a n d  (17) by "L" then (18) may be written as ''A4 
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M or L will be true iff at least one o f M  and L are true. Provided "or" is read in the sense 
of inclusive disjunction, we may write a general truth table for inclusive disjunction as 
follows: 

Which operator does this remind you of? You're right again! This is precisely the way we 
defined V. 

So V corresponds to inclusive disjunction. We may use "V" to translate the inclusive "or" 
(or any equivalent expression). Thus (19) may be translated as ''M V En. Another phrase 
sometimes used to express inclusive disjunction is "at Least one o f  '. 

Now consider the following exclusive disjunction. 

Sue studies maths or logic, but not both. (21) 

If we adopt the following dictionary 

I@ = Sue studies mafhs 
L = Sue studies logic -;. *'..'..A ., ;illr u clizrl i-i 5 1.4 indicetes the f ~ i i o ~ r ~ . n g  trsth -isb]e 

M or % but not both will be true iff exactly one of M and L is true. The general truth 
table for exclusive disjunction may be written thus: 

7 1 ; 11 p or q buinot both 

Which operator does this bring to mind? As the table below shows, this is precisely the 
way we defined f . 

So $ cowesponds to exclusive disjunction. We may use " $ " t o  translate " ... or ... but 
not both" (or any equivalent expression). Thus (21) may be translated as "M 8 L". 
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Other phrases sometimes used to express exclusive disjunction include "or" (exclusive), 
"exactly one of" and "has the opposite truth value to". 

As mentioned in 5 1.4. it is not always clear which type of disjunction (inclusive or 
exclusive) the English "or" is being used to express. This uncertainty is indicated by the 
" 1 or 0" in row one of the following table. 

Notice that whether p or q isinclusive or exclusive, whenever itsvalue is true so is the value 
of p V q. We express this result by saying that p or q implies p V q ,  or more briefly as 
"or implies V". The possibility that "or" may be used inclusively means that "or implies 
jk " will NOT be a general truth. 

The above table also reveals that whether p or q is inclusive or exclusive, whenever p 
jk q is true so is p or q. That is, p $ q implies p or q.  In brief. " $ implies or". It is NOT 
generally true however that "V implies or" (Wly?). 

Recall from § 1.4 the standard ways of negating conjunctions and disjunctions. To 
negate the conjunction "Sue studies both maths and logic" we may say 

It's not the case that Sue siudies both rnaths and logic. ( 2 2 )  

or equivalently, 

Sue doesn't study rnaihs or she doesn't ststdy logic. ( 2 3 )  
'7- tfiese may be translated as fol!ows. 

-- jM $ L) 
-,,%I V -i 

To negate the inclusive disjunction '%ue studies either maths or iogic" we could say 

It's not the case that Sue s tud ies  e i ther  maths or logic (241 

or equivalently, 

Sue studies neither maths nor logic. 

Both (24) and (25) may be translated as 

- (M V L )  

Another way of saying this is 

Sue doesn't study maths and she doesn't study logic. 

This may be translated as 

- -M&--L  

In general. a conjunction p & q may be negated by - ( p  & q)  or by - p  V --q. A dis- 
junction p V q may be negated by -(g V q) or by -p & --q. 

You have now seen how four of our six PL operators may be used in translation. A 
more detailed discussion on this will be given in 82.6. Before investigating the other two 
operators, you should work through the following exercise. Remember that -- corves- 



47 Section 2.4 

ponds to negation, & to conjunction, V to inclusive disjunction and $ to exclusive 
disjunction. As a general rule, translate "or" by "V " instead of " $ " unless you are 
certain the exclusive sense is intended. In Ch. 7 t k s  simple rule will be replaced by a more 
complex but more correct approach. 

Note also that &, V and f are commutative i.e. given any propositions p, q we may 
treat both expressions in the following three pairs as logically equivalent: p & q, q & p; 

p V q , q  V P ;  
P $494 $ P  

That this is so may be seen from the truth table definitions or by realizing that "p and q" 
means the same as "q and p" when "and" is used purely conjunctively, etc. S o  if your 
translation differs from the solution in the back of the book only in the order of the two 
wffs flanking &, V or $,  you may count your answer as correct. 

NOTES 

Our treatment of logical connectives as operators on propositions rather than sentences enables (10) 
to be regarded quite naturally as a conjunction of (7) and (8). Strictly speaking, conjunction is a 
relative matter: conjunctions are always conjunctions of certain propositions. Almost any proposition 
may be regarded as containing two or more assertions. For instance we might regard the proposition 
expressed by ' My daughter Selena is sweet" as asserting both that "Selena is my daughter" and 
"Selena is sweet", and hence treat this proposition as a conjunction of these two assertions. If however 
we were not interested in separating out  these individual assertions, we would tend to  regard this 
proposition as atomic rather than con~pound.  Again, if we are focussing our attention on the concept 
of illegality, we might regard the proposition "This action is illegal" as atomic; however if we intended 
to  do something with the concept of legality, we would normally use the sentence "This action is no t  
legal" and regard this as expressing a negation, and hence a compound proposition. Thus to  some 
extent at least, the demarcation between atomic and compound propositions is a pragmatic one. 
This wilE preser?t no pxoblerns in practice if we aiways specify our propositional dictionary. 

We have introduced the term "possible ixl~rld" briefly and informally, but  will make further use of it.  
F3r a thorough mci excelienr Trearrnent of this no t lo i~  ccaswlt Bradley and Swartz's Possible Worlds. 

In Lati3 a distinction wz!: ntade bettveen tile rwo senses of ""cr". "xl ei vuel ..." meant "'either ... -_ 3 1  ,, ... in ';nz inclxsive sense; "mi i  ... ati! ... ' mean! '~either ... 3: ... bui n ~ t  both". Our wedge symbol 
\I is simply the first letter of ''ve1'" ;it Is a consonantal u ,  often written nowadays as a v, but pro- 
nour!ced as a w:  note that in keeping wirh its origin the wedge should aiways be written sans serif). 

it's important to realize that p V q does nor imply that p & q is possible. p V q just says that at least 
one a f p  and q is true. It is thus part of the meaning of g $ q. The relation between the two types of 
disjunction is best demonstrated by the fact that p $ q is equivalent to  (&, V q )  & "@ & q). It should 
be clear that p q implies p V q. 

We have introduced the notion of implication between English and PL. This will be spelled out  in 
greater detail later, particularly in 52.6  and Ch. 7. Our development in this area draws heavily from 
the pioneering work of Phillip Staines. 

EXERCISE 2.4A 

[Question 2 asks you t o  translate from PL t o  English. Although PL is unambiguous, 
we have already seen that English can be ambiguous. I t  is important t o  be able t o  
express precisely what we want t o  say. Question 1 is designed t o  help you in this 
regard, and t o  develop your sensitivity towards "scope ambiguity" of English words 
like "not" (this arises when it is unclear just how much of the rest of the sentence is 
modified by (i.e. in the scope of) the English word or phrase). Further examples of 
scope ambiguity will be met in  Quantification Theory.] 



For each of the following sentences, list those trees (from 1 - 4 above) for which the 
proposition expressed would be true. If you feel the sentence is ambiguous, state the 
different meanings. 

(a) The tree is tall and leafy. 
(b) The tree is not  tall and not  leafy. 
(c) The tree is tall and not leafy. 
(d) The tree is leafy and not  tall. 
(e) The  tree is tall or leafy. 
(f)  The tree is not tall or not  leafy. 
(g) The tree is tall or not  leafy. 
(h) The tree is leafy or  not  tall. 
(i) The tree is not  tall and leafy. 
(j) The tree is not  both tall and leafy. 
(k) The tree is both not  tall and leafy. 
(1) The tree is not tall o r  leafy. 
(m) The tree is either not tall o r  leafy. 
(n) The tree is not either tall o r  leafy. 
10) The tree is neither tall nor leafy. 
( p )  Both of these trees are leafy. 
(q) It's no t  the case that both of these trees are leafy 
(r) Both of these trees are not leafy 

2. Use the dictionary supplied to translate the following formulae into English. 

T = The tree is tall 
L = The tree is leafy 
B = The tree is beautiful 

(a> T  
(b) --T 
(c) L  & B  
(d) T V L  
(e l  T & L  
(f) ( L  & B )  & -- T 
(g) - T &  -1, 
(h) --(T & L )  
(i) - ( T V L ) & B  

3. Use the dictionary supplied to :ranslate the following sentences into PL. 

S = Linda is a student 
P = Linda is pretty 
G = Linda is a girl 
T = Tom is a student 
B = Tom is a boy 



Linda is a pretty girl. 
Tom is not a student. 
Either Linda is a girl or Tom is a boy. 
It's not  true that Tom is not  a boy. 
Tom is a boy student and Linda is a girl. 
Both Linda and Tom are students. 
Neither Linda nor Tom are students. 
It's not the case that both Linda and Tom are students. 
Either Linda is not a student or Tom is not  a student. 
Of Torn and Linda, just one is a student. 

Propositional Calculus is also known as "Truth Functional Logic" since the t ruth value 
of any proposition expressed in PL is a function of the truth values of its atomic compo- 
nents. That is, for any particular assignment of truth values t o  the atomic components 
there is a unique truth value for the whole proposition: this is evident from the truth- 
tabular definitions of the PL operators. For  example, given any proposition p which = 0 
and any proposition q which = 1, then p & q must have the value 0. 

Now just because propositional operators in PL have been deliberately defined t o  be 
truth functional, this does not mean that propositional operators expressed in a natural 
language like English have t o  be truth functional. We have already hinted that the opera- 
tor "and" has non-conjunctive uses, and noted that "or" has at least two distinct roles 
(one inclusive, another exclusive). So as we now turn t o  investigate the English conditional 
operator "if ... then ... " we should not  be unduly surprised if we find that it fails to  be 
truth-functional. 

Propositions of the form "if p then y" often crcp up in arguments. so it is important 
t o  obtain a suitable translation for this expression. tinfortunateiy the Endish phrase 
";f 
il ... then ... " is so ambiguous iruth-fuacticnally that no precision translation is possible. 

The foliowing cxzmples should makc: this clear, 

p q If p then q 
1. I f 5  > 3 t k e n 5  > 2  1 1  I 
2. IC 5 > 3 then Einstein was a scientist. 1 1  0 
3. If  5 > 3 then 5 < 2. 1 0  0 
4. If 5 < 2 then 5 < 6. 0 1 1 
5 .  If 5 < 2 then 5 > 2. 0 1 0 
6. If 5 < 2 then 5 < 3. 0 0 1 
7. If 5 < 2 then kangaroos drive cars. 0 0 0 

(You may feel uneasy about our "natural language evaluation" of rows 2, 5 or 7. No 
matter: if you disagree, this merely demonstrates the ambiguity of the expression in 
another way .) 

We may summarise these cases in a t ruth table: 

Quite clearly, the Englidl phrase "if ... then ... " is NOT truth functional. For example, 
given that p = 0 and that q = 1,  we cannot say that If p then q must have the value 1,  
or that it must have the value 0: it  could be either, depending on the particular propo- 



sitions that we substitute for p and q .  Since all PL operators have been defined to be 
truth functional. there is no single PI. operatol- which corresponds precisely to  "if ... 
then ... ". 

tPlo\vever. because of the prominent role of "if ... tile11 ... " in logical reasoning we 
need t o  find a: least a good approximation for i t .  Fortunately, one of our PL operators 
will prove satisfactory for most of our purposes. It is 3. and we place its erutli table 
beside that of  if ... then ... " for comparison. 

Given that we want a truth-functionally unambigv.ous approximation for If p then q ,  then 
p 3 q is our best available. We can demonstrate this by means of the above compzrison 
table. The first thing to note is that p 3 q agrees with I j 'p  then q on tlie second row. This 
is cr-ilcial: i: p is True and q is false it  is always a mistake t o  assert that if p is true then so 
is q .  For example, the  following proposition is quite definitely false: 

If cats are animals then cats are plants. (2'71 

I t  is also clear from the table that whenever i f p  rlzizen q is true so is p 1 q ( collsider 
rows I ,  3, and 4,). 'We ?nay express this fact by saying that if . . then. . . implies 3 
Because of this implication there are important logical features of 1'6 . . .fheiz. . . that are 
possessed by 2 . -xs ii.5 will see late:, tile [hi-ee inosi important valid argument--forms 

-~ ., 
a -' 1;. 3 C  2*nd Ch kc- k .-.-- [-i?~oii7!n& -; . . ;:3ei?. , , ' &  I '.,- pacagr:!ie:! av ., -,;PI' .-A& ' ~ ~ , ~ g u ~ ~ e t ~ ~ t - ~ ~ ~ ~ ; - ~ : : .  - 

; f i < ~ ~ ) ~ b !  +.!I?: ;? 

. . .  Lo~,;;rans so,??eiimes refel ta ';he > ci;e;ii:io1: '"iyldleriai ilnpiication"'. n u s  ',.t > 
." ' . , 

q is sometimes reaci as ""1 ~i;iete;inlJ~~ impiies q". This is mcitivated by the ]<nowledge 
that i P  p 3 q is m e  and ;: is ?rue then as a matter of fact q will have t o  be true too. 
Bowever the connection between p and q which is expressed in Englisil by "If p then 
y" is much stronger than mere li-rateria! implication. This point will be talcen up  in 52.6. 
but we note here two important differences between 3 and if ... then ... : 

If p 1s false then p 3 q is true: a false proposition niaterially impiies any proposition 
(this follows from rows 3 and 4 of the table for 3 e.g.. 

The Earth has two moons materially implies that 
the Earth has ten moons. 

If q is true then p 3 q is true: a true propositior~ is materially implied by any proposi- 
tion (this follows from rows I and 3) e.g., 

Today is Friday materially implies that the Earth has one moon (29) 



These two facts about 3 are examples of the so-called "paradoxes of material implica- 
tion". They appear paradoxical only if we blindly imagine that 3 captures precisely the 
meaning of "if ... then ... ". Despite these notorious failures of 3 to match exactly our 
intuitive sense of "if ... then ... ", we will often use it to translate conditionals into PL. 
The important thing to remember is that "if ... then ... implies 3". In Chapter 7 we will 
look again at this problem and indicate the general circumstances under which translation 
by 3 is justified. For the present however, we will assume that 3 may be used to translate 
if ... then ... into PL. 

We saw earlier that &, V and f are commutative. In Ex. 2.3 you established that 
p 3 q has a different truth table from q 3 p. So 3 is not commutative i.e. the order of the 
operands around the 3 does matter. In 5 1.5 we saw that i f p  then q is not equivalent to  
its converse If q then p .  So 3 correctly reflects the non-commutativity of conditionals. 
Because of this we often describe q 3 p as the converse of p 3 q. 

You will recall from 5 1.5 that the conditional If p then q may also be expressed as 
p onZy i f  q, and that its converse If q then p may also be expressed as p if q. Now look 
at the truth table below. 

Mere we have used a common matrix to  serve for four different formulae. The expression 
(p 3 y ) & (4 3 p), being a conjunction, will be true iff both of its conjuncts Qviz., p 3 q, 
q 3 p) are true; as can be seen from the columns for rhese conjuncts, 'ibis happens on 
TOWS 1 and 4 hu t  not on rows 2 and 3, Mence the .colui-fin foi. (y > q) &, jq > p) is as 
sho:,li?: but this i s  precisely tp,e same as the -,olun~n for ,- E q .  Therefnre p s q equi,ls- 

-. , lent l'c (p 3 $1 & (q 3 p). i hus '*,- L= q" may be used rc l:ansiate "If fp then q, and 1.f q 
then p". Usrng the alternative readings mentioned above this becomes "p only if q ,  and 
p i f qq"  or !nore neatly "p if and only if q". Hence "p  s q" may be used to translate '> 
ijyq y :  

So we now have a way of translating biconditionrals in PL. If we adopt the following 
dictionary 

E = The set is empty 
N= The set has no members 

then we will translate the biconditional 

The set is empty if and only if it has no members. 

by 

E Z N  

But how satisfactorily does F capture the sense of ijj? If you look at the truth table 
for -- you will see that p -- q will be true just whenp and q have the same truth value. 
So "p q" may also be read "p has the same truth value as q". Because of this, logicians 
sometimes refer to the r operation as "material equivalence". Thus "p - q" is some- 
times read as "p is materially equivalerzt to 4''. But equivalel~ce of truth value is a very 
weak form of equivalence. The sort of equivalence usually expressed by the phrase "if and 
only i f '  involves a much stronger connection between the operands. Any two true 



propositions will be materially equivalent e.g., 

Earth is inhabited is materially equivalent to 1 + 1 = 2. 

Moreover, any two false propositions are materially equivalent e.g., 

The Earth has two moons is materially equivalent to 
the Earth has ten moons. 

Clearly, it would not do to replace the connective "is materially equivalent to" in these 
cases with "iff '. 

These two examples are instances of the so-called "paradoxes ofmaterial equivalence". 
They are paradoxical only if we incorrectly assume that - captures precisely the meaning 
of "if and only if". However. just as we will mostly use 3 to translate if ... then ... , so 
we will mostly use r to translate iff. Unfortunately there is no neat relation of implica- 
tion between p iff q and p r q. Each case will have to be judged separately (see Ch. 7). 
Later in this book stronger forms of implication and equivalence will be discussed which 
will represent more closely certain strong conditionals and biconditionals. 

One further point about - is worth noting here. It should be obvious, either from 
truth tables or from reading G as a matching truth value operator, that the truth table 
for p q will agree exactly with that of q - p. So = is commutative. So of all our 
dyadic operators, only 3 is non-commutative. 

Well, we have now seen how all the basic types of propositions introduced in Chapter 
1 (viz. negations, conjunctions, inclusive disjunctions, exc!usive d-isjunctions, condition- 
als and biconditionals) may be translated ix PE by means of propositional operators 
(- , &, V, g ,  3 and FZ respectively). 

Having discu'liered basnc rrxnda'tion uses fcr ez ih  of our onerators, i i  \n/guld be help.F~:i 
to  pracrise these :;ses befarz cor;siderii.,g trickier cases in i-&e ne:ct section, "hjl';k i,iansla- 
, ~ Lron exercises, any zriswer iogicdiy equivaien-i to the provided answer be correct. 
Logical equivaience wd! be discussed in depth later) but we note here two ways in which 
formulae may be equivalent. 

Firstly, remember that all our dyadic operators except 3 are commutative. For exam- 
ple, the following formulae are all logically equivalent: 

(P 6% ql  V (7 = s) 
(4 & p )  v (s z 7) 
(s -- 7) V (4 & P I  

Secondly. remember that we are free to use different types of brackets and to drop 
brackets when no ambiguity results. Apart from deleting outermost brackets, further 
freedom with brackets follows from the fact that some of our dyadic operators are 
associative. Associativity will be dealt with in more detail later, but we note here that &, 

V, - $ are associative whereas 3 is not. Saying that & is associative means that in any 
wff where & is the only dyadic operator it doesn't matter which conjuncts we associate 
first. For instance, p & (q & r) is equivalent to ( p  & q )  & r .  Hence it is O.K. to write 
p & q & r since this is unambiguous. This corresponds to the fact that with English 
sentences of the form p and q and r it doesn't change the meaning if we place a comma 
after p or after q :  the sentence simply states that each of p, q, and r are true. 

Similarly p V q V r, p r q r r and p $ q f: r are acceptable, but p 3 q 3 r is 
illegal e.g., p 3 (q 3 r) is quite different in meaning from Cp 3 q) 3 r. Note in particular 



that brackets are always required when different dyadic operators are included in the 
same formula e.g., p & (q V r) is not equivalent to (p & q) V r. 

To assist you with the following exercise, a summary of the main translations discussed 
so far is now presented. Section 2.6 will consider additions to this list. 

" P  not p 
it's not the case that p  

~ & q  p a n d q  
both p and q 

P but q  

p V q  p  or q (inclusive) 
either p  or q 
p  or q or both 

p 3 q  if p  then q  

if P, q  
p only if q  

4 3 ~  ~ i f q  
only if p, q  

p - q p if and only if q  
if p  then q ,  and conversely 

p $ q  p or q  but not both 
exactly one of p and q 

Remember also that expressions of the Form Not both p and q may be translated as - (p & qj ,  and expressions of t he  form ATeE'ther p ZO? q may be translated as - (p \/ q)  or 
as --p B -q .  

> .' .~ " naving done a!i EhaI ^,heor;i yau ~xtiss h e  rnxir~-d,s!ji aifi~aitiflg some more qu.esriocs 
, " 

e::ei-ci$e your new logical muscies. Yoi? ~!iTi!l fir16 just the doctor ordered in the 
exercise below! 

NOTES 
The fact that "material impiicatior?" iacks the logical force usually associated with the term "implica- 
tion" has prompted some authors (e.g., Bradley and Swartz op. cit.) to recommend that this title be 
replaced by "material conditionality". Similarly i t  has been suggested that the term "material equiva- 
lence" be replaced by "material biconditionality". 'The older terms seem so entrenched in common 
logical usage however, that we have retained them, while warning against reading them too strongly. 

In mathematics a slarh is often used instead of - to denote "not" e.g., x # y means -(x = y). 
Likewise p & q  means - (p  q) .  

EXERCISE 2.4B 

1. Translate the following PL wffs into English using the dictionary provided. 



(a) F 
(b) --F 
(c) F & S 
(d) F V S 
(e) F 3 S  
(f) F r S 
(g) W $ F  

F = Today is Friday 
S = Tomorrow is Saturday 
W =  Today is Wednesday. 

2. Given that today is Friday, which of the propositions in Question 1 would be counted 
as true? 

3. Given that today is Monday, which of the propositions in Question 1 would be counted 
as true? 

4. Translate the following PL wffs into English using the dictionary provided. 

H = I am a human 
M = I a m  a m a n  
W = I am a woman 

(a) (M V W) 3 H 
(b) H -= (M V W) 
(c) -(M & W) 
(d) M 3 ( H & - W )  
(el H > ( M  $ W) 
(f)  - - H 3 - ( M V  W) 
(8 )  H 3 --(M & W) 

5. Translate the following sentences into PL using the dictionary supplied. 

I = Logic is interesting 
U = Logic is useful 
B = Logic is boring 
jvif = I'm a mcnltey 's uncle 
iii I- You're rn-ily nepheii,~ 

Logic is interesting. 
Logic is not boring. 
Logic is interesting or usefui. 
Logic is interesting and useful. 
Logic is interesting and useful but not boring. 
If logic is boring then I'm a monkey's uncle. 
I'm a monkey's uncle only if you're my nephew. 
Logic is interesting or boring but  not  both. 
I'm a monkey's uncle if and only if you're my nephew. 
Neither is logic boring nor are you my nephew. 
It's not true t o  say that logic is both usefui and boring. 

6. Translate the following sentences into PL using the dictionary supplied. 

E = The number is even 
0 = The number is odd 
P = The number is positive 
Z = The number is zero 
N = The number is negative 

(a) The number is not  even. 
(b) The number is either even or not  even. 
(c) The number is odd only if it's not  even 
( d )  The number is odd  if 1:'s not ever?. 



(e) The number is odd if and only if it's not  even. 
(f) If the number is negative then it's not  positive. 
(g) The number is not  both even and odd. 
(h) The number is neither positive nor negative. 
(i) If the number is zero then it's neither positive nor negative. 
(j) The number is positive or zero or  negative. 
(k) If the number is not zero then it's either positive or negative but not  both. 
(1) The number is not  positive if it is negative. 
(m) The number is even, non-zero, and positive. 
(n) If the rluinber is even rhen it is not odd,  and conversely. 
(0) If the number is either even or positive then it is not  both odd and negative. 
(p) The number is either even and positive, or odd and negative, but not both. 

"(q) Only if the number is non-zero and non-negative will it be positive. 

2.5 SENTENCES AND F O M S  IN PE 

Well formed formulae in PL may be conveniently divided into two main types: PL- 
sentences and PL-forms. For  the rest of Part One we will often refer to these simply as 
sentences and forms. 

Sentences contain a t  least one propositional constant, and n o  propositional variables. 
Here are some examples: '"A"; " -A  V B"; ''(14 & B) 3 C'. PE-forms on the other hand 
contain a t  least one propositional variable, and n o  propositional constants. Here are some 
examples: p ;  - p V q ;  /g & q) 3 r.  Given t!le dictionary of propositional constants, 

. ~ 

sen-tences will express definite proposii;ons. Sti-ictlj; speaking, forms never express propo- 
sitions. 

Gjven a compoii-,id i,?-sposiil;~!3, t!-:-i-rc :?;ill a l ~ , q y s  be more than oi?e s e n t e x e  in XL 
L.- ' 

" .  
cnajd be --.y;.ess i,- -'?a::i:: r3: in>iay.,i.: ;y~e ;c,l!cjaiing ~;;?[?~~l'iirj;l .  ,A2- > 

This is easy and yo1j'LI f o i cw  it. (1) 

I f  for some reason ive wanted to itreat this as a unit we could specify the following 
dicrionary 

T = This is easy and you'il follow it 

and translate (1) simply by the following sentence 
'"T" 
i 

However, if we wish t o  reveal the internal stnicture in which the atomic components 
reside we will choose a dictionary of atomic propositions: 

B = This is easy 
F = You'll follow it 

Proposition (1) may now be translated by the sentence 

'" E FF" 

We will call this sentence an explicit sentence of PL t o  indicate that all its propositional 
constants represent atornic propositions: it unfolds as much of the proposition's structure 
as is possible in PL. 

When logicians want to  establish general results about the logical structure of proposi- 
tions and arguments, not tying themselves down to particular propositions, they deal with 
forms rather than sentences. The sentence "'T has just one form: p. The sentence "E & 



F" also has the form p (as will any sentence). but in addition it has the for111 p & q .  in  
genera!. a senrence lzas (is an izstunce 00 a certain form iff' i t  can be generated f'~.oi~: tllat. 
form by replacing propositional variables in that form with sentences. where all occur- 
rences of the same variable must have similar replacements (i.e. the substitution must be 
unij'bum). 

For instance, "E & F" can be generated from p by replacing "p" with "E & F'. Also. 
"E & F' can be generated from p & q by replacing "p" with "E" and "q" ~ v i t h  "F'. 
Note that "E &r F' does i lot have p & p as one of its forms. since both occurrences of 
p must be replaced by the same sentence for it to  qualify as a f o r ~ n .  For instance the 
sentence "E & Fr' does have p &r p as one of its forms. 

Let's look at  another proposition. 

If  this is easy you'll follow it. and it 1s easy 

Its explicit sentence will be 

This has four forms : 

The first of these is obtained from the sentence by substituting variables for constanrs. 
introducing new variables in the alphabetic order p,  q, ... but  using :he same variables for 
the same consranis: this form provides the maximilm information or? the structure of the 
sentence and is ca!ied its expiici: j%rnr, Al"i~ou&~ senrences may have r?iany fo:.:~s. t he -  
w i l  have just CKE expiicii form. 

NOTES 
Unlike sorilz authors. we do not ailow proporitiollai consiants lo  feature in P i - forn~s .  Besidcc 
sentences and forms. a t h ~ r d  class of PL-wffs does exist viz. PL-hybrids: these contain at  least one 
variable and at least one constant e.g., A > p .  Discussion of forms is simplified b!. excluding hybrids. 
We will have no  use for PL-hybrids in this text. 

Quotes will ofren be used to distinguish reference to sentences (e.g., "E & F") from reference to 
proporitions (e.g.. E & F). Quotes will usually be avoided with propositional form<. 

The explicit fori i~ of a sentence is sometimes called its "specific form" or its "ske1,:ton". 

In speaking as if a proposition has a uniq~le explicit sentence we have assum,:c! there is a unique 
ans~vei- to the question as to what the proposition's atomic proposition\ ars s e e  Note7 to s2 .4) .  
Sxondl! 1%; ildrt. ignorcd ~riviallq different sentences arising from different cht)icet of letter\ for thc 
propositional constants e.g., (21 could be symbolized by "A & B" rather than "t' & F". Thirdly. if i: 
is argued that operand order around commutative operators is not  a criter~on for propositional 
identity (e.g.. that E & F is the same proposition as F & E )  we have ignored slc;I-i differences in ordci-. 
Tile second of these qualifications i\ of cource not needed to ertabiisli the urlqueneu oiC :I prop,).i- 
tional's PL-form. 

Although propositions (1) and (2)  can be shown to be truth-functionally equivalent (see Ch. 3), and 
involve the same atomic propositions, they have different explicit forms and hence are not  the same 
proposition. (For a treatment on identity rather than mere equivalence of propositions see Bradley 
and Swartz op. cit. pp. 94-97) . 



EXERCISE 2.5 

1. Provide explicit sentences ( in  PL) for the following propositions. 

(a) Romeo is happy if and only if Juliet is. 
(b) I'm not  worried but I am concerned. 
(c: If it's Monday or Tuesday then it's not Wednesday. 

1 For edch of yohr answer> t o  Question 1 .  w r ~ t e  down 

( a )  the expllclt form 
( b )  the other forms 

3. Two certain propositions have the same explicit form. Must they be the same proposi- 
tion? Give an example t o  back up  your answer. 

2.6 TRANSLATION: SYNONYMY, EQUIVALENCE AND IMPLICATION 

&%en English sentences are translated into PL-sentences, two conditions should ideally 
be satisfied. Firstly. the PL-sentence should express the same proposition as the English 
sentence 1.e. the two sentences should be synonymous. Secondly, the PL-sentence should 
disp1a.y the atomic propositions involved and their attendant logical operators (except 
when, for reasons of efficiency, compound propositions are treated as a unit). By "atten- 
dant" logical operators we mean those operating on the atomic propositions. 

i n  practice these two requirements for an exact translation are rarely met. In the 
first place. it ca:; sonletimes prove awkward to select a dictionary of propositional 
constants that  ex2cti:bl nlatches all the atomic ~ropns i t ions  involved. More in-iportantiy. 
the operators of PL. lieZned in 53.3 by mean\ ~f t r u ~ h  :ables, often fail to capture the 
precise meaning a r !  :::ianczs %f the English opcr-ltors they are used t~ rranslate: the mas! 
notorious failure 1 3  i i l s  regard is rhe use of "">" as a trans1atici-i i'(\r , ~ i C  ... then ... ", as 
discussed in 32.4. Desplte these problems, a greai deal can be accompliiheci. By becoming 
acquainted ~vitl? the types of problems that can arise and methods for overcoming them, 
we will be zble to make effective rise of PL for analysing propositions and arguments. 

Po appreciate that a problem can arise when choosing a dictionary o f a t o ~ n i c  proposi- 
tions, let's consider the following valid argument. 

If love is alive then there's hope for the world. 
Obviously. love is alive, 
So there's hope for the world. 

Strictly speaking there are three different atomic piopositions here, which we might 
symbolize as follows: 

L = Love is alive 
H =  There is hope for the worid 
0 = Obviously love is allve 

That L differs from 0 s i ~ o ~ l l d  he clear if we compare their negations: 

Love is not alive. 
It's not obvious that love is alive 

It should be cledr that (2) and (3) are quite d~fferent ,  and that (4) is different again. 

Obviously love is not alive. (4) 

Argument ( I  ) may thus be abbreviated as follows: 



If L then H 
0 

. H 

This has the following form: 

If p then q 
r 

.. (I 

Now since not all arguments of this form will be valid, translating (1) as ( la )  fails to 
expose the valid structure of (I).  What needs to be seen is the logical connection between 
L and 0. This can be made clear by using the notions of equivalence and implication. We 
have met these notions before, and will have a lot more to say about them in future chap- 
ters, but for the moment let us agree that p is equivalent to q iff p and q must always 
have the same tmth value, and that p implies q iff whenever p is true so is q. 

If you think about it you will see that O inplies L.  Another way of expressing this is 
to say that L is an implicant of 0. Moreover, 0 has identical truth conditions to the 
conjunction 0 and L : whenever 0 is true so is O and L ;  and vice versa. So 0 is equivalent 
to O and L.  In general, any proposition will be equivalent to a conjunction of itself and 
an implicant (this conjunction is sometimes called a "conjoint product" of the original 
proposition). 

Since the logical classification of propositions and propositional relations (including 
validity of arguments) depends only on truth conditions, it is permissible for purposes 
cf such ciassification "t translate sentences of English into equivalentsentences of PL. 
Such trarrsiaiions may be called equivilleni ir~,asiatinns. Sonse bur not all eqrrivalert 
translations will be synoi?ymoris %~-ans!a~iol>;. 

Here is one equi3ialen-c translation for aigument (I):  

If  the^ N 
O and k 

Now the valid structure of (1) is apparent, because 0 and L implies L ,  and L combined 
with the first premise yields the conclusion. 

Quite often, logicians adopt a simpler approach still in translating propositions for 
logical analysis. Rather than translating from English to a synonymous or equivalent 
PL-sentence, they sometimes translate to a weaker Pk-sentence which is implied by the 
English, provided this is adequate for their purposes. Such translations may be called 
implied translations. For instance since O implies L ,  and L is sufficient to establish 
validity, 0 may be translated simply as L for purposes of assessing argument (1). Thus 
(1) nlay be presented as: 

If L then N 

whiclz is obviously valid 



5 9 Section 2.6 

Having considered the translation of atomic propositions, let's have a look now at the 
translation of logical operators. In most cases when English operators are translated into 
PL-operators, the translation will be equivalent or implied rather than synonymous. With 
negation however. exact translations are usually found. For instance, given the dictionary 

R = It is raining 

each of (5) and (6) is synonymous with (7). 

It's not raining. 
It's false that it's raining. 
--R 

In some cases it is convenient to translate phrases like "can't" and "impossible", which 
imply negation, simply in terms of "-- ". For example argument (8) is more easily seen 
to be valid from the implied translation (8a), using the dictionary: 

C = His theory is correct 
P = Computers feel pain 

If his theory is correct then computers feel pain. 
It's impossible for computers to feel pain. 
Hence his theory is incorrect. 

If C then P 
--P 

However, as we will see in Chapter 3, there are cases where a sharp distinction needs to be 
drawn between "not" and "not possible". 

Now let's look at conjunctions and related cases. When translating with "^&" ssynony- 
fny or ar least equivalence will usually be atlainable. Given t h e  dictionary 

N = Hindus believe in a God 
id= Muslims believe in a God 

the conjunction (9) translates exactly as (18) 

Hindus believe in a God and Muslims do too. 

N & M  

The next example is more than a simple conjunction, because it contains an element of 
contrast. 

It's humble, but it's my home. (11) 

The atomic propositions here may be symbolized: 

H = It's humble 
M = It's my home 

"But" is often used to "discount" the proposition before it in favour of the following 
proposition. Notice the difference between (1 1) and (12). 

It's my home, but it's humble. (12) 

Despite these differences, both (1 1) and (12) are truth-functionally equivalent to (13): 
each is true iff both H and M are true. So for purposes of logical analysis (1 1) would 
usually be bluntly translated as (13). 

H & M  (13) 

Similarly. the subtler aspects of many other English conjunctives will usually be ignored 
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in logical translation (unless these aspects have a bearing on the logical task at hand). For 
instance, given the dictionary 

B  = She's the firm's best engineer 
W  = She's a woman 

the proposition 

She's the firm's best engineer even though she's a woman. 

would normally be translated as 

B & W  

even though the connective "even though" goes beyond the meaning of "&" in suggesting 
that it is unusual for the best engineer to be a woman. 

A word or two needs to be said about the translation of "because" or "since". If p 
because q is merely one premise in an argument, then it is often acceptable to  translate 
it simply as p & q. You might feel that q & (q 2 p) would be more correct, but it is easy 
to  show by truth tables that this is equivalent to p & q (you will learn how to do this in 
Ch. 3). If however, p is the conclusion of the argument we should instead display p 
because q as 

. .  P 

A similar comment holds for propositions of the form p since q. Note that the "-2" and 
" ..'. " are not symbols of PL but they are part of the symbolic notation adopted within 
PC for the analysis of arguments. 

As indicated ic the notes to 52.4, it is sometimes useful tc treat sentences with one 
verb 2s expressicg conj:~.nctioas, if the separate assertions can be made explicit b y  par2. 
. . psrasrrg. Fo: example (; 51 and (1'7) IE~@IE be rephrased as (1 5) 2nd (1 8) respec thz>y. 

It's raining in spite of the sun's shiaing. 
It's raining and the sun is shining. 
Looking through a telescope, Walley saw a comet. 
Halley looked through a telescope and saw a comet 

Quite often the word ""and" is used to convey more than conjunction. In (19) it has a 
tempoml sense indicating he ate the pizza before he got the tummy ache. 

He ate a pickled pizza and got a tummy ache. (19) 

In 5 2.4 we noted that & is commutative i.e. in all cases p & q is equivalent to q & p. That 
'knd" is not commutative can be seen by comparing sentences (19) and (20). 

He got a tummy ache and ate a pickled pizza. (20) 

If you try swapping the atomic propositions in (18) you will notice that there too "and" 
has the sense of "and then". In such cases "and" will commonly be translated as "&" 
unless the temporal aspect is logically important. 

Not every use of "and" will imply &. Consider the following proposition 

You do me a good turn and I'll do you a good turn. (21) 

Here '.and" acts as a conditional rather than a conjunctive operator. The same proposition 
could be expressed as: 

If you do me a good turn then I'll do you a good turn. ( 2 2 )  



6 1 Section 2.6 

Rather than mecha~lically replacing words with symbols, a little common sense is needed 
to ensure that we translate what is expressed by the English. 

Care should also be taken when negation and conjunction are combined. Given the 
dictionary 

E = The Earth is a planet 
S = The Sun is a planet 

how would you translate the following propositions? 

The Earth and the Sun are not both planets. ( 2 3 )  
Both the Earth and the Sun are not planets. ( 2 4 )  

It should be clear that (23)  and ( 24 )  are not equivalent. Proposition ( 23 )  allows that one 
of the Earth and the Sun may be a planet: it  simply denies that both of them are planets, 
and hence may be translated as the negated conjunction (25) .  

- (E & S )  ( 2 5 )  

On the other hand, the sentence ( 24 )  would normally be construed as saying that neither 
the Earth nor the Sun is a planet: hence it may be treated as a conjunction of negations, 
as follows. 

- E & - S  (26) 

On this account, ( 23 )  is a true proposition and ( 24 )  is false, since we know that the Earth, 
but not the Sun, is a planet. Notice that the sentences ( 23 )  and (24)  are identical except 
for the position of "both". It is not uncommon for a change in word position to  lead to a 
change in meaning: part of our job as logicians is to make ourselves more sensitive to such 
differences. 

v ~ar l i e r  we saw that ""nct" could sometimes be l ~ s e d  as an implied translation far 
'"imposslbie'". .- To say that twc propositions are ir~comparlbie is to say that it is impossible 
foi. bcih of them io be trGe {thoiagh one might be true): this implies thht rhejt are net 
b~tI: tr3_te. Consider t';i-, fofio;ving example. 

The Earth's being a placet is incompatible with the Sun being a planet. (27) 

This b-rrplies t ha t  the Earth and the Sun are no.i both planets. So in some cases (25) 
might he used as an implied translation for (27). An exact treatment of the notion of 
incompatibility (or inconsistency) will be given in Chapter 3. 

Let's spend a minute or two now on disjunctions. Recall that inclusive disjunction is 
handled by V ,  and exclusive by f . With expressions of the form " p  or q or both" or the 
legal " p  and/or q", the disjunction is clearly inclusive. Some uses of "or" are clearly 
inclusive and some are clearly exclusive: when in doubt we treat it  as inclusive ( a 
more sophsticated approach will be given in Ch. 7). 

In some sentences, "or" is used with the sense of "that is" e.g., 

Incompatibility, or inconsistency, will be examined later. ( 2 8 )  

Manifestly. or implies V here also. so V could be used in an implied translation: much 
later in the book the identity relation "=" will allow an exact treatment of such cases. 

An important logical phrase not yet considered is "unless". Consider the following 
proposition. 

Your diet will be useless unless you exercise. ( 2 9 )  

This implies, and is perhaps equivalent to: 



If  you don't exercise, your diet will be useless 

This seems equivalent to: 

Either you exercise, or your diet will be useless. 

Choosing the dictionary 

D = Your diet will be useless 
E  = You exercise 

and for safety-sake treating the "or" in sentence (31) as inclusive. (31) may be trans- 
lated as: 

E V D  

Since V is commutative, this is equivalent to: 

D V E  

By virtue of the linkage between (29) and (3 1). which is at least as strong as implication, 
this will usually be taken as aE acceptable translation for (29). In other words, "D unless 
E n  translates as "D V E". Sometimes "unless" is placed at the front instead of between 

e.g., 

Unless you exercise, your diet will be useless. ( 3 2 )  

This is equivalent to (29) and hence may be translated in the same way. In general, our 
normal practice will be to translate expressions of the form p unless q or Unless q, p 
simply as p V q. Because V  commutes, it is also usually permissible to  translate Unless 
p,  q simply as p V q.  

As a f ind  note on C/, recall from Chapter 1 <hat sxpt.essions of the form neithevp nor 
q are equivalent to negated inclusive disjunction and so may be translated as -- (p ?/ q) 
or the equivalent --p & - 

Exclusiui.: df~junctiiols of  he p !?i 3 h i  r a t  both may be exai;tlv "-apjs?aled ~ 1 )  
$ q. JjV&.ec ~ ~ 1 s t  t.io ali.e?natbi:r arc ;!-2~ojved, the phrase "usr one of '  may aisc be 

hanciied by $.  For example, given an obvious dictionary, ( 3 3 )  translates as (34). 

Just one of John and Bill is a cricketer 

J + 
Unfortunately, when more than two alternatives are involved it gets more complicated. 
For instance (35) is not equivalent to  (36) 

Just one of John, Bill and Tom is a cricketer. (35) 

( J  f 131 + T (36) 

(36) is true not only when just one of J, B and T is true but also when all three are true 
(this may be shown with the aid of a truth table). So (35) may be translated by (37). 

( ( J  f: B )  f T I  & - - ( J & B & T )  (37) 

Let's turn now to conditionals and biconditionals. From earlier work (5 1.51, we can 
say that each of (38) to (41) may be treated as the same conditional. By comparison with 
sentence (41) it is clear that sentence (42) also expresses the same conditional. 

If Karen is at home then the stereo is turned up. 
If Karen is at home the stereo is turned up. 
The stereo is turned up if Karen is at home. 
Karen is at home only if the stereo is turned up. 
Only if the stereo is turned up is Karen at home. 



The atomic propositions involved may be symbolized as: 

K = Karen is at home 
S = The stereo is turned up  

In this conditional K is tlre an~ecedent  and S is the consequent. Notice that when used, 
"if"pprecedes the ani'ecedent and 'bovzly 1'7' piecedes ihe consequenf. This is generally 
true. As speech acts; the "if '  form of the conditjoilai might be contrasted with the "only 
i f '  form as follows: the "ir"' form emphasizes that if the antecedent is true then so is the 
consequent; the "only i f '  for111 emphasizes that if the consequent is false then so is the 
antecedent. This serves t o  remind us that true conditionais have these two features: a 
rrue aritecedear yields a true consequent, and a false consequent yields a h l se  antecedent. 

Recalling from 52.4 that "if ... then ... '' implies 3 and that 3 is the Pl-operator 
nearest in meaning t o  "if ... theri ... ", each of (38) t o  (42) inay be given the implied 
I-, lansia?ion - 

K 3 S  (43) 

Condjiionals are sometimes expressed nsing "v\~henever" or "when". For  example, 
both 444) and (45) may be translated as (43). 

VJJhenever K e r e ~  is at home the sterec is turned irp. 
When Karen is at home the stereo is turnzd up. 

Care must be taken ~~oLI,$-I  with "when7'. If the atomic seatence it  precedes refers t o  a 
specific past or fi;tuie event it will rarely mean '"whenever". Consider the following 
case. 

:J??:.Y T ! ,,,,,. , was 2:  bank 1 depasi-ed j-.y I ; s . ~  ci12rp,e. ;LA\ . % - I  

bi:~;inf-' '' T n  -a;.c? 
, . l * d % .  . 

p-n:?c..c~l ~,l... LC'! b - L a . k & C ~  -rr-.-l"-t;u),. ,-.- 1s 

,4. p!.op~s;iiofi of' tbc; ,i'r,;;?? ' ' I f  p Ihec q" may sometimes be expressed by raying kllat 
is a suLIfSicienf eor.,"iiion for q (si:;ce given p, q fallows). or by saying that q is a 

necessary condition for p (since you caa't  have p without also having q). As with "if ... 
then ... ". the b e s ~  we can d o  in PL is use 3 t o  provide an implied translation. For  
example both (49) and (SO) may be translated by sentence (43). 

Marer, '~ being at  home is sufficient for the stereo to  be turned up. (49) 
The stereo being turned up is a necessary condition for Karen's being 
at home. (50) 

Notice how noun phrases or "nominalizations" are used instead of full sentences here t o  
express the acttial conditions. This is fairly common. 

Since " p  if q" means " p  is necessarq7 for q", and "p only if q" means "p is sufficient 
for q", it foiiows that " p  iff q" may be rephrased as "'p is necessary and sufficient for 
q". Just as we use r as an implied translation for " i ff '  then, we map use it  t o  translate 
"is necessary and sufficient for". 



Section 2.6 64 

That's enough for now on translating English phrases into PL-operators. You will find 
a list of the translations we have discussed (plus a few others) in the summary of 52.8. 
You may find this list helpful as a translation aid, but don't use it mechanically: it is 
simply a general guide which may be overriden when we detect that the English phrase 
is being used in a different sense. 

Bracketing : 

Before getting you< teeth into the translation exercise that follc:ws, here are two 
strategies that might assist you with bracketing: these may be called the top-down 
method and the bottom-up method. 

Let's consider the top-down method first, and use the following proposition as an 
example. 

If the Prime Minister supports the policy and the Cabinei. does not, then the 
Prinle Minister will either give way or resign. (51) 

First we detect the main operator and symbolize it. We ask, "What is the proposition as 
a whole?" Our example is a conditional. So we symbolize the main operator and leave the 
rest as it is, to produce the following hybrid (i.e. combination) of English and PL: 

The Prime Minister supports the policy and the Cabinet does not 3 the 
Prime Minister will either give way or resign ( 5 2 )  

Since outer brackets are redundant it is not necessary to  enclose this hybrid with brackets; 
if the main operator was -- however and its negand was a compound proposition, it 
would be necessary to ecclose this negand in brackets. From this stage onwards, every 
Lime we symbolize with z dyadic opera-to+ of PL or with a - that has scope over a corn- 
pound proposiiiion ii w%! be necessary to insert brackets. With this in mind, we now look 
ai. ithe uni-ral~slatad parts; syrcrbalize ?he *"main operater" of each p a n ,  and continue :?his 
.-..?'in .!~,,dure until :he oldy uctranslated parts sre ateinic ~1:oposi?ions, Locking a: 'ithe ante- 

cedent oi'(52). we see that it is e conjunction so we symbolize to gel: 

(The Prime Minister supports the policy & "re Cabinet does not) 3 the 
Prime Minister will either give w3y OP resign (53) 

Then the consequent, which is a disjunction, is symboiized: 

(The Prime Minister supports the policy & the Cabinet does not) 
3 (the Prime Minister will give way V the Prime Minister will resign) (54) 

Given our preference for atomic propositions that are affirmative, the second conjunct of 
the antecedent will be treated as a negation and hence symbolized as follows: 

(The Prime Minister supports the policy & - the Cabinet supports the 
policy) 3 (the Prime Minister will give way V the Prime Minister 
will resign) ( 5  5 )  

We can now set out a dictionary for the four atomic propositions: 

S = The Prime Minister supports the policy 
C = The Cabinet supports the policy 
G = The Prime Minister will give way 
R = The Prime Minister will resign 

Using this dictionary we get: 

( S & - - C )  3 ( G  V R )  



The top-down method not only helps us to see the logical structure of a proposition, 
but also gives us a dictionary. However in some cases, especially in logic text books and 
examinations, a dictionary is provided. For example we might be given the following 
dictionary and be asked to symbolize the proposition set out under it. 

N = There will be a nuclear accident 
M  = Many lives will be lost 
R  = Money will be spent on research 
W = A safe waste disposal system will be discovered. 

Either there will be a nuclear accident and many lives will be lost or 
both money will be spent on research and a safe waste disposal system 
will be discovered. ( 5 7 )  

In a case like this, the bottom-up method can be used. First we use the propositional 
constants to get: 

Either N  and M or both R  and W ( 5 8 )  

This then leads to 

Either (N & M )  or ( R  & W) 

and finally 

( N & M ) V ( R &  W )  

In practice, either the top-down or the bottom-up method may be used with any 
translation. You may like to combine the methods. One highly recommended technique 
is to first establish your dictionary of propositional constants (underlining parts of the 
original English sentence can help you find the atomic propositions), substitute these 
in, and then work top-down to provide the operators and brackets. The emphasis in the 
top-down method of searching for the main-operator is very helpful. 

Notice how the use of '"either" and ""boah" in ( 58 )  disambiguates the sentence by 
'- irxing where the brackets mis t  be placed. If we leave them o r n h ~ e  get: 

N and M or R and W ( 6 % )  

This is highly ambiguous. Can you spot five different ways of bracketing (61)? Links 
between words like "either" and "or", ""both" and ""ad", and ""if' and ""ten" assist us 
a great deal in deciding where to  place brackets. See how you go with inserting brackets 
in the following example: use the letters '"G9> "L ", "'H", "M" and "D" for your diction- 

ary. 

If either both Confucius and Lao Tzu were alive or both Wobbes 
and Mill then there would be an amazing debate. ( 6 2 )  

If you haven't already done so, complete the translation with the aid of PL-operators and 
then check your answer with (63). 

Don't forget that commas often give a clue as to where brackets should be inserted. 
Remember these two examples from 5 2.3? 

Earth is a star and Venus is a star, or Sirius is a star. ( 6 4 )  
Earth is a star, and Venus is a star or Sirius is a star. ( 6 5 )  

Using the letters "E", "V" and "S" for our dictionary, (64) translates as 

( E & I r ) V S  ( 6 6 )  



While the sentence (05) ir mildly a~nblguous, it would be usual to  translate ~t as expressing 
the follow~ng proposition 

E & ( V V S )  ( 6 7 )  

Well, off you go now (at last!) t o  try out your new logical muscles on the following 
exercise. Don't forget the translation guide in the next section is there t o  help you.  

NOTES 
A useful discussion of equivalent and implied translations is contained in Appendices C. E and F of 
Elementary Applied Symbolic Logic by B .  L. Tapscott. We will treat the notion of implied translation 
at  greater depth in C11. 7.  

If you look at  sentence ( 6 2 ) ,  the use of "were" and "would" instead of "are" and "will" indicates the 
conditional is cast in the subjunctive mood. Subjunctive conditionals are often "counterfactual" i.e. 
they are understood to imply that the antecedent is counter to fact (i.e. false). Clearly, ( 6 2 )  is a 
counterfactual conditional. Some subjunctive conditionals are not counterfactual conditional e.g., 
"If I were to win the lottery I'd go on a world trip": this leaves the question open as to  winning the 
lottery. Subjunctive conditionals usually imply their indicative counterparts, which in turn imply 
>conditionals, so in some cases we may translate subjunctive conditionals in terms of 3 (we did this 
when we translated ( 6 2 )  into ( 6 3 )  ) .  Be careful not  to assume 3 conditionals are equivalent to counter- 
factuals however, because then all counterfactuals would automatically count as true. For instance the 
counterfactual "If I were to have green hair then I would have blue hair" is plainly false; but  the 
implied translation "I have green hair 3 I have blue hair" is true simply because the antecedent is 
false and 0 > ... = 1. 

In this section we have discussed some of the nuances of English that we intentionally disregard in 
translation into PL. J i l  ieal-life communication these nuances can play an important role. Unforiunate- 
ly; space limitations prevent us fioi-9 detailing sucll matters in this text, which emphasizes formal 
rather than informal logic. For a nice exposition of ?hi? topic. including a t:ea:mei',t of "con~ersattonal 
implication'. (what is iaciiiy implied by our linguistic corrventionsj, see Ch. 4 of Undei.sraildingA?gti 
,vflejqf~ bl, R. 1. Fcgeiin, as ii~e:l a i  Pan! GI-icc's paper ~.Logic d z i ;  C~fiirer~atior!" which is inciudei as -11 

appendix in Fogeiin's ieui. A complete t reatrnzn? of corn;nirnicaticl~-~ would need io Lake into ~lccouot 
also !he ~ar io t i s  aspecrs of non-verbal comrrunlcaiioii and body-Iariguage. 

EXERCISE 2.6 

1 Translate the follownng Pk sentences into Eagllsh uslng the d ~ c t ~ o n a r y  suppl~ed 

N = People will be happy 
D = The inflation rate drops 
E = People empathize with one another 
U =  People understand how others feel 
S = People are selfish 

(a) U E E 
(b) (S V --D) 3 -H 
(c) -D E ( S &  -U)  

(d) S 3 - ( D  V H )  
*(e) -(H ( U & D  &-S)) 

2. Given the dictionary of Question 1; symbolize the following into PL. 

(a) If people are selfish they will not empathize with one another and will be unhappy. 

(b) Unless people are selfish, the inflation rate will drop and they will be happy. 

(c) It is false that if the inflation rate drops but people are still selfish, they will be 
happy. 



(d) People are unselfish only if they neither empathize with nor understand one 
another. 

(e) Provided people are unselfish they will not  only empathize with one another but 
will be happy as well. 

3. Translate the following into PL uslng the dictionary supplied. 

C = Paul eats the chips 
F = Norma hac a feed 
P = Paul eats the popcorn 

(a) Norma has a feed when Paul eats the chips. 

(b) It's not the case that Paul eats both the chips and the popcorn 

(c) Paul eats the chips but not the popcorn 

(d) Norma has a feed unless Paul eats the popcorn as well as the chips. 

*(e) Given that Paul eats the chips, Paul's eating the popcorn will be a sufficient 
condition for Norma's going without a feed. 

*(f) Unless Norma misses out o n  her meal, Paul will eat the chips or popcorn but not  
both. 

*(g) For  Norma t o  go hungry it is necessary that Paul eats both the chips and the 
popcorn. 

(h) Norma has a feed only if Paul doesn't eat both the popcorn and the chips. 

(i) Paul eats the chips whenever he misses out on  the popcorn. 

(j) If Paui eats neither the popcorn nor the chips, Norma has a feed 

(k) Norma goes hungry if and only if Paul eats the chips and the popcorn. 

(1) Either Paui doesn't eat the chips or he doesn't eat the popcorn or Norma doesn't 
have a feed. 

in!) Hi Norma hss 2 ieed then Paul either goes w i r h o ~ t  the  chips i;r goes without the 
popcorn. 

" , -,!a) PaLtj'!: eatilia Lfigs is ; ;e,,-sj-;v ,u: -LI - - ~  "' L~~~l:i;t ' ~ o ~ _ & i i o ~ l  f z r  bJ.3lfi-!a's 

1-9issiag out on a feeci. 

4 A = Superman appears 
D = Clark Kent disappears 
! = Clark Kent is Superman 
1, = Lois becomes suspicious 

Using the above dictionary, translate the following into English 

(a) ( D  &A) 3 L 
i b )  A 3 ( - L  - --D) 

Using the above dictionary. symbolize the following. 

i c )  If Superman appears while Clark Kent doesn't disappear then obviously Kent is 
not Superman. 

"(d) The combination of Superman's appearance with Clark Kent's disappearance is a 
necessary though insufficient condition for either Lois becoming suspicious or 
Kent being Superman. 

5 .  Translate the following sentences into PL, providing your own dictionary 

(a) This is an easy one. 

( b )  This one is harder but not much harder 

(c)  Sam sliced the yausage and Sue slld on the sllppery slime. 

id)  1 wlll be more sat~sfied ~f I watch less TI/ and read more books 



(e) I'm not sure that I like all the examples in this book. 

( f )  Once you do a bit of logic you find it's both interesting and enjoyable. 

*(g) Even though logic is difficult sometimes, you will find it rewarding provided you 
make an effort. 

(h) Neither is Mars a star nor is Alpha Centauri a planet. 

ji) Exactly one of Saturn and Neptune lies between Jupiter and Uranus. 

j )  My being a man is a sufficient but not necessary condition for me to be a human. 

(k) My brother stayed up watching TV last night till 8, but I beat him 'cause I stayed 
up  till "96". 

(1) Every time the six million dollar man lands after jumping from a great height his 
legs should spear his upper body. 

(m) The next program is unimaginative and neither Norma nor Paul nor David nor 
Linda nor Selena nor I will watch it. 

(n) It's false that, I will watch the next program if and only if Norma, Linda and 
Selena all watch it .  

*(o) Given that Paul and David watch the next program but Selena doesn't, it's not 
true t o  say that provided Norma doesn't watch it Linda's watching it guarantees 
that I watch it. 

*6. Translate the following into PL using the suggested letters as propositional constants. 

(a) T o  be religious it is neither necessary nor sufficient that you believe in God. 
IR,B) 

(b) It  can't be that just one of Anderson, Melnap and Cantor is a logician. (A,B,C) 

jc) 'in spite of the fact that not  only Aquinas but also Descartes produced proofs for 
God's existence it is clear that, ~lrmiess he lied about his religious starzce, Mar:: vias 
ap aiheirx. CA,D,L,M) 

', ~, .r ,~ . . 
,.:I 1 1  :i,i3;ji2 ~ T _ ~ z ~ Q - I . s  t.2 aRC.ei.; t9 . l~  c;.;i,j " ;icl i re  a Bi,dghis; caT; y , -~ l  rje rjs,,; 

---I: ;;liL.,ub: v;r, > - -  --c, 2g:lr~iji;; ~ ~ 5 < 5 i : ? % ;  3: y.5 !:.~!i" ':eijlg Gj ~ j i p i c n 5  I:yl~3]i'7-S i?Lat :;ac .>- 

~ r e r ' t  a 3 .jrj.?k. ;!;. jB...Q,A: 

".I: "'-I: L ~ i i  vJsrn hard &I logic zr?3, prp- , :+~ d v ~ ~ G u  yau ;ppijr i; ir, everyday life, i: iit 'l" ' ,d 1 mpreve 
both yon; tsnlcing and yc-r segse ;f h ~ ~ ~ o u ~ .  {W, -A ,  T9kr) 

- --- -- - - - - ---a- - 
I 1 

I I Puzzle 2, 

On visiting an old country town 
Mr C.T. Slicker found a wooden post 
with a message engraved on it as shown. 

Despite his post-doctoral qualifications in 
Linguistics he was baa'u!e to  decipher the 
message. 

Can you help him? 



2.7 SUMMARY 

A wff of PL can be assembled using only these formation rules: p, q, r, s, t (with or with- 
out subscripts) are wffs; if a is a wff so is -- a:  if a and /3 are wffs so is ( a  * P )  where * is 
one of &. V .  3. $ . Later we relaxed (or added to) these rules by allowing propositional 
constants. different style brackets. and omission of brackets when no ambiguity resulted. 

We use p,q,r,s,t as propositional variables, A, ..., Z as propositional constants, and 1 and 0 
as truth values (true, false). Our propositional operators are as follows. 

OPERATION NAME / USED TO TRANSLATE OPERATOR - 
& 

V 
3 
- - - 

$ 

SYNTACTICAL NAME 

tilde 
ampersand 
wedge 
hook 
tribar 
slashed tribar 

The operators are defined by the following truth tables: 

negation 
conjunction 
(inclusive) disjunction 
material implication 
material equivalence 

exclusive disjunction 

Although o m  colurr?n is sufiicienr for the defining of hook, we have set o u t t w o  to 
~ n a k e  i l  ciea: that hook is not commutative. 

not 
and 
or (inclusive) 
if ... then ... 
if and only if 
... or ... but  not both 

A w f r s  main opemtor is the last operator inserted in assembling It by the formation 
rules. 

&, V? E . 8 are commutative but  3 is not  e.g., p & q is equivalent t o  q & p but  
p 3 q is not  equivalent t o  q 3 p 

&. V, = . $ are associative but  3 is not,  e.g., 
p & /q S: r )  is equivalent to  ( p  & q)  & r but 
p 3 (q 3 Y )  is not equivalent to  (p  3 q )  3 r 

A proposition is atomic if it contains no other propositions; otherwise it  is compound. 
PL-sentences contain no propositional variables: they express propositions e.g., A & B. 
PL-4fourns contain n o  propositional constants e.g.. p & q .  In an explicit PL-sentence. each 
propositional constant represents an atomic proposition. In the explicit PL-form of a 
proposition. each occurrence of the same propositional variable relates t o  the same 
atomic proposition. For example, given that A and B are atomic, the explicit PL-form 
of the proposition A & (B V A )  is p & (q  V p ) .  

When translating from English to  PL we aim for synonymy (same meaning) or equiva- 
lence (same tnuth conditions). but rllust sometimes be satisfied with implied translations 



(propos~tion expressed in English implies that expressed in PL.). 

Translation into PL may be done in a top-down fashion (begin with the main operator of 
the whole proposition then proceed through the "main operators" of the components, 
ending with the atomic propositions), or a bottom-up fashion (the reverse), or a co~nbina- 
tion of the two. Brackets are normally required when symboiizing a dyadic operator, or 
a "not" which has scope over a compound proposition. Clues to bracketing are provided 
by word links such as those between "either" and "or", "both" and "and", and "if '  and 
"then", as well as by commas. 

The translation guide below lists samples of English expressions and the way they are 
usually translated into PL. In some cases these expressions may need to be translated 
differently: here your sensitivity to English usage and your purpose for making the 
translation will be your guides. 

" P  Not p  
It's not the case that p  
It's not true that p 
It's false that p 
It can't be that p 

p & q  p a n d q  
Both p and q 

p but q 
p although q 
p even though q 
p in spiie of q 
p and aiso q 
i V ~ t  ei~ji7 5 b ~ i  ;l. 

i . 
$<s T-.,.:: ,>,Gi; as q 

P; q 
p; however q 
p; nevertheless q 
p; moreover q 

B :  Yet ri 
p izo'rv,~ithstznding q 
p wl-lereas q 
,g while q 
-.- ' - . ; rc  [; jh?." CLP G ? . f , ;  v I,:,-- :; , L,L. L -u.., 

% ,  7 '2? :; P J ? 7 &fia/<?: Q 
-. 
hl:l:er 1: 01 q Al leasr one '3f p and q 
p or .; or both U I ~ B S S  p, q 
.A - . - I  ~ i u e s s  q j- ex::epl itih~il ~j 

p 3 q Bfp then q Provided that p, q 

If p, q Oil condition that p, q 
p only if q p is sufficient for q 
p implies q For q it is sufficient that p 
Whenever p, q p guarantees that q 
Given that p,  q p only in case that q 
Had P, q When p, q (but see 5 2.6) 

4 3 ~  P i f q  p is necessary for q 
p if and when q For q it is necessary that p 

Only if p,  q p provided that q 
p given that q p in case q 

p r q p if and only if q p is necessary and sufficient for q 
p when and only when q p just in case q 
If p then q and conversely 



p $ q p or q but not both 
Exactly one of p and q 
Just one of p and q 

- - @ & q )  N o t b o t h p a n d q  
p is incompatible with q 

-- (p V q )  Not either p or q 
Neither p nor q 



Truth Tables 

3.1 INTRODUCTION 

Having gone to some pains to develop our new language (PL), and in the process tidied 
up various matters about communicating in the English language, we now begin to 
exploit the marvellous clarity and efficiency of PL by using it to simplify the analysis of 
propositions and propositional relations. In the next chapter we will use it to simplify the 
analysis of arguments. Once you have learned a few easy rules on how to apply the 
methods and had some practice at the problems, you will be well on the way to mastering 
the techniques of Propositional Calculus. 

In this chapter we investigate some of the uses to which truth tables may be put. After 
finding out I l o ~ ~ i  40 calculare the "main columrz" of a foimula's truth table, we will apply 
this knowledge ro test certain properties of propositions and certain relationships 
between propositions. As z spin-off. this 'wi!i enable us  to Lisr  various '~!s.gicd tmths9' 
~i.:inich play 2, key ;-ole in later wsrk 

3 -2 THE MAIN COLUMN 

To simplify later discussion we now introduce the term "propositional letter" as a 
generic term covering both propositional variables and propositional constants. For 
example, both 'bp" and "A" are propositional letters when they are used in PL-wffs. 
We may thus regard PL-wffs as being composed of three different types of symbols: 
letters, brackets and operators. 

We have already dealt with truth tables for simple formulae with just one operator, 
but we haven't had much practice with tables for longer formulae. The general procedure 
for building tables is roughly as follows. We begin by noting the propositional letters in 
the formula. then writing down the matrix and the formula itself. Columns of truth 
values for the letters and operators within the formula are then evaluated and placed 
directly underneath the evaluated symbol. The order of this evaluation is bottom up: it 
is the same as the order in which the formula would be built up by the formation rules 
of PL. The final column calculated (known as the "main column" because it is under the 
main operator) is then identified by placing an arrow underneath it. Before summarizing 
this procedure in a formal way: let's look at an example. 



Example 1 :  To compute the truth table for -- ( p  3 q )  we begin by writing down the 
matrix and the expression as shown. 

The wff may be built up from the formation rules as follows: 

1. P B 
2. q  B 
3 .  ( p > q )  l , 2 , R 3  
4. - - ( P  2 q )  3 , R  - 
We should therefore enter the truth values of the table in the following 
order: p, q ,  (p 3 q ) ,  - - ( p  3 q ) .  This is done in the table below. 

Note that the values of p  are placed right underneath p ,  the values of q 
below q ,  the values of ( p  3 q )  below 3, and the values of - - (p  3 q )  below 
-. Since - is the main operator, the column under - is the main column 
and it gives the values for the expression taken as a whole: it is identified by 
an arrow as shown. 

In filling out values under the expression it is not necessary to show the i ialtres of the 
ietters: because ;hey are aiready shown in "Lhe ?pa t rh .  f ids  tl-~e table for -.,@ 2 3qd woui. 
i;s;raily- be writtea: 

Also, it is not necessary to write down an assembly line for the formula every time we 
construct a truth table. The order of the steps is best worked out mentally by imagining 
the order in which you would insert the operators in an assembly line for the formula. 
You may wish to  use the following rules of thumb to ensure you evaluate the operators in 
a correct order. 

Rule: Evaluate bracketed expressions before their adjoining operators. 

Rule: Evaluate -- before the other operators unless this breaks the above rule. 
Rule: Evaluate consecutive - s right to left. 

Here are some examples ofthese rules in action. The numbers underneath the operators 
indicate the order in which the operators should be evaluated (starting at 1). 
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One consequence of the first rule is that inner brackets must be treated before outer 
brackets (see the fourth example above). 

Here now are two harder examples. For each of these there is more than one possible 
assembly line, and hence more than one correct order for the operators (two samples are 
given for each). The main operator of a formula is the last operator inserted in any 
assembly line for the formula. Consequently, the main operator is the final operator 
evaluated. Since the main operator is unique, the final operator evaluated in the examples 
below must be the one shown. 

( p & - 4 )  2 " ( 4  V P )  -( ( P  4 )  3 r )  3 ( ( P  3 (4  2 7) 1 
2 1  5 4  3 3  1 2 6  5 4 
4 3  5 2  1 5 1 3 6  4  2 

For any formula that has an operator, its main column will be underneath its main 
operator. If a formula has no operator (i.e. if the formula is simply a propositional letter) 
then it has only one column underneath it and this is its main column. In either case, the 
main column is the last one calculated. 

The method of constructing truth tables for formulae may now be summarized. 

Method: 1. WAQe down the matrk  and the fornula. 
2. Evaluate the fornula in ~ssernbiy line order (see above rules), placing 

truth columns di~pectly u n d e ~  &he relevant symbolI 
3 ,  Identify the main column by an amow underneath. - bxarflple 2: 'r;!o:~: let's try a. haader one: the formula (p \I q> 3 ( p  & -q). We begin ir, 

the normal way. 

Two possible evaluation orders are: (p V q )  3 (p & - -q)  
1 4 3 2  
3 4 2 1  

For this formula, - must be evaluated before &, and 3 must be evaluated 
last. This yields the following result. 

t 
Example 3: Now look at the formula p & q & --p. 

The absence of brackets is allowable because of the associativity of &, i.e. 



( P  &4) & - P  (1) 

is equivalent t o  

P & (4 & " P )  ( 2 )  

whenever we have a case like this it doesn't matter which of the equivalent 
forms we choose. Reading the original formula as (1) gives 

t 
while the second reading gives 

Even though the tables are different because of the  different orders in which 
the formula was evaluated, the main columns are in agreement. It  is better for  
the sake of clarity t o  insert your choice of brackets (as we have done) when 
drawing a truth table for an associative expression. 

Example 4: The expression p E ( q  V sj has three letters. How do we set up the matfix 
for it? 

-4s mentioced. in the previo.;is chapter. the r n i t r h  lists a?l i11e per22iiez-tons 
cf the, ti.uth value.; of the letters kq the fu?-rr;ula. Hey* ihe l e t t e ~ s  sre g, q, 
and :. We kno5,v chat there 22e f-i~.ur cases with just p and q ;  since each of Q19;se 
may be assoc~ated with r txue and 7 Czlse there must be eight rows in our 
matrix. It  doesn't reaily matter in which order we pu.t these rows. However 
in this book the following order vd!  be adopted: 

We can now compute the truth table fo r  our formula. Larger truth tables 
involve no more tricks; they are just longer. Check through the table below 
t o  see that you agree with it. 



Matrix Order: 

The matrix order adopted in this book is based on a "tree structure" as indicated 
below. Each pathway from the left to the right of the tree provides one matrix row. 

It should be clear that each time a new letter is added the number of sows doubles, 
since each of the previous rows can be associated with the values i and 0 for the new 
?er te r~  

T .  ~ h r s  fact nay- be surnmarised thus. 

A formula with n lettea has zn uows /sin its truth table 

For example, a formula with 4 letters will have 24 ( = 2 2 x 2 ~ 2 ~ 2 )  or 14 rows in its truth 
table. 

Once we know the number of rows. the matrix for any formula may be systematically 
filled in from right to left as follows. Fill the rightmost matrix column with alternating 
1's and 0's i.e. 1, 0, 1, 0, ... . Now fill the second rightmost column with alternating 
doubles of 1's and 0's i.e. 1: 1 ,  0, 0,  ... . Now fdl the third rightmost column with alter- 
nating quadruples i.e. 1,  1,  1>  1 , 0 , 0 , 0 >  0. ... . Continue this "doubling up" procedure for 
each column added to the left, until all the propositional letters have been catered for. 

Check this procedure for yourself on the sample matrices shown below 



Pairing Brackets: 

Our rules for evaluating wffs of PL correspond to the following priority convention: 

I P ,  4> ... 

(For siqiicivy,  p~opositional constants and differen: siyie brackets have been smirted.) 
IY? mathematics znd coilyyxting. :he c2o~:irisuni. practice is 4'0 c lass l f j~  &yaaciic operators  intc 

. * different p r i ~ ~ i t y  j ~ ~ i e j ~  e.g., x ha: i:i&ler prioi-i'.y than -k so "k 4 1: 7 =- 8 i- 8 - ' 6 Mace- 
", aver. I t  is asial ti: evaluate dyadic ope~alDrs of eqnd prie,rix:r (::.g,, + $  - .r.r x, -q i j l  !eFi. 

to.righ; c?rder cnless brackirs ol~eri-ide rhis e.g.: 8 A 4. x 2 = 2 :< 2 = 4.. In PC however, aii 
dyadic cperafors have the same mioi-ity and no left-to-right order convention Is adopted 
e.g.. D 3 q \/ r is ill-formed and cannot be evaluated. As a consequence of this, brackets 
tend to be more n u m e r o u s  in formulae of PL 'Illan in mathematical formulae. With longer 
PL-v~ffs this n a y  lead to some difficulty in pairing up brackets or in deciding which 
bracketed subforrnula to evaluate next. 

A systematic way of pairing brackets is as follows. Begin at the left of the formula and 
move right until you meet the first right bracket: pair this with the prevous left bracket. 
Move right until you meet the next right bracket: pair this with the previous unpaired left 
bracket. And so on. Use this method to  check the matching of parentheses in the below 
example. 

Another way to indicate the order of pairing brackets is to index the brackets as in the 
below example. Check that the indexing agrees with our pairing order. 

Once parentlieses have been paired. the formula can be made more readable by using 
brackets of different shape or colour and by deleting outermost parentheses (if any). 
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This pairing technique can be combined with our evaluation rules to provide the 
following automatic procedure for evaluating wffs of PL: 

1. Substitute truth values for the propositional letters. 

2. Move from left t o  right stopping at the first ")" - the expression bet- 
ween this and the previous "(" is the next subformula to  be evaluated. 
If n o  brackets were met the whole formula may now be evaluated. 

3. Evaluate - 's. 

4. Evaluate dyadic operators. 

5. Replace (subformula) or whole formula with its value. If whole formula 
now evaluated then stop; else go t o  step 2 (begin move right from the 
replacement point). 

Where different style brackets are used, "1" and "(" in the above procedure should be 
replaced with "right bracket" and "left bracket" respectively. 

NOTES 
Some logicians do adopt priority conventions for dyadic operators in propositional logic i e . ~ . .  & 
before V). Alternative conventions and notations are discussed in detail in Ch. 9. 

At step 4 in the procedure above. there will be at most one dyadic operator or multiple occurrences of 
the same associative dyadic operator. In the latter case any evaluation order may be adopted, though 
left to-right is usually recommended. 

For details of a computer program for evaluating mffs of PL according to the prc~cedure discussed in 
this section see Halpin. T .4 . .  "PC Formulae Fvaluatiol: in BASIC" in T ~ c  il~dst:.aliaiz Lode Teaclzr~s 
Jouvrzal Vol 5 No 2 (1 981 Feb). 

2. Draw truth tables for the formulae in Question 1 

3. (a) Draw the matrix for a formula containing the variables p, q, r, s, t. 

(b) How many rows are there in the truth table for  an expression containing seven 
propositional letters? 

4. For  each of the following formulae, index the brackets according to the systematic 
evaluation order discussed in this section, then evaluate the formula for the following 
assignments of values to  the PVs: 



*5 [For  those with some knowledge of computer prograrnmlng] 

(a) Wrlte a computer program t o  print the matrlces for formulae wlth the following 
PVs 

(1) P> 4  
(id P q , r  s t 

(Hint: Use nested loops with a step of -1) 

(b) If your computer language has logical operators for AND, OR, NOT write a 
program t o  print the truth table for the following formula: 

3.3 CLASSIFYING PL-FOMS 
Once the main column of a Pk-form has been calculated, the formula may be classified 

into one of three types according t o  whether just l 's, just O's, or both 1's and 0's are 
present. 

PL-form Maincolumn values 

tau tology all 1 
contradiction dl0 
contingency some 1, some O 

Example I :  Compute the mam-column of the following PL-forms, and then classify them 
61: that baas 

.'. p 3 p is tautoiogoras 
p & --p is self-contradictory 
p & p is contingent 

Notice how a common matrix was used for  the three formulae, t o  save space. 
Note also the adjectival versions of the three classifications. 

It  is not  always necessary t o  complete the main column when testing a PL-form. As 
soon as we get one 0 we know it is no t  a tautology. As soon as we get one 1 we know i t  is 
not a contradiction. As soon as we get one 1 and one 0 we know it is a contingency. 

Example 2: 

.'. p 3 - q  is contingent. 

f 

Once you've done a couple of truth tables you'll find them quite easy (provided you 
follow the rules!) With longer formulae you might like t o  save some work by using a few 
short cuts, as discussed below. 
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When evaluating a formula or sub-formula whose main operator is &, V or 3 we will 
often be able to assign a value as soon as know the value of one of the operands. Consider 
for instance the following conjunction: 

Suppose, as is indicated above, that we know that p = 0 on the row being evaluated. 
Recall that a conjunction = 1 iff both its conjuncts = 1. The fact that p = 0 then. implies 
that the conjunction will be false regardless of what value [q 3 (r & s)] might have. So 
we may write 0 under the & without having to evaluate the right conjunct. 

This example is an instance of the general result that: if the left conjunct is false the 
whole conjunction is false. Let us abbreviate this as: 0 & ... = 0. 

We call the above result a "one operand evaluation rule" since it allows a dyadic 
expression to be evaluated from the value of one operand. There are six such rules for our 
operators, as summarized below. Their justification is given on the right. Do you see why 
there are no such rules for - and $ ? 

0 & ... = 0 
A conjunction = 0 if at least one conjunct = 0 

... & 0 = 0 
1 v ... = 1 

A disjunction = 1 if at least one disjunct = 1 ... v 1 = 1 
0 3 ... = 1 

a 3 /3 = 1 if either a = 0 or 0 = 1 
... 3 1 = 1 

Notice that such rules apply ody  for certain values of the operands. For example, If one 
conjune-e is evaluated as 1 we have l o  delemine the value of the otlset conjunct as well 
before we can evaluate the whole conjunc"ron. 

Example 3: Classify ((p & -- q )  3 ( p  V - rd as a tautology, contradiction or contingency. 

tautology 

On the top 4 rows p = 1 :  therefore (p V - r )  = 1. On the bottom 4 rows 
p = 0: hence (p & - q )  = 0. The main column follows immediately by 
applying the rules ... 3 1 = 1, and 0 3 ... = 1. 

In later sections you will find the terms "tautology". "contradiction" and "contin- 
gency" used to classify propositions. Though there is a connection with the use of these 
terms to classify PL-forms. the connection is not a simple one. The differences will be 
explained later. 



The stipuiat~ve definition given in logic to the word "tautology" is sign~ficantly different from the 
dictionary definition "raying the same thing tnice over in different words". 

In this section \re have dealt with the ciassificat!ori of PL-forms. bur not  tlie c:;~sslfi"icatioi? of propo\i- 
tions. 71ie former pr:,blem may be regarded as answerable within 2-valued forinal \emnniicc (in r'ormai 
semantics 1 and O Lire just uninterpreteii vaiues rut!ier than "truc" and "fni*,e"). ? h e  ia t lzr  :?roh!em 
raires oihei  questions (e.g.. the adequacy of PL to  display the relevant structure of propositions) 
2nd s h ~ u ! d  be regarded ac 2 dislicc; prcbicn;. 

.4s we use the term\. the language PL consist? of the infinitely many wffs wl!ich Inay he atren~b!ed by 
the formation rules of  PL: the s-vstem PC includes the formal sema~itics nhereby ufl5 of PL may be 
;issigned halues aiid divided into tautoiogie\ arid !ion-tautoiog!es. 

For reasons to be disciisced later. some authors use the term "indeterminate" rather :han "contingent" 
\vhen classifying forms. After cor~siderable deliberation however. we have decided to  retain the lerm 
.'contingent" for this use. part!y because it veenis firmly entrenched in t?ie literature, but mostly 
because from the point of view of formal semaiitics it is a fuily determinate matter whether the value 
of a PL-form is cont i i~gcnt  (dependent) or, the values given to its PYs. The distinction beiweeri "con- 
t ingent '~ as applied to forms and "coiitiilgent" as applied to  propositions wiil be carefui!y drawn iater. 

EXERCISE 3.3 

I .  Classify each of the PL-forms in Question 1 of Exercise 3.2 as a tautology, contradic- 
tion or contingency. 

2. Using either complete or shortened truth tables, classify each of the following as 
tautoiogous, self-contrildictor.,; or cogtingent. T o  saw writicg, a co,qmoil matrix may 
be used to test  several fcrmi~iae wjt!? the s 2 - m ~  PV'c .  

" 3 .  By inspection of the formula, and logical deduction, classify the following formula 
without the aid of a truth table. 



Outline the steps in your deduction. 

"4. If you managed Question 5 ( b )  of Exercise 3.2, modify your computer program to 
include a test as to whether the formula tested there is a tautology, and have the result 
printed out. 

3.4 MODAL PROPERTIES OF PROPOSITIONS 

In this section the logician's notion of "possible worlds" is briefly explained with the 
aid of examples. This concept will then be used to define a classification scheme for 
propositions (as distinct from PE-forms) in terms of their "modal properties". The terms 
"contradiction" and "contingency" will appear again, though with a somewhat different 
connotation as they apply to~propositions. Finally we will use our educated intuitions 
on what counts as possible, to determine the modal properties of a variety of propositions 
expressed in English. In the next section, we will investigate how truth tables may be 
used to  assist us in such determinations. 

Let's begin now with the notion of possible worlds. Clearly, our universe, the actual 
world, is one possible world. Besides the actual universe however, there are infinitely 
many worlds which might have been. We can imagine many such possible worlds: a world 
with no Earth; a world where Earth has three moons; a world where Mars is inhabited by 
little green men; etc. You can have fun inventing some of your own possible,worlds. And 
no doubt there are many possible worlds beyond the reach of our limited imagination. 

Not every world is possible however. For instance a world in which Earth. both does 
and doesn't exist is an inapossibie would. 

Now look closely a i  the fdlowing propositioi-is. Each of rhese is true, b ~ t  in 2 very 
specid uiagi. 

If it is rain:ng [hen j: :al:$rLg. (lj 

All acinais are animals. ( 2 )  
One plus one equals two. (33 
All bachelors are male. (4) 

None of these cail be false under any circumstances. They must be true i.e. they are true 
in dl possible worlds. Vlessindi call such propositions necessary tn~llths or logical t m h .  

Now what do you notice about the following propositions? 

It's raining and it's not raining. 
Not all animals are animals. 
One plus one equals three. 

None of these can be true under any circumstances. They must be false i.e. they are 
false in all possible worlds. Propositions like these describe logically impossible states 
of affairs, and are known as necessaly falsehoods or contradictions. 

Note that we are using the terms "possible" and "impossible" in a logical rather than a 
physical sense. An example should clarify this. 

The space ship travelled at twice the speed of light. (8) 

While the laws of physics may imply that (8) can't happen in the actual world, we can 
quite consistently imagine possible worlds where the laws are different and in which (8) is 
true. So even if physically impossible, (8) remains logically possible: it is not a contradic- 
tion. 



Like ( 8 ) ,  most propositions we meet in everyday talk are neither necessarily true nor 
necessarily false. Here are some examples: 

It's raining. 
World War I1 ended in 1945. 
There will be no World War 111. 

Each of these is true in some possible worlds and false in others i.e. the truth value of 
each is contingent (dependent) on the possible world being discussed. Such possibly true 
and possibly false propositions will be referred to as contingent propositions or coi~trvi- 

gencies. 

Both necessary truths and contradictions are non-contingent propositions. Some books 
use "necessary" as a synonym for "non-contingent"; in this text however the word 
"necessary" will be taken to mean "necessarily true". Thus, contradictions will not be 
counted as necessary. 

Any proposition must fall into one, and only one, of the three categories shown below. 

Necessary Truth: true in all possible worlds 
Propositions Contradiction: false in dl possible worlds 6 Contingency: true in some possible worlds 

and false in others 

In mediaeval logic, terms like "'necessity", "contingency" etc. were used to indicate 
the mode (or manner) in which a proposition could be true or false. From our viewpoint, 
describing propositions as being necessary truths, contradictions or contingencies indicates 
the rrode in which their truth values are distributed across the set of all possible worlds: 
such properties wil! be celled modal properties :G disiinguish them frsm other prnposi- 
:jonal properties (sL~,!: a5 being ? m e 9  false, !leg.Lio~s, conjunctions e x . )  

rise& to be :i-:"pl~ssizes' ~ / - ~ e r ,  <*FJE say * '  t f i , . r ~  -.-- ""ae~' many possible warid-, p!e do 
nct mean tkey exist in the same way as ihe aciuai world. The actual world includes the 
totdiiji of ail events past. present arid future (ilzcluding anything going on at the other 
end of black holes!), Each possibie world represents one way which the actual world 
might have been. Thus all possible worlds except the actud one exist only as abstract 
entities (in a similar way to numbers, sets and propositions): we use them primarily as an 
aid to unifying and understanding logical concepts. 

NOTES 
Although we have taken the term "possible world" to  be understood through paradigm examples, 
we need at  least to agree that in any possible world propositions must have exactly one of two truth 
values. In addition, we will take it for granted that each possible world contains at least one item. 
hloreover. when we speak of the same proposition raking on truth values in different possible worlds 
we are assuming that adequate "transworld identity" conditions could be specified to make sense 
of all this. Consider for instance the contingently true proposition expressed by "Pat Suppes smokes 
cigars". We need a lvay of fixing the referent "Pat Suppes" across possible worlds without his cigar 
smoking being an identifying characteristic. Logicians have proposed various theories (such as "sense" 
and "causal" theories) to  perform this task. In addition to this we need a way of dealing with explicit 
reference to the actual world. Consider for instance the sentence "In the actual world. Pat Suppes 
smokes cigars". Under uormal construals. this would be taken to say no more than the earlier sentence 
"Pat Suppes smokes cigars '. So the proposition expressed is false in some possible worlds. This leads 
to the apparent contradiction that "in some possible world it is false that in the actual world Pat 
Suppes smokes cigars". To  get ou~selves out  of a mess here it is sufficient to stipulate that reference 



t o  '.the actuai world" is taken t o  indicate reference to the  possible world in wllich the  p ropoc i t~on ' \  
t ru th  value is  being evaluated i.s. "'or" a possible ivorld. "llie actual world" is that  po,cihlc ikorld. 

EXERCISE 3.4 

1. Classify each of the following propositions as necessarily true, self-contradictory. or 
contingent. 

(a) Australia has a population of over 13 million. 
(b)  3 + 7 = 1 1  
(c) Bachelors are married. 
(d) Bachelors are unmarried. 
(e) It's sunny. 
(f) It's sunny or it's not sunny. 
(g) It's not  the case that it's either sunny or not sunny. 
(h) A square has four sides. 
(i) If an apple is green then it  has a colour. 
(j) Every thing is identical t o  itself. 
(k) Politicians are honest. 
(1) Numbers have colour. 
(m) Material objects have location in space. 
(n) If Alan is taller than Bill then Bill is shorter than Alan. 
(0) Alan is taller than Bill. 
(p) It is necessarily true that if it's sunny then it's sunny. 
(q) If Alan knows that 1 + I = 2 then Alan believes that 1 t 1 = 2.  

2. Classify each of the following general types of proposl!ici?s as a necessary t;i;tj~, 
contradiction. or continge~zcy. 

(a" t.he fiegation of a zecessery t ru t t  
; 5; thi? n-,gatiol? cf a cor.:rad;c;ior 
(c) tke fiegation of a contingency 
{d) the conjjucctio~q of a necessary tr'~"; and a contradiction 
(e) the disjunction of a necessary truth and a contradictior 

3. For each of the following staee whether or not  it is true. 

(a) Everything which is physically possible is Logically possible. 
(b) Everything which is logically possible is physically possible. 
(c) Everything which is physically impossible is logically impossible. 
(d) Everything which is logically impossible is physically impossible. 
(e) In this book, "possible" will be used without qualification t o  denote logical 

possibility. 

4. In everyday speech. modal concepts are often expressed by "may" and "can". Both 
these words are sometimes used to convey physical possibility and sometimes mere 
logical possibility. In addition, "may" is sometimes used to indicate that something is 
"allowed"; strictly speaking, "can" should not  be used in this sense, but by common 
abuse of the English language it often is. We have to be on our toes t o  interpret such 
modal words correctly in various contexts. For  each of the following indicate the 
sense(s) in which these words are being used. 



(a) It may rain. 
(b) You can pass the test if you try. 
(c) People can not jump over tall buildings. 
(d) I may win the lottery. 
(e) 1 + I can not equal 3. 
(f) You can talk during the exam but you may not.  

*(g) Tom may eat the last piece of cake. 

Puzzle 3 

Dr. What is puzzled. 
He left the front door of his house, walked 10 km 
due south then 10 km due east. then 10 km due 
north and found himself back at his front door! 

I Given that his front door is not 10 km wide, does 

-. Dr. What live in a possibie world? 
Explain. 

I 

I 
I I 
i I 

j S  j :  r ,ezJ  -viii? krr;ib table: fe; o;siir:s:t:cns ra:h-r ii;aa fgrn:s, asd . < 

ihern :o 4--- * P I  -L\ J:i.. 
. , 

- b r G ~ i , r ; i L c  i i A 5  q oda i  grouz:l;,s cC ;~:ai;c,slt:oils. ?;h'e beyli. by maKiig ~. A .  

, -'pl;be:ate -a- use ci[ r'c_r G::~cP~; ;i3i~ible !A i s? . l i 2 i .  :c. S P E S I : ~  :>T; \ , ~ a 3 7  i:? wh<:l: :;.I.;;]: ; & i e ~  
for propositions a;e to be inteqreted:  this viewpoifit is fimdanxmtai tc ~ L I C I :  of the 
later work and should be well understood. 

Given that we have an accurate Pk-symbolization for the proposition (and this will 
usually be assumed) ive will take it Illat each row o f  a proposition S truth fable refers to  
just that set of possible worlds in which the matrix assignments are satisffed (allowing 
that in certain cases the set may be empty). Since the matrix i~lcludes all the permutations 
of trutlz values. the vows collectively cover the set ofall possible worlds. 

Since necessary truths are true in ail possible worlds, and contradictions are false in 
all possible worlds, truth tables immediately provide a means of detecting certain types 
of necessary truths and contradictions. Consider the following proposition for example. 

Either reincarnation occurs or it doesn't. (1 )  

Using the dictionary 

R = Reincarnation occurs 

we may synlbolize (1) as 



Since R is atomic "R V -- R" is the explicit sentence for ( I )  in PL. Let us agree to 
define the explicit tmth table of a proposition as the truth table in which it is represented 
by its explicit sentence (in PL). Thus the explicit truth table for (1) is: 

R I1 R V - R  

The first row of values considers the possible worlds in which R is true i.e. the set of 
possible worlds in which reincarnation does occur: R V -R is true here. The second row 
considers the possible worlds in which R is false: R V --R is true here also. So R V -R 
is true in all possible worlds: it is a necessary truth. 

Clearly, if the values in the main column of a proposition's explicit truth table are all 
true, that proposition will be a necessary truth. 

Now consider the following proposition. 

Alice and Bernie are both happy or they're not both happy. ( 2 )  

Using the atomic dictionary 

A = Alice is happy 
B = Bernie is happy 

we may symbolize (2) as 

(A &B) V -(A &B) 

So the explicit truth table for ( 2 )  i s :  

A glance at :he main column reveals that ( 2 )  is true in ail possible wol-ids: s:, it is a 
necessary  ruth. Could we have arrived at the same result by using a non-explicit truth 
table? Let's try the following dictionary: 

H = Alice and Bernie are both happy 

( 2 )  may now be represented as 

H V - N  

and the following truth table constructed for it 

Row 1 of this table refers to just those possible worlds where H is true i.e. where A and 
B are both true. So row 1 of this table relates to the same set of worlds as row 1 on the 
explicit truth table does. Row 2  of this table refers to just those possible worlds where 
H is false i.e. where (A & B) is false. So row 2 of this table relates'to the same set of 



worlds as those collectively represented by rows 2, 3 and 4 of the explicit truth table. 
In other words the total set of worlds represented b y  the two rows of this table is precise- 
ly the same as the total set of worlds represented by the four rows of the explicit truth 
table. But this should not  come as a surprise. Any proposition. atomic or otherwise, must 
be either true or false. and both these alternatives are co~lsidered for the matrix proposi- 
tions in any truth table. So the rows of any truth table, explicit or otherwise, will collect- 
ively cover the set of all possible worlds. So in the case of proposition (?-), finding the 
main-column of its "H V -H" table to  be universally true will suffice to  establish the 
necessary truth of ( 2 ) .  

We may now state the following general result. i f  a proposition has any tml-k table 
where its main-column values are all I ,  then that proposition is a necessary truth. 

It  will also be clear from the truth tables above that the sentences "R V --R", "(A & 
B) V --(A & B)" and "N V -- H" are instances of  tautologies i.e. they have tautologous 
forms. Let us agree that  if a sentence expressing a proposition has a particular form then 
the proposition has that form too. With this understanding, we may state that if a propo- 
sition has a tautologous form then that proposition is a necessary truth. It  will simplify 
things quite a bit if we now extend the application of the term "tautology" t o  sentences 
and propositions as well as forms. Let us agree that a PL-sentence or a proposition is a 
tautology f l i t  has a tautologous foiam. For example, the forni 'ip V -p", the sentence 
"R V -- R" and the proposition R V --R are all tautologies. The general result in the 
previous paragraph may now be restated as follows: if a propositiotz is a tuutology then 
it is a vlecessavy truth. 

Now le i  us consider how t m t h  tables may help to  detect contradictians. Remember 
Chat a proposition is a contradicr.ion iff it is false in all possible worlds. Since the rows of  
anv t ru th  table toliecti;.elq; refer i:; precisely ii;e set cf all possible ~ v o r l d s ~  the follo\niing 

i s holds: if a propodtion has sluy sin;th is.62e where its ma;iz-ciila;%n s;c!;ier are all 6, 
then that p r o p o s 1 ~ 0 ~  is a ~ o x t r a d i ~ t i ~ f i .  

- i ake for exampie the foliowing proposition: 

Alice is :happy and Alice is nut happy 

Its explicit truth table is: 

011 0 :  
'r 

.4s the :nann column shows, (3) is false in all possible worlds, and hence is self-contradic- 
tory.  

Vow conslder the fhllow~ng contradiction 

4t least one nf Allce and Bernle is happy, but neither is happy. (4) 

We I-nay show 14) is self-contradictory by producing its explicit truth table: 

- 
B li ( A  \dB) B - ( A  V B )  

1 1 )  i 0 0  i 

p i 1  I 0 0  1 

)I 1 0 0  1 
0 ,  0 O i  0 

i. 



As wit11 ( 2 )  liowever. a iess fhan exp!icit trui?: iable will someti~lnes do the trick. C'hoosing 
the dictionary 

I, = At least one of Alice and Bzrnie is happy 

the following truth table for (4) may be constructed to prove that it is a contradiction. 

From our earlier work on classifying PL-forms it is clear that 13) and (4) have self- 
contradictory forms e.g.. (3) has the form p & --p.  In general, if a proposition has a self 
contradictory form then that propositioiz is a contradiction. 

Consider now the proposition 

Either Sue is not at school or James is at home 

symbolized in PL as -S V J. Its explicit truth-table is: 

Since we know as a matter of fact that S and J can be true or false independently of each 
other (and. hsr~ce ea-,i? row of tile nlairix is possible). ;he presej?ce ef both 1 's aild 0's i? 

. . the !-alp c:'tlrnin i-,(:rc2te: ;I.,a; (5'j i: tr2j:: jr: soll;ie pns.ib!e r:~-'dc a:-id FLIS~ ic so::qq 
-.  ,ethers, Sc ('51 :c ;. c c 7 ~ i ~ ~ g ~ f i :  ~:339c;,tj';p. ",4q:ec\rei;, 6; 1122. 2: i:c; -rp!ici: Pc-<:'-r::~~, ::I- . - . . 

r..-p . , ~ > - l - : I , - . d -  ;.,,op;qt f,2,.Ir; ,..- ?; ,,,/ c;, jc ,<:3;le>-<'L" :/' .T z;!A@]<;,Tl;:(j;T ,c<?EJ~!zg;?; -;;<z;j ;t< i,n.,ii -3.71; LC. x i ,  i rL"I - - 

-" 
<?mi ;c::s;ng-g~~!~ 1 h s  capvpise --:;1:!: hfi~>~<eiier doesncr,l;ola. Ma~:irg ar, er,piicii PL-i'orr,? 
:bLa: is ,;cr:lir;gen: -;l gser?.p:.:e ':hat the oroposilion ::self is cor,'ricger;t. Fol 

o uAzinple. ., consider ihe ~ec;essar)~ [ruth 

Aii animals are animals. , / > (B ,! 

This is an atomic proposition: so the best we can do in PL is to represent it by the sentence 
"A". So the expiicit (and only) truth table for ( 0 )  is: 

The main-column values are not all I .  so the fact that (6) is a necessary rrurii will not be 
revealed by a truth table. This sort of thing can happen with compound propositions even 
when the atomic propositions involved are contingent. Here is an example of this: 

If John has eight children then he has more than six children. (7) 

Using the dictionary 

E = John has eight children 
S = John has more than six children 

we obtain the following explicit truth table: 



Again we have a necessary truth whose main-column values are not always 1. So some 
necessary truths are not tautologies. 

As with necessary truths. not all contradictions can be detected by truth tables. For 
instance, propositions (8) and (9) are contradictions yet the main-columns of their 
explicit truth tables contain at least one 1. 

Not  all animals are anlmai~ (8) 

John has eight, but no more than six, children. 

Cases like these arise became someliines a tiilt1-i table row lrigy refer to no  possible 
.. i,.s,Li,_ -?. i (i ail. "Tills i - i a ~ p e n  ~&i:?-,a the ztorrric propositio-ns are either riot-contingent 
le.g.. (5). js) ) or c-,ii-contifigenilji (2.g , ('1;): ( 2 )  ) "l.'e wzl i;airr; m:.e e2 &cL:; 
1 -  : l A l ~  . 11' m: s e ~ i l o a  an ~ b D o s s i ~ ~ e - e r u ~ j :  ~ ; ~ b i e ~ '  fa; TC*-. 4:- : -~-.---~--r  #>.,+ Li.:: ~ m ~ ~ ~ ~ ~ ' d ~ ! ~  7oht :c: gasp  IS 

 hat if' h e  ~ n a i c  coi~i -n i~  el' a prop3Sitiori's truth iable conrams a mixture cf 1's and 0's 
<-* '- 
L A ~ ~  does not imply t h a ~  the proposition is cznt i~gent :  i t  cou!d he contingent Qe.g., (5) ) 
'out it could instead be a Ixcessary truth (e.g., (61, ('7) ) or a contradiction (e.g., (8). (9) ). 

A t   his point i t  wd: be appropriate to introduce some terminology to formalize our 
discoveries and indicate how proposiTions may be classified by means of truth tables, 

Some propositions are necessarily true because of their structure within PE i.e. they 
are true for all assignments of truth values to their atomic components. We have called 
this type of proposition a tautology. Since a tautologous proposition can be demon- 
strated to be anecessary truth by PC methods, it is also appropriately called a PC-necessary 
truth or a PC-~lecessi~. A proposition is a tautology iff the main-column values of its 
explicit truth table are all 1.  To prove a proposition is a tautology however, it is sufficient 
to find a truth table for it where the main-column values are all 1 (remember example 
(2b) ). Some necessary truths, like (1) and ( 2 ) ,  are tautologies. and others, like (6) and 
(7j, are not. 

Some but not all contradictions will be false for all assignments of truth values to their 
atomic components: these are the PC-contradictions and the main-column values of their 
explicit truth tables will all be false. To prove a proposition is a PC-contradiction, it is 
sufficient to find a truth table for it where the main-column values are all 0.  Some contra- 
dictions. like (3) and (4), are PC-contradictions and others, like (8) and (9), are not. 
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What about a proposition that is true for some assigtzrnents of truth values to its 
atomic components and false for other assignments? The main-column values of its 
explicit truth table will be a mixture of 1's and 0's. As we have seen, it could be a contin- 
gency, or a necessary truth. or a contradiction. In order to find out which, we need to 
"look inside" the atomic propositions involved. Since the internal strilcture of atomic 
propositions cannot be displayed withinPL, the precise modal status of such a proposition 
cannot be determined within PC. It will be appropriate therefore to describe such a 
proposition as being PC-indeterminate. 

Our main results for classifying propositions by means of truth tables may now be 
summarized as below. 

t 
tautology 

Propositions PCcontradiction 

PC-indeterminacy 

A proposition is a tautology iff it has a truth table for which the main-column 
values are all 1 

A proposition is a PC-contradicti~n iff it has a truth table for which the main- 
column values are all O 

A proposition is PC-indeterminate iff the main column of its explicit truth 
table has some 1's and some 0's. 

This classification of propositions may be related to our earlier ciassification of Pk- 
forms as follows. A proposition is a tautology iff it has ki tautologous PE-form. A propa- 
siiioa is a PC-cor?tradiction iff is has a self-ccntradictory PL-form. A proposition is PC- 
indeterminate iff its explicit PLComm is cr-?tiagenr such a ~:ojj:iiitior; ;nay i;e h 

contingency, necessary t r ~ t h  or ~onr~ad ic t i cn .  

When dealing with explicit truth tables it is not always necessary 10 complete the main 
column to  prove that a proposition is PC-indeterminate. As soon as we get one 0 we know 
it is not a tautology. As soon as we get one P we know it is not a PC-contradiction. So as 
soon as we get at least one I and at least one 0 we know it is PC-indeterminate. This short 
cut is used in the example below. 

Example: What do truth tables indicate about the modal status of the following propo- 
sition? 

If there is a Third World War the human race will not survive. 

Dictionary: W = There is a Third World War 
S = The human race survives 

Explicit truth table: 

c u i  s u  W 3 - S  
l o o  

.'. the proposition is PC-indeterminate. 



Section 3.5 

NOTES 
The notion of possible worlds has played a fundamental role in our treatment of modal properties and 
truth tables. This approach was motivated by Bradley and Swartz's logical milestone, Possible Worlds, 
which should be consulted by anyone interested in exploring the philosophical basis of logic. 

The class of PC-indeterminate propositions is still referred to by many authors simply as "contingent". 
We have defined a proposition to be contingent iff it is true in just some possible worlds; if this 
definition is accepted then one musi also accept the existence of PC-indeterminate propositions which 
are non-contingent. 

With some misgivings we have allowed "tautology" to have reference across forms, sentences and 
propositions. Such wide application seems firmly entrenched in the literature, and it does simplify 
discussion of general procedures. Tautologous propositions may be distinguished from tautologous 
sentences and forms by the tern1 "PC-necessity". We have deliberately avoided the terms "PC-valid" 
or 'PC-true" as these often blur for students the important distinctions between propositions and 
arguments or between truth in one model and truth in all models. 

1.  Classify each of the following propositions as a tautology, PC-contradiction or PC- 
indeterminacy. You may interpret the sentences straightforwardly and in terms of our 
truth functional operators. First try to determine the answer mentally using your 
logical intuitions, then check your answer with the truth table test. The following 
dictionary is suggested: 

C = John has a car. 
R = John has a red car. 
W = John has a blua car. 

(a) John has a car. 
(b) Either Johr? has a car oi he doesn't. 
(6) John has a car zcd he doesn9-t have a car. 
( ', , c', i f  John has a car -then he has z car 
( e )  If John has a czr the11 he hi;s a red ear. 
(f] if John has a reci car then he has a car. 
( g )  John has a car if and only if ire has a car. 
(h) John has neither a red car nor a blue car. 
(i) If John has a red car and a blue car then he has a red car. 
(j) John has a red car only if he has either a red or a blue car. 

*(k) If John has a car then he doesn't have a car. 
(1) John has a car, and if he has a car then he doesn't have a car. 
(m) John has a car if and only if it's false that John doesn't have a car. 

*(n) If John has a red car then either he has a blue car or he doesn't have a blue car. 
*to) If John has a car and doesn't have a car, then he has a red car. 

2. (a) Determine the modal status of the following proposition with the most efficient 
dictionary you can think of. 

John has a red car and a blue car if and only if he doesn't have both 
a red car and a blue car. 

(b) Which, if any, of the following PL-indeterminate propositions is non-contingent? 
If you find one, classify it as necessarily true or self-contradictory. 

(i) John has a car but he doesn't have a blue car. 
(ii) John has a blue car but he doesn't have a car. 

(c) One of the PC-indeterminacies in Question 1 is non-contingent. Find it and classify 
it as a necessary truth or a contradiction. 
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*3. (a) Try to  determine mentally what the modal status of the following piece of legalis- 
tic jargon is. Then choose a suitable dictionary (4 propositional constants will 
suffice) and use truth tables to check your answer. 

This policy will cover you for damage, unless the damage is directly or 
indirectly, proximately or remotely, occasioned by or contributed to by 
either war, insurrection or convulsion of nature, or by situations involving 
not only no convulsion of nature but also the absence of war and insurrection. 

(b) For what situations does this policy provide cover? 

3.6 POSSIBLE-TRUTH TABLES 

In the previous section we saw that, when confronted with a PC-indeterminate propo- 
sition, standard truth tables provided no means of deciding in which of the three general 
modal classes (necessary truth, contradiction, or contingency) it belonged. In this section 
"possible-rrtlth tables" are introduced to provide a more complete method of assessing 
modal propel-ties. Later they will be used to determine modal relations (including validity 
of arguments) and to facilitate the solution of logical puzzles. 

As we know. each row of a standard truth table for a proposition refers to just that set 
of possible worlds which satisfy the matrix assignments. Sometimes the set may be empty 
i.e. the rna:rix assignments are impossible. This happens when either a single assignment is 
impossible or the combination of assignments is impossible. We met some cases like this 
in the previous section. What makes possible-truth tables more special than standard i ru i l~  
tables is that they never have imposs;bic a;signn:e;:"i. 131 pos~ibis-t~~lth faisbles each P.o.~~,; is 
possible i.e, -acil 1natr-k~ pemutaiiar, is ".-,ossib!):-s:~~e"- :: is sar;sEed in !easl c3.l 

., . p""iCls: i : A l ~ f i d .  

. .  < ?piie jb.lpji- :;?SS~C?e-izisL- i':y!ty C, ., 7i.. i n p  -:-A- . . a o - . s ~ *  , , s L  ': ~<#j-~-c2..?. ~ ! ~ : f l ~  fg< 5 ~ 2  ? I I - ~ Y ~ S ~  
" ?  
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by placii~g a " x" i;; ;he leff .;f i.he n1z:rix rcw. In order :o cress 3ff szch a row we need to 
"iook _r;sl&'' the em st:^^ pro:;cls;tior_s ana use either a mo;e comprehensirie logic (e.g., the 

~ ~ Qtiani".fi@ztio_n_ Theory ia ce discusset 11: Part h e )  sr our 3iN3 Ir;l?~iti3ns (these uiiii 

uscally suffice) to arzswer the ib!!owing quesfion: is there a possible world which satisfies 
these assignments? In doing this vie go outside Ihe bounds of  he formal propositional 
calculus. 

Let's try this out now on some PC-indeterminacies from 53.5. First consider the 
proposition 

If John has eight children then he has more than six children. (1 )  

Using the dictionary 

E = John has eight children. 
S = John has more than six children 

we obtain the following possible-truth table 



11e reject low 2 hecause theie 1s n o  pos51ble world where John has erght chlldren but does 
not have mole than SIX chlldren 

With a standard trutlz table, a row is present ij'it represents some possible world. With 
a possible-truth table. a row is present if and only ij'it represents some possible world. In 
this way the set of rows in a possible-truth table iizdicares exactly the set of all possible 
worlds. Consequently tile following necessary and sufficient condition can be laid down 
for necessary truths. A proposition is a necessary truth iff it has a possible-truth table 
where its nzaiiz-column values are all 1. For  example, the possible-truth table above shows 
that proposition (1 )  is a necessary truth. 

Here's an even easier one: 
Not all animals are aninals. 

Using the dictionary 

A = All animals are animals 

we get the following possible-truth table 

We reject row 2 because there is n o  possible world where not all animals are animals. 
Because of the exact matching between the rows of a possible-truth table and the set 
of all possible worlds, a proposition is a coi7tvadiction iff it has a possible-truth table 
ivheve its main-column values ure all 3. So the above table allows us t o  classify (2) as a 
contradiction. This case was so trivial that the logical intuition we used t o  reject row 2 
could have been used in classir57 (3) as 2 ccntradicsion without even bothering to produce 
a q j  sort of [ruth table. 1%: more compiicated cases hawever, the possible..truth table 
r:eilhod ~vj i l  :~;ake life easier. 

As a final example., take the propost ion 

Either Sue is not at  school or James is at home. (31 

Using the dictionary 

S = Sue is a t  school 
/ = James is a t  home 

we obtain the following possible-truth table 

Since each of the rows is possible. the possible-truth table is the salne as the standard 
truth-table. Because possible-truth table rows match exactly the set of all possible worlds, 
a proposition is a contingency iff it has a possible-truth table where the main column 
contains a mixture of  1's and 0's. Thus the above possible-truth table allows us t o  classify 
(3) as contingent. 

Once a possible-truth table has been constructed then, the modal status of the propo- 
sition may be determined as follows. 



Proposition Main-column values 
of possible-truth table 

necessary truth all 1 
contradiction a11 0 
contingency some 1 ,  some 0 

NOTES 
Our possible-truth tables are based on  the "corrected truth tables" developed by Bradley and Swartz 
in their Possible Worlds. Note that while possible-truth tables may be constructed for propositions, 
they cannot be constructed for forms. 

In practice, besides crossing off impossible rows with "x" it may be helpful to rule a line through 
them in pencil. 

Propositions which are necessarily true or necessarily false but  which need a more powerful system 
than PC to  demonstrate this may be called PC+-necessities and PC+-contradictions respectively. These, 
together with contingencies. form the class of PC-indeterminacies. 

tautology 
Propositions PC-contradiction PC+-necessity 

PC-indeterminacy PC+-contradiction 

Provided our logical prowess enables their construction, possible-truth tables go beyond standard 
truth tables in allowing the type of PC-indeterminacy to  be specified, and in so doing allow any 
proposition to  be specified as a necessary truth, contradiction or contingency. 

In question 1 of the exercise below, and on some iater occasions, we use capital letters to denote 
propositions which obey a particular restriction but  which are otherwise unidentified (the details 
of the dictionary are withheld). Such letters may be rsgarded either as "liberated propositional con- 
stants" o i  ..restricted propositional variables" when used like this. R standard propositional conslanr 
may be viewed as the limiting case oi' a proposilioilal vzriable whose range of propositions has beeii 
reduced to a single propositio-. 

1 .  Given three particu.lar propositions A, B and C for. which every permutation of truth 
values is possible, use tables to  assess the modal status of the following propositions. 

(a) A V- - (A  & A )  
(b) --A 3 (B 3 A )  
(c) A &-(B - -C) 
(d) -(A 3 B )  & - - ( C  V-4) 
(e) ( C  8 - A )  >-(A - B) 

2. Use possible-truth tables and the dictionary provided t o  assess the modal status of the 
following propositions. 

C = Pat smokes cigars 
P = Pat smokes a pipe 
S = Pat smokes 

(a) If Pat smokes cigars then Pat smokes. 
(b) If Pat smokes then Pat smokes cigars. 
(c) Either Pat smokes cigars or he doesn't smoke. 
(d) Although Pat smokes cigars, he doesn't smoke. 
(e) Pat smokes if he  smokes either cigars or a pipe. 
( f )  .Unless Pat smokes a pipe, Pat smokes if and only if he smokes cigars 
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(g) Either Pat smokes, or he smokes a cigar, but he doesn't both smoke and smoke a 
cigar. 

(h) In spite of Pat's smoking cigars, he doesn't smoke a pipe, and it is the case that he 
smokes only if he smokes a pipe. 

*(i) Only if Pat smokes neither cigars nor a pipe will it be true that if Pat smokes he 
doesn't smoke a cigar. 

3.7 MODAL RELATIONS 

In this section we study the nine most important modal relations that can exist 
between two propositions: equivalence; contradictoriness; implication; converse implica- 
tion; inconsistency; contrariety; subcontrariety ; indifference; and consistency. The first 
five of these relations may often be detected with standard truth tables; for the latter 
four relations, possible-truth tables are usually required. 

Most of these relations have been introduced earlier in a fairly informal manner. Here 
we use the possible worlds framework to define them exactly and indicate how they may 
be tested with the aid of tables. 

Given any propositions p and q,  we define necessary equivalence in the following way. 

p is necessarily equivalent t o  q iff p has the same truth value as q in d1 
possible worlds 

Necessary equivalence, also known as "log%xd equivalence", is much stronger than 
material equivalence. Consider the following propositions 

Pat smokes cigars. 
Wineton smakes cigars 

(I? 
( 2 )  

sylnboiized in PE as Y13" and '"W'.'. Suppose that, ir, f~.:t~ both ?,"% axarld Vg'Jinston do smoke 
cigars. Then (1) and ( 2 )  will be materially equivalent i.e. P E W. If, as a matter of fact, 
neither smokes cigars then again B i~ W since once more P and W have the s m e  truth 
value. However it is easy to imagine a possible wodd vihere just one of Pat and Winston 
smokes cigars: in such a wodd P EZ W will be false. So P i s  not necessargy equivalent to 
W i.e. P 5 W is not a necessary truth. In this text, whenever the term "quhdence"  is 
used without qualification, necessary equivalence is intended. 

Now look at the following propositions. 

Pat and Winston smoke cigars. (3) 
Winston and Pat smoke cigars. (4) 

It should be obvious that (3) must have the same truth value as (4) in any possible world 
i.e. (3) is necessarily equivalent to (4). This may be demonstrated with the aid of a truth 
table. Using a common matrix, the truth table for (3) and (4) is as follows: 

Since the rows include all possible worlds, the matching between the main columns of 



(3) and (4) shows they agree in truth value in each possible world. So (3) is equivalent 
to (4), and (4) is equivalent to (3) i.e. (3) and (4) are equivalent. In general. given any 
truth table for two propositions, if their main columns match they are necessarily equiva- 
le~z t. 

The second modal reiatio~r we consider is that of contradictoriness. Given any proposi- 
tions p and q.  we say that: 

p is contradictory to  q iff p has the opposite truth vdue to g in all possible 
worlds 

i.e. p is contradictory to q iff there is no  possibie world where p and q are both true, and 
no possible world where p and q are both false (cf. 5 1.3). For instance ( 3 )  is contradic- 
tory to (5). 

Either Pat doesn't smoke a cigar or Winston doesn't. (5) 

This can be demonstrated by means of a truth table: 

(3) (5)  

Notice that on each row the main-column values of (39 and ( 5 )  are saposire. . . Since the 
raws inclode a41 possible wcrids it ibiiows tl?a",') is csptr;ndictc\ry sf (5). and tila?: (5) 

. . 
is csq.fradi,;iaq:,i (3: i .2 '3'" 2.6 (5). sre coyty-&ctr.rj-~s. ir, c,gfzeral, pper: cq;i ::.-,r:/q 

~ c fable $qy "/ilc ,~yoposjfi-fis, 1; f.heI7 ~ : ~ ~ ~ : : - ~ p i ~ ~ ~ q : q i  i3.r,e ~)iqpg~I:-. in v&"i;g.z ;/7gy 37'; 

/-ant.-~,&cPerie~. 

';Gj,d l i  -bii; (,f r l ~ ~ ~ c ~ ~ i  t-.- ;,,lk,:lcai;i;i; G i f e p  zfiy ---*I--.+;-" ;i:ai.,:s~--,?5 
- 

p and q ,  we say iha-t: 

jig t~ecess~ri(y im,~?iies q iff ?here is no possible world with p true and d a b e ,  

Necessary implication is much strcnger tlhan rna'cerld iimplica'iiol~: p necessarily implies 
q ,  i f f p  3 4 is a necessary tmth  (nor ;ust true as 2 matter of fact). For example, if in fact 
Pat and Winston both smoke cigars then P 3 W. But since there is a possible world where 
Pat smokes cigars and Winston doesn't, P does not necessarily imply W. In this text, the 
term "implication" used without qualification will normally denote necessary implication. 

If you look back at (31 and (1) it should be clear that (3) implies (1). We can demon- 
strate this by neans of a truth table: 

There is no row where (3) is true and (1) is false. Since the rows include all possible 
worlds it follows that (3) implies (1). In general. given any tnlth table for two proposi- 
tions, if there is no row where the first is true and the second is false then the first 
necessarily implies the second. 



Since there is a possible world where Pat smokes cigars and Winston doesn't (i.e. row 2 
of the above table is possible), it is clear that even though (3) implies ( I ) ,  (1) does not 
imply (3) .  So necessary implication is not a symmetric relation. A relation between p and 
q is symmetric iff it holds only if the converse relation (obtained by swapping p and q) 
also holds. Equivalence is symmetric because given any propositions p and q ,  if p is 
equivalent to q then q is equivalent t o p .  The relations of contradictoriness, inconsistency, 
contrariety, subcontrariety, indifference and consistency are also symnetric (this is easy 
to show from their definitions). Because implication is not symmetric however, we make 
separate mention of the relation of "converse implication" (or "being implied by"). 
Given any propositions p and q ,  we say that: 

p is necessarily implied by g iff g necessarily implies p 

The result that (3) implies (1) may be restated as "(1) is implied by (3)" or as "(I) 
follows from (3)". 

Just as with the material relations 3 and - , if the modal relation of implication holds 
in both directions then the nodal  relation of equivalence holds. That is, h.vo propositions 
are necessarily equivalent iff each necessarily implies the other. This is obvious from the 
definitions. 

The two "paradoxes of material implication" mentioned in 5 2.4 also have their modal 
analogues. Consider the following propositions. 

Pat smokes cigars and Pat doesn't smoke cigars. 
Canberra is the capital of Australia. 
Pat smokes cigars or Pat doesn't smoke cigars. 

Clearly (6) is a contradiction. (7) is a contingency, and (8) is a qecessary truth. Symbol- 
izing these and constructing a common 11-13th fable we obtain: 

There is no row with ( 6 )  true and (7) faise; so 46) necessarily implies (7). Moreover 461, or 
for that matter any contradiction, must imply any proposition, simply because there is 
no possible world where a contradiction is true (prove this for yourself using the defini- 
tion of necessary implication). 

Now look at the columns for (7) and (8). There is no row where (7) is true and (8) is 
false; so (7) implies (8). Moreover (81, or any necessary truth, will be implied by any 
proposition whatsoever, simply because there is no possible world where a necessary truth 
is false (prove this from the definition). So the following two curious results follow from 
the way we have defined necessary implication. 

Any contradiction necessarily implies any proposition. 

Any necessary truth is necessarily implied by any proposition. 

These results will be considered again when we discuss validity of arguments. 

The next modal relation, that of inconsistency, was discussed in 5 1.6. Given any 
propositions p and q ,  we say that: 



p is inconsistent with q iff there is no possible world where both are true 

For example, (3) and (9) form an inconsistent pair. 

Pat and Winston smoke cigars. 
Pat doesn't smoke cigars. 

This can be shown by means of a truth table: 

0 

There is n o  row where both (3) and (9) are true. Since the rows include all possible 
worlds it follows that (3) is inconsistent with (9). In general, given any truth table fov 
two propositions, if there is no row where both are true then they are inconsistent with 
each other. 

EXERCISE 3.7A 

For each of the following questions, use the dictionary below 

A = Alice is happy 
B = Bernie is happy 

1 .  TI-alzslate the propositions below into PL, then luss a truth tab!? t9 grnap them inco 
four  p a r s  of eqaivalent propcsitions. 

(a) .&Ace is happy.  
,, - -  
: pr I! Alice is i;zppy rj:!i;n 3e:nie is I~dppy .  
( r;"ithel- Alice nr Ber2le is nappy. 
(t j j  1: semi.- is heppy then :\lice is liappy. 
(e) 31" Aiice is not happy then Bernie is cot happy. 
, "~ 

::j. Either Alice is happy or Alice is happy. 
(g; Either Bernie or Alice is happy. 
(iz) If Bernie is not  happy then Alice is not happy. 

2. Use a trtlth table t o  group the following propositions into two pairs of contradictories. 

(a) Either Alice o r  Bernie is happy. 
(b) Alice is not happy but Bernie is. 
(c) Either Alice is happy or Bernie is not  happy. 
(d) Alice is not happy and Bernie is not happy. 

3. Use a trtith table t o  show that (a) inplies (h) and thzt (c] is implied by jd) 

(a) Alice is happy. 
(b) Either Alice or Bernie is happy. 
(c) Alice is not happy. 
(d) It's not the case that  either Alice or Bernie is happy 

4. (a) Use a truth table to  show that ii) and (ii) form an inconsistent pair. 

(i) If Alice is happy then Bernie is happy. 
(ii) Alice is happy but Bernie isn't. 

( b )  How many propositions are implied by the conjunction of (i) and (ii)? 



(c) How many propositions imply the negation of the conjunction of (i) and (ii)? 

The next modal relation, contrariety, was first met in 5 1.3. Given any propositions 
p and q.  we say that: 

p is confrary to q iff there is no possible world where both are true but there 
is a possible world where both are false 

For example, (3) and (9) are contraries. If you look at  the three definitions involved you 
will see that any inconsistent pair of propositions must fall into one of two distinct 
classes: contradictories or contraries. 

contradictories 
inconsistent pair < contraries 

Sometimes a truth table not only shows a pair of propositions is inconsistent but also 
reveals the type of inconsistency: for instance, the earlier truth table for (3) and (5) 
indicated they were contradictories. However: except in the rare case where both proposi- 
tions are PL-contradictions, a standard truth table will not by itself reveal that two 
propositions are contraries. If you inspect the previous table for (3) and (9) you will 
notice that both propositions are false on row 2 .  But u~lless we know that row 2 is 
possible, we cannot justifiably conclude that there is a possible world where both (3) 
and (9) are false; and consequently we are unable to  specify (3) and (9) as contraries. 
So to determine contraries we work with possible-truth tables. Looking at  row 2 of the 
matrix we use our logical intuitions to  determine that there is a possible world where 
Pat smokes cigars and Winston doesn't i.e. that row 2 is possible. Treating the table as 
a possible-truth table we are now able to  say that ( 3 )  and (9) are contraries. In general, 
given any possible-fmikz tobie for two propositions, they are contraries ifithere is no row 
with both tme but there is a vow wbt,h both false. 

The next twe modal relations, subcontrariety at;$ indifference, have ;lo*. been dis- 
cussed before aand are cf so~newiza'r lesser importance. Given any propositions p and q ,  cve 
say that: 

p is subc01ztrary to q iff there is no possible world where both are false but 
there is a possible world where both are true 

The fo'ollowing propositions form a pair of  subcontraries: 

Pluto is small o r  inhabited. 
Pluto is small or uninhabited. 

Symbolizing these and constructing a common truth table we get: 

Since the rows include dl1 possible worlds. the absence of any row with both (10) and 
(1 1 )  false reveals that there 1s n o  posslble world where both are false 011 rows 1 and 2 
both propositions are true. but  unless at  least one of these rows is possible 1t does not  
:oliow that there is a possible world where both (10) and (11) are true. Hence the stan- 
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dard truth table fails to show that (10) and (1 1) are subcontraries. Once more, we resort 
to  the possible-truth table method. We can easily imagine possible worlds where Pluto is 
small and inhabited (row l), and adding that row 1 is possible allows us to deduce that 
(10) and ( I  1) are subcontraries. We could have used row 2 instead, as it is also possible. 

Except in the rare case where both propositions are tautologies, possible-truth tables 
must be used instead of standard truth tables to detect subcontraries. In general, given 
any possible-truth table for two propositions, they are subcontraries iff there is no vow 
with both false but there is a m w  with both true. 

Truth-functional indifference is defined as follows. Given any propositions p and q, 

p is indifferent to q iff there is a possible world where both are true, another 
where both are false, another with p true and q 
false, and another with p false and g true 

To take an easy example, propositions ( I )  and (2) are indifferent 

Pat smokes cigars. 
Winston smokes cigars. 

It  should be obvious that a standard truth tabie can never detect indifference: a possible- 
truth table is required. In general, given any possible-inlth table ;'or two propositions, 
they are indifferent iff there are rows for all f o ~ ! ~  mr th-value permu rations of the proposf 
tions. Because all permutations are possible with indifferent propositions, we can never 
deduce the truth value of one from the truth vaitie of the other. Although two proposi- 
tions may thus be truth-f~nctional!y indifferent, they may still be connected in other 
ways (:he probabiliv of one may depend 9: 3;e truth value of the other: to pursue thjs 
point howerix ;~rauld take us into :lie are2 of jildu~liye logic). 

- b .;i ,, - 3~za...-. .,,a:(tple. {: ). acd. i3' 2;e cr:r.sis-tez~~, 22.2 9 arr: (1% aa3d (1 !). Ti: should b p  c!e:.r frofi 

thn deficj.tior:s ihat  ''i;jcinsis!eni" msans ' c~i?srst?ni ' ' .  Excee",j:2 "e :zre Case 
" .  

both ;;roposi:ii~ns ace iauioiogiez? p~ssrgie-t:-ct?~ tak;ei, ra1lie; than s;ar&rd tr:~.ch t:xbies 
are rec;7;ired to aet-ct consisieficy. For instance , - in ths previou,:is :able for ( j  b) and (! i) 
we r:eed lo imcw that at least on5 of rows 1 and 2 is possible in order -to pronounce (10) 
and / I  I )  as a consistentpair. In general, given any possible-tiath table for nvo proposi- 
tions, they me consistenr i f f  there is a row with both tme. 

Let's return now to the first five modal relations discussed. For each of these we found 
that the relation holds if a certain pattern occurs in the standard truth ta-ble for the 
propositions. Does the relation hold only if  the pattern occurs? The answer is "No". 
Consider for example the following two propositions. 

The Earth has exactly seven moons. 
The Earth does not have eight moons. 

Using the dictionary 

S = The Earth has exactly seven moons 
E = The Earth has eight moons 

we obtain the following truth table: 



Since none of the patterns discussed for the standard truth table tests occurs here, the 
;eia:ion between (12) and (13) is iizdeterminate within PC. By going beyond PC in con- 
strucring a possibie-trutil table however, the relation can be found. Using our intuitions 
on the matrix rows we find that just row 1 is impossib!e, thus obtaining the possible- 
trurh table: 

Looking at the three remaining rcws we see t h a ~  there is n o  possible world where (1 2 )  
is true and (13) is false i.e. (12)  necessarily implies (13). 

Similarly. the other relations may fail io  be detected by standard truth tables when 
the matrix proposirions ti-ternselves are not ind i f fe re~ t  tc each other. Standard truth 
eahle patterns may thus be sufficient bit? are not  necessary for the modal re'ariocs to 
!~c!ici. With possible-t!-:i;k tables a s e ~  of riecessar;y arid s~uffici.~nt conditions can be given 
i.e. '~if-y' resi can be epplied rather than merely a- ~ ' i P '  test.. We I??ay suc:rria.:rije these 
tests for our nine rn~cia!  rejaiions as rcllows. 

' .  . 
- .  2 ;; qi*ival,nn; 9 :;I ;!'2ii main coiili'nni. :aalril 

2 .  j i  is contvadicrory io q iff their main coiumns are opposite. 
3 .  p is ronrmry ic q iff there is n c  row w~TI :  both ?CUP bili there is a i.o-\;v wiih 

b:;+h -- 
<, .., ialse 

4. p is ~ u b c o n ~ r ~ ~ y  to q iff there is n o  row with boili, false but there is a row with 
both %rue 

. - 
5. p implies q  if there is n o  row with p true and q false 
5. p is implied by q iff there is no row with q true and p false 
7. p is ir:cliJ':erent tc q ifftl-tere sre rows for ail four truth-value permutations 

8. p IS consistent with q iff there is a row with both true 
9 .  p is iizcotlsistent with y iff there is n o  row with both true 

Tile last two relations above are collectively exhaustive (i.e. any pair of proposiiions 
must exhibit one of these relations) and rnutuaily exciusive ( n o  pair can exhibit more 
than one s f  these re ia i io~s j .  Since  bey are less specific than the other reiations we will 
say 110 more abour rhem ai  this stage. 

The first seven relations above are collectively exhaustive but are not ~ n ~ t u a l l y  exclu- 
sive. For example. if p is equivalent :o q ,  then p both implies and is implied by I.: i;:: i?.:is 
case ii is bztter to  staiz ;he relationship between p and q as one of equivaience iarhzr 
, * <. . . .  
i i i d ~  1~~:siication sincz the former dzscripiion provides more informaticr! sboat  the 
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relation. Given two propositions, if we want to zero-in efficiently on the most informative 
relation obtaining between them it is best to test in the order listed above, stopping as 
soon as we find a relation that holds between them. If we find the propositions are not 
contradictories then they are contraries iff there is no row with them both true and they 
are subcontraries iff there is no row with them both false (explain why these half-tests for 
contraries and subcontraries are adequate here). Because the seven relations are exhaus- 
tive, if we find the first six relations do not hold we know immediately that the proposi- 
tions must be indifferent. This method may be summarised as follows. 

Method: Compute the main columns of p and q using a common matrix 

Eliminate any impossible rows. 

Test in the following order, stopping as soon as a relation is found by the 
tests shown in parenthesis: 

1. p is equivalent to q (matching main columns) 

2. p is contradictory to q (opposite main columns) 

3. p is contrary to q (no row with both true) 

4. p is subcontrary to q (no row with both false) 

5. p implies q (no row with p true and q false) 

6 .  g is implied by q (no row with q true and p false) 

7.  p is indifferent to q 

Since A,  B and Care indifferent, this is a possible-truth table. 
(a) and (b) are not equivalent (see e.g., row 6) 
(a) and (b) are not contradictories (see e.g.. row 1) 
(a) and (b) are not contraries (see e.g., row 1) 
(a) and (b) are not subcontraries (see row 2) 
(a) does not imply (b) (see e.g., row 6) 

It will be convenient to extend the notion of indifference to any number of proposi- 
tions as follows. The propositions p l ,  p,, ... , p ,  are indiflerent iff &I permutations of 
tnih-values for the propositions are possible. When the matrix proposi f i~ns o fa  table 
are itq&ikrenf, the possible-i-rutlj tobie is identical to the standard tmfh since all 
rows are possibls. 

E:sek;rpie: Given that A, B and @ aye indiffereat ~r.spositions, discuss the m=dzi li:iation- 
s h i ~  between (a) and (F) 

(a) 4 3 (B 3 
(13) (A 3 B Q  3 @ 

la) lb) 
A 3 ( W 3 C )  

1 1  
0  0  
1 1  
1 1  

0 1 1  
0  

(A > B ) >  C 

1 1  
1 0  
0  1 
0  1 
1 1  
1 0  
1 1  
1 0  

t t 



There is n o  row where (b) is true and (a) is false. 

.'. (b) implies (a) 
i.e. (a) is implied by (b). 

Comments: The justification provided below the table for the answer 
would normally be done mentally rather than written down. 
With problems like this it is very helpful t o  use a different 
colour for the main columns t o  highlight them for comparison. 

NOTES 
The following table summarizes our modal relations by listing which main-column combinations are 
allowed, forbidden or mandatory in a possible-truth table. 

Ailowed Forbidden Mandatory 

p is indifferent to q 

P 4 P 4 P 4 

p is equivalent to  q 1 1 1  0 

0 0 0 1 

p is contradictory to  q 1 0 1 1 

0 1 0  0 

p is contrary to  q 1 0 1 1 0  0 

0 1 

0 0 

p is subcontrary to q 1 1 0  

I 0 

0 I 

i; implies q 1 1 

0 i 

0 ,2 

'7 IS impiied by  4 I 9 

i: 

0 0 

1 d 

I 0 

3 1 

0 0 

p is consistent with q 1 1 

1 0 

0 1 

0 0 

p is inconsistent with q 1 0 1 
0 1 

0 0 

( A  blank in the mandatory column indicaies that while no  specific combination is mandatory, at  least 
one of the allowed combinations will of course be present.) 

A "reduced truth table" for a pair of propositions may be obtained by first determining their possible- 
truth table and then eliminating rows where maincolumn value-pairs are merely a repeat of a previous 
row. Reduced truth tables provide a quick way of checking for the 1 5  possible modal relations that may 
exist between two propositions. For further details consult Bradley and Swartz (op. cit.). 

Although the negation is the most common contradictory of a proposition, it can easily be shown that 
each proposition has an infinite number of propositions which are contradictory t o  it. First note that  
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there is an infinite number of necessary truths (e.g., 0 < 1 , O  < 2 , 0  < 3, ... ). Also note that any proposi- 
tion p will have -p & T as a contradictory, where T is any necessary truth. (As an exercise, prove 
this for yourself.) Since there are infinitely many T's this completes the proof. 

Some authors prefer to use the term "independence" for truth-functional indifference. We have 
avoided this practice because in inductive logic the term "independence" standardly denotes a much 
stronger lack of connection: there p and q are said to be independent iff rhe probability of p is un- 
related to  the truth value of q (i.e. the probability of p given q = the probability of p). 

EXERCISE 3.7B 

Key:  When asked t o  determine the "first" modal relation, indicate the first that  
holds from the below list, by selecting the appropriate key number. 

1.  equivalent 
2. contradictory 
3 .  contrary 
4. subcontrary 
5. first implies second 
6. first implied by second 
7 indifferent 

1 .  The main-columns of a possible-truth table for propositions (a) - (h) are sh3wn below. 

(a) (b) (c) (dl  (el / f )  (gl (hl  

<$ ?.rLd < !;>. 
. , ,  

(5) silo :q 
(5.) 8.325 (d,I 

and ( e )  
(a) and i f \  
(a; and jgj  
[a] and (ti) 
jb) and bd) 

(b! ar;d is: 

(5; a?,d i!; 
, . to;  2nd () 
jb) and (h) 
;-: " J  and ( f )  

je) and (k>  
(I) and (gf 

( g )  and ih) 

2. Four propositions are defined in terms of two indifferent propositions A and B as 
follows. 

(a) A & B 
(b) ( A  3 B )  3 A  
(c) A  3 ( B  3 A )  
(d) ( B 3 A 1 3 B  

Construct a common truth table for these four propositions, then state TRUE or 
FALSE for  each of the following. 

(i) (a) is equivalent t o  (b) 
(ii) (a) implies (b) 

(iii) (a) is implied by (b) 
(iv) (b) is inconsistent with (d) 
(v) (c) is implied by (b) 

(vi) (c) is subcontrary t o  (d )  

(vii) (c) is contrary to (b) 



(viii) (b) is indifferent t o  (d) 
(ix) (c) is implied by each of the others 

3. Five propositions are defined in terms of three indifferent propositions A ,  B and C 
as follows. 

(a) A 3 ( B  V C) 
(b) A - (B V C) 
(c) ( - B & - C ) > - A  
(d) A & - ( B V C )  
(e) A 3 C  

Construct a common truth table then determine the first modal relation between the 
following. (Use the Key) 

(i) (a) and (b) 
(ii) (a) and (c) 

(iii) (a) and (d) 
(iv) (a) and (e) 
(v) (b) and (el 

4. Five propositions are defined in terms of three indifferent propositions A, B and C' 
as follows. 

(a) ( ( C 3 A 1 3 B )  
(b) ( - - ( B V O V I - B & A ) )  
(6) (k t \ ! ( -A&C)j  
i d )  !A gk- B )  
( e) ( (-4 E C] 'v' -- Cj 

a. -- yc:u me 
I, = I laugh 
U = I laugh uncontrollably 

(a) If you tickle me I laugh. 
f b j  1 laugh uncontrollably if you tickle me. 
(c) Hf I'm not  laughing then you're not  tickling me. 
(d) Although you're tickling me I'm not  laughing. 
(e) If you tickle me I laugh but  not  uncontrollably. 

Now use possible-truth tables to  determine the first modal relation between the  
following. (Use the Key) 

(U (a) and (b) 
(ii) (a) and (c) 

(iii) (a) and (d) 
(iv) (b) and (d) 
(v) (el  and (a) 

(vi) ( b l a n d  (e) 
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6. Classify each of the pairs mentioned in Question 5 as consistent or inconsistent. 

7. Translate the following pairs into PL using the suggested dictionary, and then use a 
possible-truth table t o  classify them as either contradictories or contraries. 

(a) The chairman is both honest and competent. 
The chairman is neither honest nor competent. 

(b) The chairman is either not  honest o r  not  competent. 
The chairman is competent and honest. 

(c) The chairman is competent but dishonest. 
The chairman is honest but incompetent. 

"8. Paul and David and engaged in a debate about Fred's pets. They make the following 
claims: 

Paul: Although Fred has a large dog he doesn't have a cat. 
David: Fred has neither a dog nor a cat. 

Using the suggested dictionary, construct a possible-truth table for these claims then 
use it  t o  answer the following questions. 

C = Fred has a cat 
I> = Fred has a dog 
L = Fred has a large dog 

(a) Have Paul and David adopted contradictory positions? 
(b) Have Paul and David adopted contrary positions? 
(c) Describe four different possible worlds in which both Paul and David have made 

false claims. 
(d) Describe two different possible worlds in which just one of Paul and David is 

correct. 
(el Yf it is established that Pau? is wrong: does this imp?j7 that Davia is right? 
(E) If li is estzbiishad t h ~ t  Pau! 3s ;ight, does. this imply ;hat Daxiid is wrong? 

Selena: Fred has a c a t b u t  he doesn't have a large dog. 
Linda: Elthe. Fred does have a dog or he doesn't have a cat. 

Using the same dictiollary as for  the previous question, construct a possible-truth tabie 
for these claims then use it t o  answer the following questions. 

(a) Have Selena and Linda adopted indifferent positions? 
(b) Have they adopted subcontrary positions? 
(c) Describe a possible world (if any) where both are correct. 
(d) Describe the different possible worlds where just one is correct. 
(e) If it is established that Selena is wrong does this imply that Linda is right? 
(f) If i t  is established that Selena is right does this imply that Linda is wrong? 

10. Answer TRUE or  FALSE for each of the following. 
Given any propositions p and q:  

(a) if p is equivalent t o  q then p implies q 
(b) if p implies q and q implies p then p and q are equivalent 
(c) if p and q are inconsistent they are contradictories 
(d) if p is consistent with q then q is consistent with p 
(e) if p implies q then q implies p 
(f) p implies any contradiction 
(g) p implies any necessary t ruth 
(h) p is implied by any contradiction 



(i) p is implied by any necessary truth 
(j) if p and q are contraries then they are inconsistent 
(k) if p and q are contraries they are both false in some possible world 

"(1) if p and q are equivalent they are not contraries 
*(m) if p and q are equivalent they are not subcontraries 
*(n) if p and q are contradictories then p does not imply q 
(0) if p and q are indifferent they are consistent 

* 1 1. After a course in philosophical scepticism, a student was heard to  remark: 

There's one thing I'm sure about now. 
And that is that I can't certain of anything. 

Discuss whether or not the student was consistent in his remarks. 

3.8 SOME IMPORTANT TAUTOLOGIES 

Recall that a well formed formula of P k  is a tautology iff its value = 1 for all assign- 
ments of values to its propositional letters. In this section we look at a few of those 
tautologies which attract a special name because of their fundamental logical role. Some 
of these have been met before and proved to be tautologous; the proof of the others is 
left as a truth table exercise. 

Let's begin with the following tautology. 

P V - P  (1) 

If we uniformly replace the propositional variable p with the form (p & qq) we obtain: 

(p & q) ',,; -.-, ( p  & q j ( 2 )  

Wd? (2: also be a taicltoiogy? A cjuick test viith a table wjJl show 2 d~ Hm fact, if you tlhinjc 
about it, r;-ifo;r.du replacing f; in (1 j wjtb ally PL,-i>~ff will -e~r!e  in 3 ",~~eo]ogg This 

;nDws f i jm tin- fact ;ha" aiVff can '[a!<- cn iii: more t:-ufk~ vdr;es than a pr~posiiionai f" 
variabk scar1 {viz. r and 0). So the fallowicg r1s;io e.xampies will aiso be Pautoiogies: 

" p '.' " " P (3):  
(4 & jr. \ J ' S ) )  \/ - ( g  & (r V s ) )  (4) 

These were obtained from (4) by uniformly replacing p with -- p and (q & (r  V s) 
respectively. In general, given any PE-wff a,  the following will be a tautology: 

cu v --a (5) 

This kind of result can be generalized. Consider for instance the following tautology. 

p & q  . = . q & p  46) 

Here we have used dots to highlight the main operator. If we unformly replace p with 
Cp 3 q) and q with --r we obtain: 

( p > q ) & - r  . - . - r & ( p > q )  ( 7 )  

If you test (7) you will find that it is also a tautology. It is not hard to see that if we 
replace the p and q in (6) with any PGwffs a: and 0 we must end up with a tautology 
i.e. any wff of the following form is tautologous: 

a : & p  . r . p & a :  (8) 

The following general result should now be obvious. If the propositional letters in any 
tautologous formula are uniformly replaced with PL-wffs then the resulting formula is 
also a tautology. While we will typically use propositional variables @, q, ... ) instead of 



PL-wff variables (oi: p. ... ) when identifying importailt tautologies. it should be borne in 
mind that the generalization above holds. This is important in later work. 

In 53.5 we noted that any proposition with a tautologous form is itself a tautology. 
and moreover a necessary truth. You may recall the next two examples and their symboli- 
zations: 

Either reincarnation occurs or it doesn't. 
R V - R  

Alice and Bernle are both happy or they're not both happy i i o )  
( A  & B )  V - ( A  & B )  ( 10ai 

Since both (9) and (10) have the tauroiogous form "p V  - p H .  they are tautologies. In 
general. given any proposition p, p V  --p is a necessary truth i.e. any proposition must be 
either true or not true: this result is called the Law o f  Excluded Middle (LEM) since it 
excludes any middle state between true and not true. Sometimes the name "Law of 
Excluded Middle" is applied t o  PL-forms, sometimes to PL-sentences and sornetimes t o  
propositions. Thus. letting "wf" abbreviate "well formed", rhe label "LEM" might 
denote any of the following three results: 

1. the form "p V - p  " is a tau:o!ogy, as is any wf FL-form a V  -a;  
2. any wf PL-sentence of the form p V - p  is a tautology; 
3. any proposition of the form p V - p  is a tautology. 

To  simplify matters we introduce the notziion "T:" as an abbreviation for --This is a 
tautology:" and take it that the formal, senrential and propositional versions of a tautol- 
ogy may all be expressed by jisting the tau~ologous form. So the three aspects of LEhI 
mentioned above may be expressed concisely as follows. 

With this uilderstoiid. let's look a? sollie ryoi? logical laws. The Law c~'>,i;z-C~'c~trudtc- 
tion (LNC; states that nc propositi3n car: be ~6th tilie 2nd c o t  tr:Je i.e. 

Both LEM and PNC may be connbined into a single law which we cal! the Law of&- 
Valence { LBV). 

i.e. any proposition must be true or not  true but  not both. If we agree that "false" 
means "not true" then this law says that each proposition has exactly one of the values 
"true" and "false". Because classical logic limits the number of possible truth values t o  
these two, it is sometimes called a -'2-valued logic'': hence the term "bi-valence". 

In 53.7 we discussed various modal relations between propositions. Some of these 
relations (e.g., contradictoriness. contrariety. subcontrarietyj are of primary importance 
in dialogue situations (e.g.. in indicating cleariy what bearing the truth or falsity of one 
position in a two-party debate has on  the other position). Some other relations, partien- 
!arly equivalence and implication, are of primary importance in 11le construction and 
evaluation of arguments and logical deductioiis: because the analysis of such deductive 
reasoning is facilitated by referenci. t o  the underlying forms: it will be helpful to  intro- 
duce the notions of equivaience and implication berween formulae. not jusr propositions. 

Given any two PL-wffs î sa and f we say :hat a arlc 0 are tautologicaliy equivalent iff 
a - /3 is a tautology. So two fori??uiae will be tauroiogically eciui\laienr jf:f they 11uve 
matching main columizz in their trr;th :able. For  exan~ple.  the form p is ;autologicail>. 
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equivalent to - - - - p .  This can be established from the table below either by noting that 
p - ---- p is a tautology, or, more quickly, by noting that p  and - -- p have matching 
columns. 

Because we often use PL-sentences to denote specific propositions, it will be convenient 
to extend the notion of tautological eauivalence to propositions. Let us agree that two 
propositions are tautologically equivalent iff they have tautologically equivalent forms. 
If a proposition has a tautoiogous form, it is a necessary truth. Hence iftwo propositions 
are tautologically equklialent then they are necessady equivalent. From our work in the 
previous section it should be clear that the converse of this general result does not boid 
e.g.. the propositions "Some doors are open" and "'Not dl doors are unopen" are neces- 
sarily equivalent but not tautologically equivalent. 

kook at proposirions (1 1 )  and (12): as thsir PE-symbolizations (1 E a) and (12a) make 
clear. they have the tauiologicaily eqiiivalent farms p and - - - -p .  So ( I ? )  and (i2) are 
tautologically equivalent. and hence necessarily equivalent. 

It's Monday. 
M 

i Cairn & ) 
Q Cow V  1 
Q Corn -1 
d Comh%I 

These operators are also associative i.e. 

T : p & ( q  & r )  .= .  ( p  & q )  & Y (Assoc & 1 
T : p  V ( q  V r )  . = . ( p  V q )  V r  (Assoc V  ) 
T: p  ~ ( q  = r )  .= .  (p r q )  = : r  (Assoc 5 1 
T: P f ( 4  f r )  .r. ( P  $ 4 )  f r  (assoc +> 
Note that 3 is neither cornmutative nor associative 

The next two laws have been alluded to in earlier discussions about equivalent trans- 
lations. They are calledDeMorgan's Laws (DeM] after the famous mathematician Augustus 
De Morgan. 



It  is interesting to  compare - with the unary - of mathematics. The algebraic result 
x = --x is similar to  DN, but this is as far as the a n a l o a  goes. For  instance, while unary - 
distributes over +, i.e. - (x + y) = -x + -y, any attempt to  distribute -over & or V results 
in a conversion between & and V as shown by DeM. 

As preparation for our next equivalence, use your logical iniuitions t o  determine 
which. if any. of  (14) - (16) are equivalent t o  (13). 

If Smith is a woman then Smith is human. 11 3) 
If Smith is human then Smith is a woman. (14) 
If Smith is not  a woman then Smith is not human. ( 1  5) 
If Smith is not human then Smith is not  a woman. (16) 

Notice that (14), the converse of (13), is obtained by swapping the antecedent and conse- 
quent; ( IS) ,  the inverse of (13), is obtained by negating the antecedent and consequent 
where they stand; (16), the contrapositive of (13), is obtained by both swapping arid 
negating the antecedent and consequent. Did you see that (16) is equivalent t o  (13)? As 
regards (14) and (151, these are equivalent t o  each other, but not  t o  (13). Provided "3" 
is an acceptable translation for '-if ... then" these results can easily be demonstrated with 
a truth table (try this for yourself). The terms above are also used in reference to  3-condi- 
tionals. Thus p 3 q has q 3 p as its converse, - - p  3 -q as its inverse and - q  3 - p  as its 
contrapositive. The equivalence between a proposition or formula and its contrapositive 
is known as Contvaposition (Contrap). 

Too frequently: conditional statements are n a d e  in the hope that the listener will errone- 
ously assume the inverse e.g., - P i r  you elect me, conditions will improve. (17)  

If you use Coodo  toothpaste, your teeth will sparkle. 9 8) 
Their (non-eq~aivalent) inverses are: 

If you don't electme. conditions won't improve. ( i 9) 
11' you don't use Goodo toothpaste, your teeth won't sparkle. 130) 

Before discussing our last equivalence for this section, it will be timely to introduce 
the notion of implication between formulae. Given any PL-wffs oc and 0, we say that a 
tautologically implies 0 i f f a  3 0 is a tautology i.e. a: tautologically implies 0 ifithere is no 
truth table row where a = 1 and /3 = 0. For example, the table below shows that p tauto- 
logically implies p V q but  not  vice versa. 

As with tautological equivalence, we extend this notion t o  propositions. We say that  
one proposition tautologically implies a second proposition iff the first has a form which 
tazltologically implies a fomz of the second. For example, ( 2  1) tautologically implies 
(22) since they have the forms p and p V q .  

It's Monday. 
It's Monday or Tuesday 
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Because of the fact that any proposition with a tautologous form is a necessary truth, it  
follows that if one propositio~z tautologically implies a second proposition then the first 
proposition necessarily implies the second. From 5 3.7 it is obvious that the converse of 
this general result does not hold e.g., "Terry is 35" necessarily implies, but does not 
tautologically imply, the proposition "Terry is older than 30". 

Look now at propositions (23) and (24). Intuitively, would you say that (23)  implies 
(24)? 

If you are a human adult and a male then you are a man. (23) 
If you are a human adult then if you are a male you are a man. (24) 

It does imply (24).  If we agree that our PL-operators provide adequate translations, this 
can easily be shown with a truth table. This example is an instance of the law of Exporta- 
tion (Exp) i.e. 

T : ( ~ & q ) > r  . I ) .  ~ 3 ( q 3 r )  (EXPI 

This says that ( p  & q j  3 r tautologically implies p 3 (q  3 r). It is called "Exportation" 
since the q is "exported" from the antecedent ( p  & q).  Here now is another question. 
Does (24) imply (23)?  

Again, a truth table will readily show the answer is "Yes". This is a case of the law of 
Importation (Imp) i.e. 

T: ~ 3 ( 4 3 r )  . I ) .  ( p & q ) > r  (Imp) 

Here the q is "imported" back into the antecedent 4p & q).  From our definitions it will 
be evident that ioutologicai eqliivaience OCCWS: iJi:f there is ~outologcal implication in boi'iz 
directiocins. Sc Exp and Imp may be combined to form the fo1low1r.g equivalence which 
bve iJdi';l Eypcst- I,qzpc,vf (Exniri) 
- 

9 .  A .  ( z 7 & a $ )  I > r  , = ~  5 2 { ~  2,~') ( B.: ~2flj.j 

Wef! tl-ir,t"s enoi;gl! tasioiogi.s ir;:r j_ze !?;0men;1~ ".Vi. viiil rr;n across seuera -further 
. . e a ~ ~ ~ ; a [ e n c e ~  and j:mp]icntj:>r;s iarej- 311. In <:rder &brev",z:e our refc-.:rsnce suGI: 

r.esuli:s it wi!L ije conlienient ifitroduce :i iew -3or.e syrrj,bojs. The symbol "'a9' v~dl  be 
useci tc: deliote "syste~n equivalence"' i.e. rnodci equijidence that can be established 
within the logical system being discussed. The syster~i we are discussing at the moment is 
Propositional Calculus: in this case denotes tautological equivalence. For example, 
instead of expressing DN as 

T: -- P  = p  

we could write this more briefly as 

""P" P 

Notice that the "T:" is no longer required. To minimize the use of brackets or dots and 
to  emphasize that is a modal rather than a truth-functional operator we give * a lower 
priority than our truth-functional operators. For instance when Contraposition is stated 
as below, must be read as the main operator. 

~ 2 4  " " 4 3 " ~  

In a similar manner, we use "*" and "s" to denote "system implication" in the 
directions indicated by the arrow heads. Within PC "*" and "*" may be read as "tauto- 
logically implies" and "is tautologically implied by" respectively. As with o, * and .= are 
niodal operators and are assigned lower priority than truth-functional operators. For 



example, Exportation and Importation may be stated more briefly as: 

Obviously, + amounts to  a conjunction of * and *. These symbols may be used with 
both formulae and propositions. When propositions are involved, the corresponding 
necessary relation also holds. For  instance, in reference t o  propositions (1 1) and (12) the 
result - - M * M asserts tautological equivalence (and consequently necessary equiva- 
lence) between (1 1) and (12). 

NOTES 
Though nine modal relations were defined between propositions, we have defined only three for 
formulae. Other relations could be defined for formulae but  there is little point in doing so. 

We have gone to  some pains in distinguishing between tautological and necessary relations, partly to 
indicate the limitations of PC and partly to  prevent uselmention ambiguities arising with forms. 

Contraposition is sometimes called "Transposition". Often the Exp-Imp equivalence is called simply 
"Exportation". 

Unlike 7 &, V ,  1, and $, the modal operators *, *and t a r e  not  truth-functional. For instance, 
if two propositions p and q are true this fixes the value of p  E q as true; but the vaiue of p + q  is 
not fixed until we know how the values of p and q  are distributed across possible worlds. 

If when working in a system other than PC (e.g., Quantification Theory) it is desired to  emphasize 
that a certain equivalence of implication is tautological, we can add the subscript "T" to  the system 
relation symbols. thus: *, 7 C=. 

T T T  

1 Eacf; af ";ha foli~>#;ying "o-,~~uiae is a tautology: name the law sf 1iihic;i i i  is a? instance,  

ba) &L -41 
3b) bq 3 PI  V  --,(q 3 I.? 
(6) - p & q  .= .  q & - p  

(d l  ( p  ca> & " I P  -- 4 )  
(e) - - ( q & ( r > s ) )  . - .  --q V - ( ~ 3 s )  
(f)  (q & r )  3 - s  . = . - - s  3 -Cq & Y )  

(&) (I" V - 4 )  . = . --(p V  -q )  
(h) -( ( p  & q )  V  r )  . E . - - ( p  & q )  & -r  
(i) -p V ( r  V ( q  & s) . - .  ( -p V  r) V  ( q  & s )  

(j) ( p & ( q V r l ? > ~  . .  P > ( ( ~ V ~ ) > P )  

2. (a) D i s c ~ s s  whethzr ei not  the sense of "and" in the following examples is commuta- 
tive. 
(i) She tickled me and I laughed. 

(ii) Meditate and you will find peace. 

(b) Do the following examples show that "and" is not  associative? 

(i) F,ty two exams are on genetics, and probability and statistics. 
(ii) My two exams are on genetics and probability, and statistics. 

3 Write down in order the converse, inverse and contrapositive of the following formula, 
using DN where relevant t o  simplify yycr  answer. 
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4. Which of the following is equivalent t o  "If you have studied you will pass"? 

(a) If you haven't studied you won't pass. 
(b) If you pass then you have studied. 
(c) If you don't  pass you haven't studied. 

5. Which of the following are equivalent t o  
"If it's not  good meat. it's not Kilcoy meat."? 

(Hint: First translate the above proposition into a simpler equivalent. Translation 
into PL will help for some, but not  all, of the examples.) 

(a) If it's good meat then it's Kilcoy meat. 
(b) It's Kilcoy meat if it's good meat. 
(c) It's not  Kilcoy meat only if it's not good meat. 
(d) If it's Kilcoy meat. it's good meat. 
(e) If it's not  Kilcoy meat it's not  good meat. 
(f) It's not  Kilcoy meat if it's not good meat. 
(g) It's good meat only if ~ t ' s  Kilcoy meat. 
(h) It's Kilcoy meat if only it's good meat. 
(i) It's good meat if and only if it's Kilcoy meat. 
(j) Being Kilcoy meat is necessary for being good meat. 
(k) For  it t o  be good meat it  is sufficient that it  be Kilcoy meat 
(1) Only Kilcoy meat is good meat. 
(m) Kilcoy meat is good meat. 
(n) Only good meat is Kilcoy meat. 
(o) Kilcoy meat is the only good meat. 
ip) Good meat is only Xilcoy meat. 
(q) Kilcoy meat only js good meal. 

A proposi'fioncl.l letter may be either a propositional variable or a propositional constant. 
iWfs of PE are evaluated in zssernbfy-line order i.e. by the foliowingpri-io&y convention: 

In a formula's truth table, columns of values are placed under the evaluated symbols, the 
main column ( i s .  the last calculated) being identified with an arrow: this column gives 
the values of the formula as a whole. A formula with n propositional letters has 2" rows 
in its truth table. 

tautology (main-column values: all 1) 
PL-form feontradiction (main-column values: all 0) 

contingency (main-column values: some 1, some 0) 

The following one-operand evaluation rules save work: 
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Necessary Truth (true in all possible worlds) 
Propositions Contradiction t (false in all possible worlds) 

Contingency (true in just some possible worlds) 

The rows of a proposition S truth table collectively cover all possible worlds, though some 
rows may not be possible. If a proposition has a tautologous form it is a tautology (and 
necessary truth); if it has a self-contradictory PL-form it is a PC-Contradiction; in all 
other cases it is PC-Irzdeterminate, and the main-column of its explicit truth table contains 
a mixture of 1's and 0's. 

Possible-truth tables are truth tables where each row is possible. They are formed from 
standard truth tables by eliminating each row that has an impossible matrix permutation. 
Given a possible-truth table, any proposition may be classified as a necessary truth, 
contradiction or contingency according as its main-column values are all true, all false or 
a mixture respectively. 

Using "pw" as an abbreviation for "possible world", nine modal relations for propositions 
p, q may be defined as follows. 

I .  p is necessarily equivalent to q iff p has the same truth value as q in all pws. 
2. p is contradictory to q iff p has the opposite value to q in all pws. 
3. p is contrary to q iff there is no pw with both true but there is a pw with both false. 
4. p is subcontrary to q iff there is no pw with both false but there is a pw with both true. 
5. p necessarily implies q iff there is no pw withp true and q false. 
6. p is necessarily implied by q i f fq  necessarily implies p 
7. p is indijjfevent to q iff pws exist for each of the 4 truth value permutations. 
8. p is consistent with q iff there is a pw where both are true. 
9. p is inconsistent with q iff there is no pw where both are true. 

- 
p,~cepi  for 5 5, each o"lhese relaiions is fyi%meT,~c (if thz relations _":o;ds between 
p and .;. cz zl-r_r;t order) it allsc holds berwieen q an6 p. 

2$ifi>~ contradj.ction necessarily implies any proposi:ion. 
!\ny necessary truth is necessarily implied by any propositiiez~ 

If (but not cr$7 if) certain ti-ufh-table patterns iurrr up,  then relations 1,  2,  5; 6 and 4 
occur. With possibIe-t~liiiZ~ tables? the following method provides an iff test for all 9 rela- 
tioils. 'The first 7 relations are collectiveiy exlraustive thou& not mutually exclusive. The 
last 2 relations are exhaustive and exclusive. In testing for the first 7 relations, adopt the 
order shown: this allows half-tests for contrariety and subcontrariety and a default detec- 
tion of indifference (if 1 - 6 fail then 7 holds). 

1. p is equivalent to q (matching main-columns) 
2. p is contradictory to q (opposite main-columns) 
3 .  p is contrary to q (no row with both true) 
4. p is subcontrary to q (no row with both false) 
5. p implies q (no row with p true and q false) 
6 .  p is implied by q (no row with q true and p false) 
7. p is indifferent to q 

8. p is consistent with q (there is a row with both true) 
9. p is inconsistent with q (no row with both true) 

A set of n propositions is indifferent iff every truth-value permutation of the propositions 
is possible. A standard truth table for a proposition is a possible-truth table iff the matrix 
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propositions are indifferent. 

We often abbreviate "This is a tautology:" to "T:". Tautologyhood is preserved under 
uniform replacement of PVs with PL-wffs e.g., T :  p V - p  implies T :  a V - a  where 
cu is any PL-wff. 

Two PL-wffs a and 0 are tautologically equivalent iff T :  cr E 0 i.e. iff a and 0 have 
matching main-columns in their truth table. Propositions are tautologically equivalent 
iff they have tautologically equivalent forms. For propositions, tautological equivale~i~e 
implies necessary equivalence (but not vice versa). 

We say that a tautologically inplies 0 iff T: a 3 P i.e. iff there is no row with cr = 1 and 
0 = 0. A proposition tautologically implies another iff it has a form which tautologically 
implies a form of the other. Far propositions, tautological implication implies necessaiy 
implication (but not vice versa). For PC, the symbols *, 3 and will be used to denote 
tautological equivalence, tautological implication and its converse respectively: these 
modal operators are given lower evaluation priority than our truth-functional operators. 

The coltverse, inverse and contrapositive of p 3 q are q 3 p2 - -p  3 -- q and -q 3 --p 
respectively: of these. only the contrapositive is equivalent t o  the original. 

Some important logical laws are listed below. Since a PL-sentence or proposition with 
a tautologous form is a tautology, these results have formal, sentential and propositional 

( % a x e .  signifi, 

Name Abbreviation Law 

LEM - Law of Excluded Middle P : P V - P  
t z w  of NOP-Contradiction LNC T A ,  ~ - ( p  & ' - p i  

k9 V - Law of Bi-Valence i : p f - p  

Double Negation D N- -- . P " P  
3~o~qmr~ta .~+gi ty  8- Lorn '> p * y  " q i r p  

(True for * = &1 G ,  $1 
Associativity Assoc u p "(4 " 7 )  " (p a.q)  ai 
(True for * = &, 'b', SE, $ 1 
De Morgan's Laws 

Contraposition 
Export-Import 

Contrap p 3 q  " " q 3 " P  
Exim ( p & q ) > r  " p > ( q > r )  



Using Tables 

4.1 INTRODUCTION 

Perhaps the most practical concern of logic is the analysis of arguments. Irl Chapter 1 
we had an informal look at arguments, and noted that this text focusses its attention on 
deductive arguments (i.e. arguments where the conclusion is claimed to follo~v with 
certainty from the premises). In this chapter truth tables and possible-truth tables, intro- 
$uced previou.sly to classify propositions and relationsi - \ d l  be used to assess arguments. 

When dealing wilh asgurnznzs there are two i ~ ~ a . i ~  e h g s  to :7e ~rpos i t i oaa i  
.crU L: -.. ,c' "ne --? a r i ) , ~ . ? l c ~ r i  > '  I S  iL:a~~;~,:ed ist3 PL; ~eco:;d$, ii assesjcd fgr ,z,r$idity. third. 

" ~ .  . . 
; O ~ Z C ~ ;  .::licVe i h a i  C&i? :ZC r f i ~ d ?  :E ;.> :EST COY C G ~ ? S ~ S ! ~ ~ C : :  'p~tc~?i;,;~. )i!/i' \t,ili j;& ;< 

t .  , . . things I: thrs order, ail.< rhen :lot6 some argumenc-iorrr'; a[ jpeclai ~mpoptance. 

At this pol:?t it wo;lPd be a good :dea fnr yog io  re-iiex& 5 i .7 2nd 8 1.8 a-5 as 
part ~ " 2 . 6 .  in particular, yoia st'swid feel coj-;fortab!e wick: f ie  :errr?_s ""a~pme:-~r", 

""standard form": ""argument-form", ""valid", "~mvalid". ""logical ercor": "f3ctrral error", 
""sound" 2nd ""nnsound" as tiley are used in logic: and be :ware ;ha? when synonymous 
translations zre not possible, equivalent or irriplied translations are often used. 

4.2 TRANSLATING ARGUMENTS 

In translating an argument into PL we must first, at least mentally, put it into standard 
form. As discussed in 3 1.7 this involves separating out the premises and conclusion. Do 
this now for argument (I). Remember to look for conclusion-markers like "hence" and 
"so", and premise-markers like "since" and "because". 

If he is a Christian he believes in one God. If he is a Hindu he believes 
in one God. As he is either a Christian or a Hindu it follows that he 
believes in one God. (1) 

Did you spot "it follows that" as a conclusion-marker and "as" as a premise-marker? In 
standard form (1) is written as follows. 

If he is a Christian he believes in one God. 
If he is a Hindu he believes in one God. 
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He is either a Christian or a Hindu. 

.'. He believes in one God. ( l a >  

Before reading on, try putting this into PL, assuming that our PL-operators (e.g., 3) d o  
justice to  the English operators (e .g., if ... then). 

You should have chosen a dictionary like the following. 

C  = He is a Christian 
N =  He is 2 Hindu 
G  = He believes in  one God 

With this dictionary, (1) translates into PL as: 

C 3 G  
H 3 G  
C V N  

:. G  ( l b )  

Although a dictionary may sometimes be supplied, in other cases you will need to supply 
your own. As with any translation into PL, make sure you set your dictionary out in full. 
Each propositional constant must denote a whole proposition. For example it would be 
incowect to  write the following: 

C = Christian 
H = Hindu 
G = believes in one God 

On the right hand side of the "=" we must have a complete English sentence, not  just a 
word or phrase. 

A PL-translation where each propositional coinstant denotes a n  atomic proposition is 
called an explicit .pL-tr~nsiakion" For exampie, ( i b )  is ail explicit l"l-translation of (1). %I? 
,53.5 V/E tkizi l f  ii+c <?r ~ ~ o ~ e  aiomic - prc.pc;siiio;,s - cicclii oi:!:; ig 3 cerlain cor~pound 
prcpo;i&fin -:her: i!?e~e is 110 need to specify ~1-iese ind;viduailjr in tlansiation. To il!ustrale 
this in relation to argu~nents  consider the following example. 

If it is raining and the wind is blowing from the south then water will 
came u n d e ~  the door. Since it is raining and the wind IS coming from 
the south it is clear that water will come under the door. (2) 

An explicit PL-translation for ( 2 )  may b e  provided as follows. 

K = It is raining 
S  = The wind is blowing from the south 
D = Water will come under the door 

( R  & S )  3D 
R & S  

:. D ( 2 4  

Since however, R and S occur only in the compound R & S ,  the following translation will 
be adequate. 

A = It is raining and the wind is blowing from the south 
D = Water will come under the door 

A 3 D  
A 
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The validity of' (2) is more easily demonstrated with (2b) than with (2a). If this is not 
obvious now, it will be after you have seen how to test validity with truth tables. Because 
less detailed translations call save work, the point bears repeating: when two or more 
atomic propositions occur only in one compound they do not require separate dictionary 
entries. 

Sometimes a simple negation remains unbroken throughout an argument. Though we 
could translate this negation by a single letter, instead we usually include a - so as t o  
agree with our general preference 10 choose affirmative propositions for the dic~onavy. 
For example, argument (3) would normally be translated with - T as shown. 

Either the relay is working or the lights will not  turn on. 
Because the relay is  not working, the lights will not turn oil. (3) 

R = The relay is working 
T = The lights will turn on  

R V - T  
--R 

.'. -- T ( 3  a) 

If you feel a bit rusty on translation, you might like to  review the summary in 52.7 
before proceeding. 

EXERCISE 4.2 

1. Translate each of the arguments in Exercise 1.7 Question 2 into PL, using the letters 
suggested. 

2.  P:r_.ifide a shofter d,:tianar~i and adeqr;ate translatic.; into $i f2r arguments 2(f) sne 
2(q) of Exercise I .7. 

En 8 1. i>,le noted that an? argument is iialrd iff the truth of the premises graaran'rees 
*: ine i-ruth of t!~e coiicli~lsio~. Having deatt with rncdat relations, -\we are now a positicn 
to provide mol-e precise definitior~s for validity. 

Defi~t ion:  An argument is valid iff the premises necessairay irngipjy the conc%uslon. 
An arpment  which is not valid is itzvalid. 

The following equivalent definition for validity follows from our defnition of  necessary 
implication in 53.7. 

D e E ~ t i o n :  An agument is valid iff there is no possible world with all the premises 
true and the conclusion false. 

This notion of validity as a particular case of implication may be set out  as below, where 
propositions p l ,  ..., p, are the premises, proposition q is the conclusion, and the slash 
"/" performs in horizontal layout the job that " " does in vertical layout. 

The argument p ... , p, / .'. q is valid iff 

Cp &. ..& p,) necessarily implies q 

i.e. there is no possible world where pl &...& p, & - q 

With respect to  arguments, the term "counterexample" means "a possible world with all 
the premises true and the conclusion false". So an argument is valid iff it has n o  counter- 
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example. To  prove an argument valid we need t o  show that there is n o  counterexample. 
To  prove an argument invalid we need t o  show that there is a counterexample. 

To see how truth tables can help determine validity, let's begin with the following 
argument which was symbolized in 54.2. 

C 3 G  
H 3  G 
r L/ EI 

When constructing a truth table for an argument we use a common matrix, and list 
the conclusion last with a " .'." above i t ,  thus: 

We have said that an argument is valid iff there is n o  counterexample. Since the rows of a 
truth table encompass all possible worlds, if there is a counterexample it must be repre- 
sented by one of the rows. Thus, ijf there is no row with premises all fme and conclusion 
false the argumerzt is valid. If you look at the eable above you will see :ha\ &i"rhougIi the 
premises are trve c n  rows 1 ,  2 and 5 ,  tliere Is no raw with premises trce anci conclusion 
31se. So argume:?i jl) ~531~1 be miid. 

.4rg~11-,ents iike ( i ) ,  inihich can %e showc to be valid becaiise of their PL-structure9 wiii 
he called PC-valid. To be precise, an argument is PC-valid iff the conjunction of the 
premises iautologically implies the conc!usion. 

Now consider the foiiowing '"crazy" argument. 

Earth does have a :moon or it doesn't. 
So Earth does and does not  have a moon. 

Symbolizing this as M V -M / .'. M & --M we obtain the following table. 

Since there are some possible worlds. and the rows cover all possible worlds, at least one 
row must be possible. This is true of any truth table. But notice here that we have 
premise true and conclusion false on all rows. So at  least one of the rows must provide a 
counterexan~ple. Thus argument (2) is invalid. Arguments like ( 2 ) ,  which have tautolo- 
gous prenlises and a PC-contradiction as conclusion, can thus be proven invalid on  
account of their PL-structure: such arguments are called PC-invalid. They are almost 
never encountered in nornlal situations. 
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Let's look at another argument. 

My favourite colour is green. 
Therefore my favourite colour is not red. 

Symbolizing this as G / .'. --R we obtain the following 

. . 
truth table. 

On row 1 the premise is true and the conclusion is false. Does this row provide a counter- 
example? No! Your logical intuitions should tell you that the matrix on row I is impossi- 
ble. So finding a row with premises true and conclusion false does not establish a counter- 
example unless we know that the row is possible. If there is at least one row which does 
not have premises true and conclusion false then this might be the only possible row. So 
in a standard truth table, if some rows have premises true and conclusion false, and some 
rows don't, it cannot be determined whether the argument is valid simply from this 
table. If this situation arises in an argument's explicit truth-table (i.e. the truth table for 
its explicit PL-translation), then the argument is said to be PC-indeterminate., Some PC- 
indeterminate arguments will, like (3 ) ,  be valid; others will be invalid; but PC will be 
unable to determine which, since it does not provide a means of peeking inside atomic 
propositions to decide which rows are possible. 

For simplicity, let us agree to read the phrases "'premises true" and '"rue premises" as 
"premises a!: irue" unless otherwise quaiiSied. -4s far as PC goes, the Sesi that we car; do 
is sort gut argumenrs into three types as indicated below. 

PC-valid fit row wth przjnisei. t m e  and c62.;i'~531: false 
ail rows .. ;"? Pc-fnvelid ttii,rr premises true 2nd conclusion false 

PC-indeterminate expiicit truth table has just some rows with prexises 'efuv, 

and conc?usion false. 

EXERCISE 4.3 

1. Use truth tables to  test the arguments translated in Exercise 4.2 Question I for validity. 
Classify each as PC-valid, PC-invalid or PC-indeterminate. 

2. Given the argument p ,  ..., p ,  / .'. q ,  which of the following does NOT provide a neces- 
sary and sufficient condition for validity? 

A. ( P I  &...& P , )  3 4  is a necessary truth 

B. --( ( p ,  &...& p , )  3 q )  is a contradiction 

C. p ,  &...& p ,  & " q  is a contradiction 

D. ( P I  &...& P , )  tautologically implies q 

4.4 POSSIBLE-TRUTH TABLES AND VALIDITY 

In the previous section we saw that standard truth-tables cannot determine the validity 
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or invalidity of arguments that are PC-indeterminate. This deficiency can be overcome if, 
by using our .logical intuitions or a calculus more powerful than PC, we can eliminate 
impossible rows to produce a possible-truth table. As we saw in 93.6, a row is present in  
a possible-truth table iff it represents some possible world. So once a possible-truth table 
for the argument has been constructed we may say that a counterexample exists iff there 
is a row with premises true and conclusion false. If n o  such row exists the argument is 
valid; if such a row does exist the argument is invalid. So possible-truth tables divide 
arguments u p  as follows: 

argument main-column values of possible-truth table 

valid n o  row with premises true and conclusion false 
invalid at  least one row with premises true and conclusion false. 

Let's see how this works on  the following argument, which you may remember from 
the previous section. 

My favourite colour is green. 
Therefore my favourite colour is not  red. 

This has the following possible-truth table: 

Notice that row 1 tias been eliminated because there is no possible world ~zihere my  
Lli.,, gr(aaq33 -?.a favourile c=lour 13 ~imuitaneousiy greefi arid ;ed (we zssunf; ' I - - +  6 '  . W L  6~ ~ 

7 osed i:' e ta?;at rather than partial seeye so tha-,, 2 ZI:~: :~UC~ ~f $.oes 231 c a ~ n ~  
2s g;$ei! cr. as red;. R9i.i 2 has z?y ;'a::>:jriif c ,~;T. -&;  85 ~JJC;~T_, ; 3 ~ ,  :? it 45 red, a-.,d r3l;; 

i: coair, be ;.zoie-) ;i.i('w -30ssfi!5 pd:;~?~ s ~ ; i ' ~ p a  ch;-no ?.---, i: klzc j , ;s :?;ither ( 5  g. . L;ll" L l i L l b - . "  J?* $ 

i2 c x  aossible-tmth table have iile p:-dmise irrre :he c3nr,lusion false. So ;here is fro 

counkerexample. ike argllii-rient is valid-. 

Now Iaok a t  the following argumeni., 

It's not the case that both Snoopy and the Red Baron will be shot down. It 
is a face that Snoopy will not  be shot dawn. From this it may be inferred 
that the Red Baron will be shot down, (2) 

Going on your intuitions, would you say that this is a valid argument? Let's see how good 
your intuitions were, by setting out a formal analysis of the argument. 

Dictionary: S = Snoopy will be shot down. 
R = The Red Baron will be shot down. 

Translation: -(S & R)  
--S 

:. R 

r u t h  1 (; I; 
0 

0 0 1 0  1 0  
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On the 4 th  row all the premises are true and the conclusion is false. Does this yield a 
counterexample? If you look across to  the matrix you will find the following assign- 
ments for this row: 

So this row represents those possible worlds (if any) where neither Snoopy nor the Red 
Baron get shot down. Intuitively, we can see that there are such possible worlds. Hence 
row 4 does indeed provide a counterexample, and the argument is invalid. 

There are three things worth noting from this example. First, when an argument is 
found t o  be invalid we should always state a counterexample: this is best done by speci- 
fying the matrix assignments as above rather than a row number, since different matrix 
orders are sometimes used. 

Secondly, regardless of how a counterexample is found, if it can be seen to be a 
possible way of  having the premises true and the conclusion false this is sufficient to  
establish invalidity. This is particularly important to  bear in mind when trying t o  show a 
non-logician that an argument is invalid: there would be little point in showing him a 
possible-truth table; rather, the counterexample found should be put into words for him 
t o  check out himself. In the above case for instance, having deduced the counterexample 
S = 0, R = 0, one should remind him of the possibility of neither Snoopy nor the Red 
Baron being shot down and then get him to see that in this case the premises are true but 
the conclusion is false. If we are on  our toes we can ofien invent a counterexample simply 
by usifig otlr imagination: if our imagination is Lacking we can try to construct a possible- 
truth table: once constructed. if there is a counterexar;;pie i t  will show it. in  part, our 
xvsark oa possihle-t~-u"d'L tabks  is designed to educate oar  imagina:ion i ~ ~ a 1 . d ~  the groduc- 
tior! ofcountel-exam~lec so that initimately we can Go w i t h u t  these tables. 

The :]iij..! poir,i a:lsing horn ";:e exampie is flla! if is 'd:'c&y ~ 0 ;  necessc;y to check ,IN 
;-#$e ;.zat?fx f 3 : ~  i;='~~:lbgi@, ir. Fzci eirer;i low j j l  ihe above exa!:jplc i s  a 
oossible-row, we did not need this information t o  deduce invalidity. Let us use ihe term 
"counter row" t o  meail "a row which provides a counterexample". As soon as a countel- 
row is found, there is 20 need to iook a i  any oiher rows. So there is usually no nleed t o  
ensure that the truth table is fully converted into a possible-truth table. 

The following method for testing arguments for validity may now be stated. Since it 
can involve checking matrix rows for possibility it  strictly goes beyond the scope of PC. 

Method: I .  Translate the argument into PL. 

2 .  Draw a truth table for the premises and conclusion (using a common 
matrk). 

3. The argument is valid i f f  there is no possible-row on which all the 
premises are true and the conclusion is false. 

4. I f  at least one such possible-row exists the argument is invalid and the 
row provides a counterexample. A counterexample is formally stated 
by specifying the matrix assignments on a counter row; an argument 
may have more than one counterexample but it is only necessary to  
find one to establish invdidity. 

With this method, we begin with a standard truth table, and if there are any rows with 
true premises and false conclusion we check these one at a time for possibility until we 
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find that one is possible and immediately declare the argument invalid, or that none are 
possible and declare the argument valid. If there were no rows with true premises and 
false conclusion the argument may be declared valid straight away. 

Short Cuts 

In 53.3 the following one-operand evaluation rules were introduced to speed up 
evaluation of formulae: ... 0 & ... = 0; .., & 0 = 0 ;  1 V ... = 1;  ... V 1 = 1 ;  0 3 ... = I ;  
... > 1 = 1. In addirion to  these rules, the following shortened tabular method may be 
used to save work when assessing arguments. It is based on the idea that our tabular 
method is really a systematic search for a counterexample. To provide a counter. 
example a row must satisfi two conditions: it must have premises true and conclusion 
false; and it must be possible. Thus if a row has a false premise or a true conclusi,, nq or an 
impossible assignment of values to its matrix propositions, it cannot provide a cwanter- 
example and there is no need to do any further work on it. Let us place a "x" to the 
right of a row to indicate it is eliminated because of a false premise or a true conclusion. 
As usual. a "x" to the left of a row indicates elinnination because tile row is not possible. 
Since there is only one conclusion it is usually best to evaluate this first. The shortened 
tabuiar method may now be summarized as below: 

1 .  Evaluate conclusion first, eliminating any row where conc!usion = I 

2. Evaluate premises one at a rime, eliminating any row where a premise = 0 

3.  Eliminate avy remaining rows that are impossible, stopping as soon as a. 
counterexampie is forrmd (argument is ahen invalid). If no POJNS remain, 
argumzfit 1s valid. 

Translation: B 2 C 
R > C  
e 

:. B V R  

Table: . . 
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Rows 1 - 6 were eliminated because they have a true conclusion. This left 
rows 7 and 8. Row 8 was then eliminated because its third premise is false. 
This left row 7 which has the matrix assignment:- 

This represents those possible-worlds (if any) where 1 have a car which is 
neither blue nor red: clearly there is such a possible-world e.g., I might have 
just a green car. So row 7 provides a counterexample and the argument is 
invalid. Notice that it was not necessary to  test the other rows for possibility 
(Rows 2, 4 and 6 are in fact impossible). 

Sometimes we may have a purported counterexample which needs t o  be tested. Per- 
haps we invented it from our imagination or somebody else suggested it. To check 
whether it is indeed a counterexample we first substitute it into the argument to see if it 
makes the prenises true and the conclusion false. If it passes this test we then make a 
final check on its matrix assignment to see if it is possible. 

Example: Using the dictionary of the previous example, check whether 

is a counterexample to the argument: 

Substituting in, we gbtdin 

- 
1 his makes t he  premises t r ue  and the coilclusio-n false. Moreover, the row is 
possible. So we do have a counterexample and the argument is invalid. 

Note: You are now equipped with a powerful t echn iye  for testing the validity of many 
arguments. Don't simply apply it blindly. Given an argument, read through it 
and try to "see" mentally whether it is valid or not. Then, after working through 
the formal solution on paper, check to see whether the result agrees with your 
mental solution. In this way the mind is sharpened and careless formal errors may 
be detected. 

NOTES 
PC-indeterminate arguments are valid or invalid for reasons that go beyond their PL structure: those 
that  are valid are thus appropriately called PC+-valid and those that are invalid are PC+-invalid. This 
yields the following categorization: 

PC-valid 
valid <': Pc+-valid (PC-indeterminate) 

arguments 
PC-invalid 

invalid < 
PC+-invalid (PC-indeterminate) 
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Just as with determining validity of arguments, it is usually not  necessary to check that every row is 
possible when determining modal properties of propositions or modal relations between propositions: 
all that need to be checked for possibility are those rows which, if possible, would provide a counter- 
example to the property or relation. For example, a proposition is s necessary truth iff there is n o  
possible row on which the proposition is false: when testing for a necessary truth we need check for 
possibility only those rows on  which the proposition is false. 

1. Given that A,  B and C are indifferent propositions (and hence the  possible-truth table 
is the same as the standard t m t h  table), test the following arguments for  validity. 
Where invalid, state a counterexample. 

(a) A 3 B  
B 

. A 

( b )  A 3 B  
A  

(c) A 3 B  
--B 

(h) A > ( B V C )  
A  zi --B 

2. Symbo!ize a:~d test the foii3wrng s;.g~lrnents for validity, using ehe suggested proposl- 
,. ~rona i  coilstants. Where ir-ivalid, prot:!de a eounterexam.p?e. 

(a) He is either tired or  iazy. He is in fact tired. So he's not  lazy. (T, L )  

(b) He is either tired or lazy. But he's not  lazy. So he's tired. (T*  L )  
(c) He's not both tired and iazy. Hence he's not  tired and he's not  lazy. IT, L )  

(d) Either he's not  tired or he's not lazy. Therefore it's not the  case that he's either 
tired or lazy. ( T ,  L )  

(e) I will succeed if and only if I try. But I won't try unless I see a reason for  trying. 
Hence I will succeed only if i see a reason for  trying. (S, T, R )  

(f)  Hinck is a logician only if Malcolm is. Now Malcolm is not  a logician unless both 
Rod and Ninck are. Since Rod is a logician however, we may deduce that  a t  least 
one of Malcolm and Hinck are logicians. ( H ,  M, R )  

(gj I get annoyed with the class only if they're noisy. If they're not  noisy then they 
learn a lot. Hence either 1 get annoyed with the  class or they learn a lot. (A, N, L )  

*(h) If 11 have at  least seven marbles then I have eight marbles. Hence either I have a t  
least seven marbles or 1 don't have eight marbles. (S, E) 
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3 Symbolize and test the following arguments. Provide a dictionary in each case, and if 
invalid state a counterexample. 

(a) If I am very tired I will go t o  bed. However I don't get very tired unless I have 
been working hard. Now I have been working hard. So I will go t o  bed. 

(b) Either Clark Kent is Superman or he's got an unusual attraction towards old 
phone booths. If he is Superman then he won't like the new transparent phone 
booths. He doesn't like the new transparent booths. We conclude therefore that 
he is Superman. 

(c) Black Bart will visit the scene of the crime if he is the murderer, provided Sher- 
lock Hemlock's theory is correct. Although he didn't visit the scene of the crime, 
nevertheless Sherlock's theory is still correct. Therefore Black Bart is not the 
murderer. 

(d) If I travel t o  Alpha Centauri and back at  relativistic speeds then, provided Einstein 
was right, I will be much younger than my twin when I return. So if I travel t o  
Alpha Centauri and back b ~ ~ t  d o  not  return much younger than my twin either I 
did not  travel a t  relativistic speeds or Einstein was wrong. 

(e) Students are worthy if and only if they work hard. Either students are hard work- 
ing or they are neither worthy nor sensible. From all this you can see that students 
are sensible if they work hard. 

(f) The Sausageites will attack the Bubbleonians only if they believe the Bubbleo- 
nians are inhuman invaders. Now unless I'he Sav-sageites are practical philosophers 
they will believe the propaganda of their government, and believing their govern- 
ment's propaganda is a sufficient condition for their believing that the Bubbleo- 
nians are inhuman invaders. Regrettably then, the Sausageites will attack the Bub- 
bleonians, since the Sausageites are not  practicai phi!osoph.ers, 

* ( g )  If ghosts exist. they are spirits of dead people. U1i3rss clnthes have spirits howeve_. 
ghosts, if ?:hey Ere spirits ef dead people, will be naked. Gisviousiy thec,  ghosts 
do nol exist, since reithex C ~ C :  clothes have swirits jlGr are ghosts naked. 
,-. 
1~ "his aTgL!l;.r,ex': :*;as p~c-+-s-d ' t p c  '--ti v,; lhlaflg Z;?'ung, .r C s r _ f ~ ~ c i a c  gphilfiosopher ef t3c 
f irst c5rj.ts1-y FLX3"j 

*(h) If Lee m7ntes the program he wii! write the progralm in a structured mafiner. If he 
does no"iwkte h e  program in a structured manner then, if he did write the pro- 
gram it would be difficult to follow. On the other hand, the program will not be 
difficult to follow if Lee writes it in a structured fashion. It may thus be inferred 
that, Lee writes the  program in a structured way only if not only does he write 
the program but also it is not difficult t o  follow. 

4. Given that A and B  are indifferent, show by substitution which of the foiiowing 
specifications are counterexamples t o  the associated arguments. 

A  - - - B , B V A /  . ' . B > A  

5 .  (a) Symbolize the following argument using the suggested letters. 

If the figure is a rectangle it has four sides. If the  figure is a square it  has four 
sides. Now the figure does have four sides. So it  must be either a rectangle or 
a square. (R, F, S )  

(b) Now use your imagination t o  invent a counterexample, and then verify it  by sub- 
stitution. 
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*6. Using the dictionary of Question 5, symbolize the following argument, invent and 
specify as many counterexamples as you can, then check these by substitution. (Note: 
All squares are rectangles.) 

If the figure doesn't have four sides then it's not a square and not a rectangle. 
But it does have four sides. Hence it is both a square and a rectangle. 

4.5 TWO CURIOUS CASES OF VALIDITY 

Consider the following argument. 

It's raining. 
It's not raining. 
So Cygnus X-1 is a black hole. (1) 

Assuming that the same time and place are involved for both the premises, the following 
dictionary will suffice: 

R = It's raining 
B = Cygnus X-l is a black hole 

So the argument may be symbolized as: R, --R / r. B . Before reading further, make an 
intuitive decision as to whether or not this argument is valid. 

Let's check out your intuitions now with a table. 

*~ . i.jc:-irce thai there is go \":ith %he 0:err;ises true and ri;e s ;oncl~~sio~l  false. Sc the 
rnent is valid! If you guessed c o r r z t l y  "hen give yi;urself a pat on the back. IF you said 
the arguxxent wss invalid, you're forgiven: afier all, what has the state of  the weathzr got 
to do with whether (no pun ifitended) or not an X-ray s o u c e  in the Gygnus constellation 
is a black hole? Clearly, ssmethi~~g funny is going on; and if you look at the premises you 
will see what it is: the prewises are inconsistent There is no possible world where (at the 
same time and place) it is both raining and not raining. So there will be no possible-row 
in the table with the premises true (check this now): this automatically guarantees that 
there will be no possible-row with premises true and conclusion false, regardless of what 
the conclusion might be, and so the argument is valid. 

From our earlier work ( 5  5 1.6, 3.7), we may say that a set of propositions is incon- 
sistent iff there is no possible world in which they are all true. Given any argument with 
an inconsistent set of premises then, there is no possible world with the premises true and 
the conclusion false (simply because there is no possible world with the premises true) 
and hence, by definition, the argument must be valid. So we have the following "paradox 
of validity": 

any argument with inconsistent premises is valid. 

This is a particular case of the "paradox of necessary implication" mentioned in 53.7 
that any contradiction necessarily implies any proposition (the premises are inconsistent 
iff their conjunction is a contradiction, and the argument is valid iff the conjunction of its 
premises necessarily implies the conclusion). 
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Since the above "paradox" is a natural consequence of our definition for validity you 
may feel that we should change this definition, seeing it counts arguments like (1) as 
valid. But saying that an argument is valid does not mean that it is free of errors. Recall 
from 5 1.8 that whereas a sound argument (i.e. a valid argument with true premises) 
must have a true conclusion, no such guarantee can be made for unsound arguments, 
even if they are valid. If an argument has inconsistent premises they can't all be true 
and hence at least one is false (a factual error). Consequently any argument with incon- 
sistent premises is unsound. Unsound arguments fail to establish their conclusion: those 
which, like (I ) ,  are unsound because of inconsistent premises, are said to commit the 
"fallacy of inconsistency". 

The above "paradox of validity" thus ceases to surprise once we recognize validity as 
a weaker notion than soundness. On the positive side, there are good reasons for 
accepting this result into our logical system. Firstly, it serves as a useful warning against 
lerting any inconsistency into our premises. This brings to mind the famous GIGO (Gar- 
bage InIGarbage Out) principle of computing i.e. if you input any "garbage" (errors) 
to  the computer don't be surprised or blame the computer if you get garbage out. Simil- 
arly, if one begins with garbage in the form of inconsistent premises one may quite 
validly deduce anything (including garbage) from them. A second reason for allowing 
this "paradox", as well as another "paradox" to be discussed below, is that both are 
logicaliy required if one accepts the following useful principle: a valid argument remains 
valid if further premises are added (a proof of this is referenced in the notes to this 
section). 

To test for inconsistent premises we constrr?ct a truth table and then apply the follow- 
:izg result: 

the premises are inconsisterzt ij"y i.hes.e is no possibie-row tzli the premises 
true 

Paris is in France. If Pierre doesn't live in Paris then he lives somewhere 
in France. But he doesn't I h e  anywhere in France. So Pierre Lives 
in Paris. ( 2 )  

Before proceeding, you might like to  make your own judgement as to the validity and 
soundness of this argument. Using the dictionary, 

I = Paris is in France 
P = Pierre lives in Paris 
F = Pierre lives in France 

we may symbolize (2) as: I, -- P 3 F, - F / .'. P . This leads to the following truth 
table: 
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First note that there is no row with premises true and conclusion false. So the argu- 
ment is valid. Now look for a row with all the premises true. There is just one such row 
viz. row 2. Does this mean that the premises are consistent? No: not unless row 2 is 
possible. If you look across to  the matrix you will find the assignment I = 1, P = I ,  
F = 0 which is impossible since this has Pierre living in Paris but not in France although 
Paris is in France. So there is n o  possible-row with all the premises true. Thus the 
premises are inconsistent and the argument, although valid, is unsound. 

Now let's look at  a different type of argument. 

My toenails are too  long. 
Therefore it's raining or it's not  raining. (3) 

What d o  your intuitions tell you about the validity of this argument? Using an obvious 
dictionary we may symbolize it as: T / .'. R V -R . This has the following truth table: 

There is no row with the premises true and the collclusion false so, crazy as it may sound, 
(3) is a valid argument! What devious logical trick is going on here? This time the conclu- 
sion is the culprit. If you look at  it you will see it is a necessary truth. So there is n o  
possible-row with the conclusion False. Hence, regardless of the premises, there will be no 
possible-row with premises true and ccnclusion false, and the argumeni is auto~natically 
valid. This resuit may be generalized t o  give a secorld "parado:: of validity": 

. ~ 

alzy iirgurnezt with a necessary coi-rclusron is valid. 
TL : 
I .,IS is a particular case of the second ""paradox oi necessary implication" considered in 
53.7 i.e. any necessary truth is necessarily implied by any proposition. Apart from the 

justification mentioned earlier, some sense can be made of this principle by regarding a 
necessary truth as something that is "true of its own nature" and hence as something 
that "follows from" nothing or anything. But probably the safest way t o  understand 
this "paradox" is to  think of what terms like "valid" really mean in terms of our possible 
worlds framework. Thus even though 43) is valid (and sound if in fact my toenails are too  
long!) the argument is pointless because the conclusion is true in its own right: n o  
premises are required t o  establish its truth. For  obvious reasons. arguments like these are 
rarely, if ever. encountered in ordinary situations. 

T o  test for this type of argument we construct a truth table and then apply the fol- 
lowing result: 

the conclusion is necessay if f  there is no possible-row where it is false. 

If the conclusion is a tautology, a standard truth table can detect it: if it is necessary but 
not PC-necessary. we will need t o  eliminate the impossible-rows where it is true. 

It  is not hard to  show (the principal move is contraposition) that the two "paradoxes 
of validity" mentioned in this section are logically equivalent. It should also be realized 
that while anything follows from a contradiction, a contradiction does not  follow from 
anything but a contradiction. In addition, while a necessary truth might be said to  
"fpllow from nothing", the only propositions that follow from necessary truths are thern- 



selves necessary truths. 

NOTES 
For a proof that the "paradoxes of validity" are equivalent to the rule that a valid argument remains 
valid if more premises are added, see Tapscott, B.L., Elementary Applied Symbolic Logic (Prentice- 
Hall 1976) Appendix H. 

EXERCISE 4.5 

1. Given that A and B are indifferent propositions, use tables t o  determine which of the 
following arguments have inconsistent premises. 

(a) A $ -A / .'. A 
(b) -A V B, -(A 3 B )  / :. B 

(c) A 3 -B, B 3 -A / .'. A 

(d) B 3 A ,  B 3 -A, B / .'. -B 

2. Symbolize the following arguments then use tables t o  determine their validity. Also 
state whether the premises are inconsistent and whether the conclusion is necessary. 

(a) Today is either Monday or not  Monday. Therefore Mars has two moons. 

(b) Today is both Monday and not Monday. Therefore Mars has two moons. 

(c) Mars has two moons. Therefore today is either Monday or not Monday. 

(d) Mars has two moons. Therefore today is both Monday and not Monday. 

(el It's pouring. If it's pouring then it's raining. If it's raining then it's wet. But it's 
not wet. So if it's raining it's not  wet. 

(f)  Cloning will be legalised ccly if its cse is highly restricted. If the use of cicning 
is highly restricted it will ncjt be legaiised. Hence clonirlg will not  be legaiiseci 

( g )  Cli>ricg :.iX? 'regzlised if 2nd oply i f  I?o:h resrrictions are rrade its .jre a;;< 
S c i ~ r  ,.,,.. cn -p!- i9-,  iirces. LJn;~r:unatei~ theugh science ~ ~ i i l  aayance, restr ic t io~s V J ~ !  not 

be made oi? the use of cloning. Cloning is borrnd to be iegalised. Hence laws will 
be passed t o  allow cloning, without any restrictions on its use. 

*(h> 3 is greater than 7. Therefore 4 is greater than 3. 

"(i) Jigoro speaks Japanese but not  Chinese. If i igoro speaks Indian then he speaks 
Chinese. if he doesn't speak Indian he speaks n o  language at  all. So he speaks 
either Hndian or Chinese. 

3. Use your answers t o  Question 2 t o  classify each of the arguments there (except for (f) 
whose premises are debatable) as sound or unsound. Make use of the facts that Mars 
does have two moons and that 3 is not greater than 7. 

4. Which of the following are true? 

A sound argument must have true premises. 
An unsound argument must have inconsistent premises. 
If the premises are inconsistent the argument must be valid but unsound. 
If the conclusion is necessary the argument must be valid. 
If the conclusion is necessary the argument must be unsound. 
An unsound argument must have false premises. 
Any conclusion may be validly deduced from a contradiction. 
Some contingent propositions may be validly deduced from a necessary truth. 
A necessary truth may be validly deduced from any proposition at  all. 
Contradictions may sometimes be validly deduced from a set of consistent propo- 
sitions. 
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4.6 ARGUMENT-FORMS 

In 52.5, PL-forms were discussed in relation t o  both PL-sentences and propositions. 
We now discuss PL-forms of whole arguments i.e. PL-argument-forms. First we will 
indicate what these are, classify them in terms of validity, and show how this classifica- 
tion links up  t o  the evaluation of arguments. Then special mention will be made of some 
important valid argument-forms. 

As early as 5 1.7 we met the notion of an argument-form as a common structure exhi- 
bited by different arguments. Arguments (1) and (2) of that  section may now be symboli- 
zed in PL as follows: 

W V D  C V  S 
-D -S 

. W :. c (11, ( 2 )  

Both of these have the following form: 

P V 4  
-4 

.. P 

Now look at  the following argument. 

Logic is either interesting al:d relevant or boring. 
Logic is not  boring. 
So logic is interesting and relevant. 

Using an obvious dictionary we obtain the foilowing translatien. 

( B & R )  V B 
-dB 

. ; I & + ? )  ~ ~ ( 3 )  

3y fi-eali:?g , "  $ 3) 5.s a k?ir you c z n  :ee trL:r: (3;  zlso jF?') 2s  3ne of ii: ih<l;is. la 
genera?. in argument wiii b e  said to have (cr be an instance 00 a certain ,"l-form iff 
argument can be expressed in PE by uniformly sulxtituiing the pi-opositional variables in 
the form viith PL-sentences, For example, ( 3 )  may be generated from (F l )  by uniformly 
substituting "(I & R)" and ""B" for "$band ""q'respectively. 

Notice that arguments ( I ) ,  (2) and (3) also have the foliowing fo:m. 

Any argument with two premises will have this form. Clearly? this form does not fully 
detail the PL-structure of ( I ) ,  (2) or (3). Maximum detail on an argument's PL-structure 
is provided by its explicit PL-form. This is obtained by uniformly substituting proposi- 
tional variables (in the order p,  q, ...I for the propositional constants in an explicit PL- 
translation of the argument: in this unique form each propositional variable relates t o  an 
atomic proposition (review 54.2 if needed). Looking back t o  arguments (1) and ( 2 ) ,  
since W, D, C and S are atomic it follows that (FI) is the explicit PL-form of both these 
arguments. However, the explicit PL-form of argument (3) will be as follows: 
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Truth tables may be constructed for argument-forms in the same way as for argu- 
ments. A PL-argument-form is said to  be valid iff there is n o  row in its truth table where 
each premise-form = 1 and the conclusion-form = 0; otherwise it is invalid. For example, 
it may be seen from the table below that (Fl)  is a valid argument-form. 

It  should be obvious that. no matter what propositions are substituted for p and q in the 
above table the entries will be the same. and since there is no counter row the argument 
will be valid. This result may be generalized as follows: 

any argument which has a valid PL-form is valid. 

Since arguments ( I ) ,  (2) and ( 3 )  each have the valid form (FI) they must all be valid. 
For simplicity, let us agree that in relation t o  argument-forms, the terms "premise" and 
"conclusion" may be used instead of "premise-form" and "conclusion-form". 

Now look at  the following argument-form. 

As the table below indicates, this has each premise = 1 and conclusion = 0 on all rows of 
its table: such a form is said t o  be contravalid. 

No matter what proposition is substituted for p, at least one of these rows will be possible 
arid hence provide a counterexample. So any argument with this form will be invalid (in 
fact, PC-invalid). This resuit may be generalized as follows: 

any argument which has a contmvalid PL-form is invalid. 

Contravalid argument-forms are rarely met. Usually, invalid PL-argument-forms have 
only some rows where premises = 1 and conclusion = 0 e.g., 

Row 3  shows that the argument-form (F5) is invalid. Does this mean that all arguments 
of  this form will be invalid? No! It all depends on whether row 3 turns out  t o  be possible 
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when p and q are replaced by the corresponding propositions in the argument. This is 
illustrated by the following two arguments. 

If Smith is a woman then Smith is human. 
Smith is human. 
So Smith is a woman. 

If the number is even it is divisible by 2. 
The number is divisible by 2. 
So :he number is even. 

Using obvious dictionaries these may be translated as follows: 

W 3 H  E > D  
H D  

. W . E  

Making the relevant substitutions in the table for (F5) we find that argument (4) is in- 
valid because the row 3 assignment W = 0, H = 1 does provide a counterexample e.g., 
Smith could be a man. Argument (5) however turns out to be valid because the assign- 
ment E = 0, D = 1 is impossible. If a number is divisi'ole by 2 it must be even: this logical 
truth enables the conclusion to be drawn from the second premise; the first premise is not 
required. 

This type of result may be generalized as follows: any invalid PE-argument-form will, 
unless it is contravalidid, have both invalid and valid instances. It is not hard to  come up 
with further examples of valid arguments with invalid forms, particularly if we include 
forms that are not explicit. For instance, the valid arguments (11, (2) and (3) each have 
the invalid form (F2). It should be clear that the explicit PL-forms of PC-valid, PC- 
invalid, ar,d PC-indeterminate arguments are valid, contravalid, and invalid (but not 
contravalid) respecrively. 

i. r r may also be not,ed iIh2.t our tabuiar de3nitions for validity states of RP-arg3umeilt- 
forms are ic agreement .ixl'rh the Eollowi~~g general definitions which 'tiire adopi -For a!? 
formal languages: an argument-form is valid iff every argument of that form is valid; an 
argument-form is contravalid iff every argument of that form is invalid; an argument- 
form is invalid "ot not contravaiid iff some arguments of that form are invalid and some 
are valid. 

valid 
argument forms con travalid 

invalid 
not  contravalid 

Some valid argument-forms are so important that they are given special names. For 
example, each of the valid forms below is called Denying a Disjunct (DD). 

The right hand form has been met before as (Fl). Remember that once an argument is 
recognized as having a valid form it may immediately be pronounced valid. So if we had 
earlier shown DD to be valid we could have assessed arguments ( I ) ,  (2) and ( 3 )  as valid 
simply by recognizing that they had DD as a form: there is no need to produce a separate 
table for each. Thus having a list of commonly used valid argument-forms under our belt 
can save us work in much the same way that a library of precedents can enable lawyers 
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t o  establish an immediate verdict. Fortunately, our list will be much shorter and simpler 
than a lawyer's. Valid argument-forms may also be used in reference to  sub-arguments of 
more complicated arguments, and t o  justify lengthy deduction procedures: these matters 
will be taken up in Ch. 8 where a more conlprehensive list of forms will be provided. 
Right now. it will be appropriate t o  consider just a few cases. 

One set of valid forms can be extracted from our list of tautologies in 53.8 using the 
fact that if a /3 then both oc / .'. 0 and 0 / .'. @ are valid. The name used for the tauto- 
logy may also be used for the argument-form e.g., 

(DN) 
(Corn&) 

(Contrap) 

Do you see why there is no need to specify q & p / .'. p & q as a second form of Corn&? 

Now look at  the following four forms. Use your logical intuitions t o  determine which 
are valid. 

The labels under the forms are their abbreviated names: AA = Affirming the Antecedent; 
AC = Affirming the Consequent; DA = Denying the Antecedent; DC = Denying the 
Consequent. The names indicate what the second premise-form does t o  the antecedent or 
consequent in the first premise-form. The outer forms Affirming the Antecedent and 
Denying the Consequenf are valid: they are often known by their Latin names IVlodus 
Ponens (MP) and Jdodus Tollens (MY) respectively The inner two forms are invalid and 
are usually cdled " t i e  +Ldlac;, of gfirirrrzi/~g. the consegue?i?t" an6 "the fallacy ~~fclevzj~i i i . ,~  
the antecedent": it is fairly common for these ic be mistakenly jrreated as valid because 
they closely resemble the other valid forms. Although AC and DA are invalid they are 
not contravalid, so rather special cases can be found ofvalid arguments with these forms 
e.g.. argument 45) is valid though it has the form AC. 

The last inference principle we discuss here is Reductio Ad Absurdurn (RAA). There 
are many versions of WAA but  the main form is as follows: 

Here, and elsewhere, we use "F" t o  denote any necessary falsehood or contradiction. 
(A different style "F" is required if the dictionary already includes "F" for another 
proposition e.g., ''Fred feels fine".) Ir, esscnce RAA says that if p i~ripiies a contradiction 
p must be false. That this form is valid can be seen from the below table. 

*-p- 
Here we have eliminated the impossible rows where F = 1 

RAA gives rise t o  the following proof technique. I f  we start by mckingan assumptiol? 
at?d thefz proceed by correct reasorzifzg to alz absurd result, we nzay conclude that our 
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origirzal assumption is wrong. So, itz order to prme a result, asszrvze the opposite and then 
show flzis leads to a cotztradictio~z. This technique has many practical applications. In 
addition t o  underlying many of the logic methods to  be discussed later (e.g., the method 
of assigning values. and the truth tree method). it is widely used in mathematics and 
science. Here are a couple of examples from mathematics and physics. 

Example I : Prove that if two coplanar lines are met by a third line in the same plane and 
at right angles t o  both, then these two lines are parallel. 

Proof Let the third line meet the others at  
points A and B 

Assume that the two lznes are n o t  
parallel 

Then, slnce they are coplanar. they 
must meet at some point P forming 
the triangle APB (from a prevlous theorem) 

Since angle A = 90'. angle B = 90' and angle P is greater than G O ,  the angles of 
the triangle add up t o  more than 180'. 

But this is impossible. (from a previous theorem) 

Hence the two lines are parallel. (RAA) 

Example 2: Prove that the electric field E is zero inside a statically charged conductor 
Proof: Assume that E is not zero at some 

point P inside. 

Then the charge q at  P v~ill be 
pushed by the fieid and,  being in a 

conduc to~  will be free tc move. 

Helice B must be zero inside. (RAA) 

NOTES 

The argument-forms we have caiied .'Denying a Disjunct" are oftcn ca!!ed "Disjunctive Syllogism" 
(DS). Sometimes only the firsr of these forms is given the label. The other is then derived by using 
Com V .  

I-ollowing Patrick Suppes' work wit11 logic in schools, we prefer the titles AA and DC to the less-easy- 
to-remember MP and MT. Nevertheless the latter terms are more standard. The names "Modus Ponens" 
and "!Kodus Tollens" derive from the Latin modus = manner, ponere = to  affirm, tollere = to deny. 
The fuller names for MP and lllT are "Modus Ponendo Poizerrs" and "Modus Tollendo Tollens". MP 
is sometimes called "Detachment". 

Strictly, the symbol "F" represents an addition to PL. I t  may be treated as a PV wllose range is 
restricted to contradictions i.e. it is a "contradiction variable". 

EXERCISE 4.6 

1.  Use tables t o  classify each of the following argument-forms as valid or invalid. Where 
invalid, provide an invalidating matrix assignment. 



(a> P > - P  1 .'.--P 
(b) P $ 4  / . ' . p & - q  
(c) P 3 4, -4 1 .'. --(P V 4) 
(d l  P,  q P 1 .'. P & q  
(el - ( P V ~ ) V ( - - P ~ ~ )  / .'. - - ( q > ( p V q ) )  
( f )  - - p & - ( q & r ) , - q 3 p  / ... 
(g) ( P  & v )  $ q, -4 = r 1 ... --P 
(h) (---p V q)  -- --r, r 3 -(q Vv) / .'. -4 3 p  

2. Which argument-form in Question 1 is contravalid? 

3. Consider the following argument: 

Apples are cheap. So bananas are either cheap or  not  cheap. 

(a) Which of the following forms does this argument have? 

(i) P I .'. q V - - q  
(ii) P 1 .'. P 

(iii) p / .'. q 
(iv) p 1 .'. p V - p  

(b) Is the argument valid? 

4. Consider the argument: - ( (A r A ) & B )  
- - (A  = A )  

.'. --B 

(a) Which of the following forms does the argument have? 

(i) P, 4 / .'. 
(ii> --(P & ri>> -P  I .̂ . " 4  
(iii) -( (p -- p )  & p ) ,  -(P = p) / .'. -p 
iiv) -6 (P 2 P I  q3, -{F - p) / .'. --q 

(b) Classify tihose forms in (a) which were exhibitad by the argument as valid or 
invalid. 

(c) Is the argument valid? 

5. Symbolize the following argument in PL: 

It's raining. 
So possibly it  is raining. 

(a) Is the explicit PL-form of this argument valid? 
(b) Is this argument valid? 

6.  Answer TRUE or  FALSE for each of the following. 

All arguments with a valid form are valid. 
All forms of a valid argument are valid. 
All arguments with an invalid form are invalid. 
All forms of an invalid argument are invalid. 
All arguments with a contravalid form are invalid. 
Some arguments are both invalid and contravalid. 
Any argument-form with a tautologous conclusion is valid. 
Any argument-form with a tautologous premise is valid. 
Any argument-form with a self-contradictory conclusion is valid. 
Any argument-form with a self-contradictory premise is valid. 
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7. Establish the validity of  the following arguments by naming a recognized valid argu- 
ment-form exhibited by each. 

(a) A 3 B ,  -B / .'. -A 
(b) ---B / .'. B 
(c) A V ( B &  C), - -A / .'. B & C 
(d) A > ( B &  --B) / :. --A 
(e) --A > B  / .'. - B >  - - - A  
(f)  A, A 3 B / .'. B 
(g) -A V ( B  - C) / :. (B = C) V --A 
(h) -(A & --B) / :. -A V --B 
(i) -(B --A) 3 (B V C), --(B $ -A) / .'. B V C 

- - 

Puzzle 4. Of Alan, Betty and Cyril one is honest (always tells the truth), one is 
a liar (always lies), and one is ordinary (sometimes tells the truth and 
sometimes lies). Deduce who is what from the statements they make 
as shown below. 

Alan Betty Cyril 

4.7 SUMMARY 

An argument's PL-translation is explicit iff each propositional constant denotes an 
atomic proposition. When two or more propositions occur only in one compound, they 
d o  not require separate dictionary entries. I t  is usually preferable t o  choose affirmative 
propositions for the dictionary. 

An argument is valid iff the premises necessarily imply the conclusion i.e. there is n o  
possible world with the premises true and conclusion false. If there is such a possible 
world it constitutes a counterexample and the argument is invalid. 

Standard truth tables divide arguments up into three groups: PC-valid (no row with 
premises true and conclusion false); PC-invalid (all rows with premises true and conclu- 
sion false); PC-indeterminate (explicit truth table has just some rows with premises true 
and conclusion false). Some PC-indeterminate arguments are valid and some are invalid. 

Possible-truth tables divide arguments up  into two groups: valid (no row with premises 
true and conclusion false); invalid (at least one row with premises true and conclusion 
false). 

It  is not usually necessary t o  check all rows for possibility. The most efficient method is 
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t o  begin with a standard truth table and then search for a possible-row with prelilises 
true and conclusion false: if such a row exists the argument is invalid; otherwise the 
argument is valid. 

The shortened tabular method, in conjunction with the one-opera~id evaluation rules, 
provides a short cut search for a counterexample: evaluate conclusion first. eliminating 
any row where conclusion = 1 ,  then evaluate premises one at a time, eliminating any row 
where a premise = 0 ;  then eliminate any remaining rows that are i~npossible, stopping as 
soon as a counterexample is found (argument is then invalid); if no rows remain, argu- 
ment is valid. 

Two "paradoxes of validity" are: any argument with inconsistent premises is valid; any 
argument with a necessary conclusion is valid. Given a table for an argument, the premi- 
ses are inconsistent iff there is no possible-row with them all true. If the premises are 
inconsistent, the argument, though valid, is unsound. 

An argument has a certain P l - form iff it can be expressed in PE by uniformly substitu- 
ting the propositional variables with PL-sentences. An argument-form is valid iff every 
argument of that form is valid; otherwise it is invalid. In rare cases an invalid argument- 
form will be contravalid i.e. every argument of that form is invalid. Usually invalid 
argument-forms have both invalid and valid instances. A PL-argument-form is repective- 
ly valid, contravalid, or invalid (but not contravalid) according as none, all, or just some 
of its truth table rows have each premise = 1 and the conclusion = 0. The explicit PL- 
forms of PC-valid. PC-invalid, and PC-indeterminate arguments are vaiid, contravalid, and 
simply invalid respectively. 

Some important valid argument-farms may be extracted El-orn our 5 3.9 slummary using 
the fact that if a * B then boil1 c / .'. (3 and 8 / .'. a are valid. F:?r example: fi-am - - p  * p WF, r3btain - - p  / "'. p 2nd F / .'. - -g  as yalid Corms. Oiher valid f'sr~ns 
meniioned are listed te ios~/ .  
- ~ 

. / ~ M Y ~ S E  A:53 '"'ll~xJI - ZS,~,.. -ill a- T j r % , 7  4 ;---,-, -,. '>;.~-9# t, ,2LbL4 -4, &~;,:/e4l?j>,~."t c 
, ~ 

Denying a Di junc-t DE p \ / q j  -5 / , q 
DD p V q ,  --q / .~. p 

Affirming the A n t e c e d e ~ t  AA p 3 q9 p / .'. q 

DC Denying the Consequent P 34, "4 / .~. -P 
Reductio Ad Absurdum RAP, p 3  F / .'. --p 
We use "F" to  denote arzy contradiction. AA and DC are often called "Modus Ponens" 
(MP) hnd "Modus Tollens" (WIT). If an argument is seen to have a recognized valid form 
it may be immediately pronounced valid. RAA is often used in establishing a result by 
assuming its negation and then showing this leads to  a contradiction. 

Two invalid argument-forms of special note are p 3 q, q / .'. p (the fallacy of  Affirming 
the Consequent) and p 3 q, --p / .'. -q (the fallacy of Denying the Antecedent). 



The method 
Of Wssigning 

V P  lues 

5.1 INTRODUCTION 

The "Method of Assigning Values" (MAV) has application in many fields, but in  
propositional logic it performs essentially the same jobs as the tabular methods discussed 
in the previous two chapters. We study MAV here because it  often (though not  always) 
performs these jobs faster than the tabular methods, especially when several propositional 
variables or constants are involved. Though related to  the tabular methods, its reducfio ad 
absuvdunz approach can yield very efficient solutions indeed, particularly when a written 
explanatken of the solution is not required. For  this reason it is highly Ovonred by exper- 
iel?ced logiciar~s for "'n~e~?!al" an6 "jot-doain" sointions. 

i ts  most usefui role in propositior~al logic Lies in testing for a specific properly or 
relation (e.g., tau.to?ogyhood or equivalence) and testing for validity. After looking at 
the general rules for MAV we will consider specific applications separately: first tlhe 
testing of modal properties of propositions; second, the testing of modal relations bet- 
ween two propositions; and finally the testing of arguments. Concurrently, the testing 
of various properties of and relations between PL-forms will also be mentioned. 

5.2 GENERAL RULES 

In general, we will start with a formula, assign a truth value t o  the main operator, and 
then deduce what values must be  assigned t o  the rest of the formula on  the assumption 
that our first assignment is correct. The object of the game is to  determine whether or 
not the original assignment leads t o  a contradiction. We indicate the order of the steps 
taken by providing a row of numbers under our row of truth values; the original assign- 
ment is numbered 1. 

Example: p 3 q 

1 0 0  + Truth Values 
2 1 2  + Order of steps. 

Here we began by assigning 0 t o  the expression and inferred the values in step 2 from the 
fact that a material implication is false iff the antecedent is true and the consequent is 
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false. Letting a and P denote any wffs of PL (either PL-sentences or PL-forms), this 
example may be generalized to the following rule: 

ff 3 0  -+ ff 3C3 
0 1 0 0  

In this manner the following list of "one operator assignment rules" may be drawn up to 
indicate what further assignments immediately follow from the assignment of a value to 
a single operator. Use the operator definitions to derive these rules for yourself. 

Assignment Rules: 

" a '  

1 

+ - a  
0 1 

+ o i & P  
1 1  1 

+ o i & B  
0 0 

+ o i v p  
1 1  

+ a V / 3  
0 0 0 

+ a 3 0  
0 1 

+ a 3 B  
~ o e  

Perhaps the most difficult of the above rules to derive is the one beginning with oi 3 P = 1 
and leading to the alternatives a = 0 or P  = 1. One way to show this is as follows: cu 3 0 = 1 
iff -- (a 3 p  = 0) i.e. iff - (a=l & P=O) i.e. iff a=O V p=l. Another way is to verify the 
equivalence p 3 q * - p  V q by means of a truth table. 

Notice that most of the above rules generate two alternatives: this is called "splitting". 
When using a rule that produces two alternatives the previous work is copied down again; 
the original case may be used for the first alternative and the copy for the second alter- 
native. To emphasize that the alternatives are separate cases a line may be drawn between 
them. Splitting occurs in step 2 of the following example where the fourth assignment 
rule on our list is used. 



As you can imagine. if much splitting occurs MAV can become quite arduous. To  save 
work then, when given a choice between using a rule that splits and one that doesn't split 
we choose the latter. 

Efficiency Rule: Don't split until you have to. 

The fact that all occurrences of the same propositional letter in a formula must be 
given the same truth value leads t o  the  following rule. 

Copy Rule: Once a value has been assigned to a propositional letter in an alternative, 
this value may be copied underneath all other occurrences of that letter 
in the alternative. 

To  indicate a copy we will not specify a step number. Instead we will simply underline 
the copied value e.g., 

The next rule, while not essential to  MAV, is very useful. Intelligent application of this 
rule frequently leads t o  a substantial reduction in the amount of work (especially when it 
eliminates the need to split). 

Resolution Rde:  Where possible, a value may be assigned to a symbol by resolving it 
with respeci LO values already assignec! in the same alternative. 

For instance, in the previous example we have (p - q )  = G and p = 1. The ody way for 
this to happen is to have q = O~ So we may assign 0 t o  q on this basis (see step 3 below): 

A list of such resolutions is given below (the resolved value is indicated with an asterisk). 
Don't bother t o  learn these rules off. Just check them through for yourself t o  be sure 
you could make the appropriate resolution when the particular value combination arose. 



In addition t o  this list it is sometimes useful t o  assign values t o  an operator from the 
value(s) of its operand(s) e.g., a 0, a V 0. We make no attempt t o  provide a 

1 1 1  1 1  
* * 

list of such resolutions here since they have been covered earlier in our operator defini- 
tions: and our one-operand evaluation rules ( 5 3.3). 

When an alternative is found to generate a contradiction we cease work on it as it 
cannot provide a possible way of satisfying the original assignment: the alternative is 
then said t o  be "closed". When all alternatives close this is called ''full closure". To 
indicate a contradiction we join t h 2  inconsistent assignments and place a cross under- 
neath. From the point of view of PC, there are two different ways in which a contradic- 
tion may arise. The simplest case is when both 1 and 0 are assigned t o  the same symbol 
or subformula i.e. 

Second"i. a corziradiciigl~ msy arise c-~l ing is zr; ifici?fisisr-~c:~/ ,/e:areeii t he  s~aiuc assig:zer, 

"; an operato] and the valiles assigned to i t s  operands e.g." 

These different ways of generating a contradiction are illustrated in the two examples 
below, each of which shows that assigning O t o  the form p V --p leads to  a contradiction. 

Note that although the final result was the same (i.e. a contradiction was generated), 
there was more than one correct way of  deriving this result. Because there is usually a 
choice of rules. MAV often permits several correct solutions t o  the one problem. 

Closure Rule: Close an alternative as soon as (i) both 1 and 0 are assigned to 
different occurrences of the 
same expression, 



or (ii) an operator is assigned a value 
inconsistent with the value(s) 
assigned t o  its operand(s). 

Within the context of MAV let us agree t o  use the words "case" and "alternative" 
synonymously: a single case which does not split may thus be regarded as a single alter- 
native. Until a case is closed by producing a contradiction it is said t o  be "open". 

Completion Rule: Keep going until (i) there is at least one open case with all 
relevant values assigned, 

or (ii) all cases close. 

Note the implication for cases that split. The first alternative should be worked through 
completely: if this does not yield a contradiction, stop work as condition (i) is satisfied; 
if it does generate a contradiction you must test the other alternative because it  might 
not close. 

Having learnt the ground rules of MAV you are now in a position t o  understand its use 
for testing various properties and relations. The tests depend on  the fact that the original 
assignment is a contradiction iff it generates a contradiction in all cases. 

5.3 TESTING PROPOSITIONS 

Before using MAV t o  test propositions let's look at PE-forms. Recall that a tautolo- 
gous PL-form = E for all assignments of  values to its PVs i ~ e ~  it's impossible for a tautology 
to have the i i a lue  0. So If we assign 0 t o  a tautology this rnus'i generate a contradiction in 
ali cases. Oil the other hand, a self-cocrradic'tory PL-Corm = O for a31 sssignn~ents .to its 
F7s: sc a j s i g f i i a ~  o - "-0 i: must gerleraie s c,ontrs-,iciiri.n in al i  cases. Sc: )%4A3J i ~ ; zy  ibc. _r;ea 
to :i;si PL-irm_s zs follows. 

PL-form MAV test 

tau tology ass ign i~g  0 to the main operator + full closure 
conlradtction assigning 1 t o  the main operator + full closwe 
contingency each of the above tests fa2 to give full closure 

Example 8 :  P 2 ( 4  3 P )  
1 0  I 0  0 It's impossible for the formula t o  be 0. 

1 3 2  7 .'.it is a tautology. 

X 

Example 2 :  P & " P  
1 1  1 0  It's impossible for the formula t o  be 1 
;2 1 2 ?  .'.it is a contradiction. 

X 
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Example 3: P 2 (P & 4 )  
1 0  1 0  0 

- 
The formula can be 0 .  

2 1  2 3  So it is not a tautology 

P 2 (P & 4 )  
0 1  0 

- 
2 1 Obviously the first alternative will not  close 

(regardless of what value q is given). 
1 1  So the formula can be 1. 
1 2  It  is not a contradiction. 

Hence the formula is contingent. 

Notice how these tests involve RAA. For  instance, in order t o  prove a formula is a tautol- 
ogy we assume it  is not (by assigning 0 to  it) and then show this generates a contradiction. 
Notice also that two tests are required t o  establish contingency: for this reason MAV is 
most efficient when we simply want t o  check that the formula is a tautology or check 
that it is a contradiction. Actually, there is a way of making one test sufficient for detect- 
ing all three types of form but  we have no space t o  discuss it here (see Notes t o  § 6.3). 

Now let's look at  classifying propositions. Before applying MAV a translation into P L  
is required. From our work in 53.5 on  such classifications, and the above work on PL- 
forms we can now state the following tests. 

Proposition MAV test on  explicit PL-translation 

taukology assigning 0 t o  the main operator + full closure 
PC-contradiction assigning I t o  the main operator + Cull closure 
PC-indeterminacy each of the above tests fails t o  give ful l  closure 

Example 4: Use MAV to check whether the following propositicrs is a contradicticn. 
His m r a  is ne~ther green nor blue, but it is green. 

6 = His aura is green 
B = His aura is blue 

-(G V B) & G  
I 0 0 0  1 4  It's impossible for the proposition to be 
2 4 3 4  1 2  true. 

So it is a contradiction. 
X 

As we know, PC-indeterminacies may be necessarily true, necessarily false or contin- 
gent, but so long as we stay within PC we are unable t o  determine which. However, if we 
look inside the atomic propositions involved and are able t o  decide what assignments t o  
them are collectively possible (i.e. consistent), then such determinations can be made. In 
this way truth tables were extended t o  possible-truth tables. Similarly, MAV can be 
augmented t o  yield the Method of Assigning Possible-Values (MAPV). All we need d o  is 
add the following rule. 

Subatomic Closure Rule: Close any alternative which has an inconsistent assignment of 
values t o  its propositional constants due to  the internal nature 
of the dictionary propositions. 

With MAV there are only two ways of closing an alternative. The above rule provides a 
third way by  allowing closure if an internal analysis of the dictionary propositions reveals 



that the assignments to  them are collectively impossible. As with possible-truth tables, 
the success of this method depends on how good our abilities are for spotting such 
inconsistencies. If the Subatomic Closure Rule is obeyed then any open case arrived at by 
the Cornpletion Rule will be a possible case i.e. it will represent some possible world. 
MAPV thus sorts propositiorls into the same categories as possible-truth tables do. 

Proposition MAPV test on any PL-translation 

i~vrecex ja i - j ;  ~i~ t,+ assigiiiiig 0 t o  the main opsraior + full ciosure 
Contradiction assigning 1 t o  the main operator + full closure 
Contingency each of the above tests fails t o  give full closure 

For obvious reasons MAPV, like possible-truth tables, has no application to PL-forms. 

Example 5: Use MAPV t o  check whether the following proposition is necessarily 
true. 

If Pat smokes cigars then he either smokes or drinks. 

C = Pat smokes cigars 
S = Pat smokes 
D = Pat drinks 

C 3 (S V D) Closure results from the fact that there is n o  
1 0  0 0 0  possible world in which C = 1 and S = 0. 
2 1  3 2 3  
1- 

x The proposition is a necessary truth. 

Although we provide a full setting out in our exainpies and answers,  his is primarily 
fo'oi your benefit so you call mol-e easily follow OUT working. In practice, if you are per- 
forming MAV or PdJAQV for yourself alenc- (i.e. if you 60 no[ intend you; solution to  he 
sim. ",a i-;y .?ti?e~s) the,-. really is i!c need ic 7:-wide the  sie; ~:ur??be-s. @mi?ling ihe 
step nu:.i;ers saves a 1c.t of ~,i/riti~?g. prr'iicular!y ill czses chai spli;. l-lowever ever  in such 
cases it is still advisable to  underline copied values; also, the initial assignment to the main 
operator is best done in a different c ~ I o u r .  

i n  the following exercise and later exercises in this chapter we have generally avoided 
setting questioils which involve much splitting, since in such cases R$AV solutions can be 
quite tedious: such questions are best tackled by shortened truth tables or by the truth 
tree method t o  be discussed in the next chapter. After a bit of practice you will usually 
be able to quickly decide whether MAV will give you an efficient solution. In particular, 
if the formula has a few occurrences of o r  $ then you would normally be best off 
using a method other than MAV since these operators split o n  either assignment. 



Section 5.3 146 

EXERCISE 5.3 

Note: Splitting is required only for those questions marked with an asterisk. - 
1. Use MAV t o  determine which of the following are tautologies. 

2. Use MAV t o  determine which of the following are contradictions. 

3.  Use your intuitions t o  classify the following formulae, then check with an MAV 
solution. 

4. Symbolize the following propositions using the suggested letters, then use MAV t o  
classify them as a tautology, PC-contradiction or PC-indeterminacy. Use your own 
logical intuitions t o  decide on what value to assign first. 

(a) Although exactly one of Anderson and Belnap is a logician it  is true t o  say that 
not only Belnap but also Anderson are logicians. (A, B) 

(b) If Anderson is not a logician then it's not the case that both Anderson and Belnap 
are logicians. (A, B) 

*(c) Either both Anderson and Belnap are logicians o r  Anderson is not a logician. (A, B) 

5 .  Given that A and B as defined for the previous question are indifferent, what can you 
say about any PC-indeterminacy detected there? 

6. Each of the following propositions is either a necessary truth or a contradiction. Use 
your intuitions t o  decide which, and then symbolize (using the suggested letters) and 
use MAPV t o  check your answers. 

(a) If I am happy then someone is happy, unless you are not happy. (I, S, Y )  
(Note: You may assume I am a person!) 

(b) Although I am very happy and you are happy, I am not happy. ( V ,  Y ,  I) 

(c) If Sue is a woman then it is not  the case that she is both human and male. 
( W ,  ff, MI 

(d) If Smith is a woman, and Smith is not human if Smith is a monkey, then Smith is 
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not a monkey. ( W, H, M) 
*(e) Despite the fact that Sam is a man it must be admitted that he is human only if 

he is not  male. ( S ,  H, M) 

5.4 TESTING RELATIONS 

MAV and M M V  may be used t o  sort relatioils into the categories discussed for truth 
tables and possible-truth tables in 53.7. However, while the same table can be used t o  
test several formulae for all the nine relations treated earlier, a separate MAV set-out is 
usually required t o  test each relation. This makes MAV inefficient for testing relations 
unless we are interested in just one relation. For  this reason we will discuss only the two 
most important relations i.e. implication and equivalence. The specification of tests for 
the other relations is left as an exercise for the interested reader. 

Since a tautologically implies 0 (i.e. a * 0) iff a 3 0 is a tautology, to  test whether 
a ' 0 we simply apply the MAV test t o  determine whether a 3 0 is a tautology i.e. 
assign 0 and see whether full closure results. 

Example 1: Determine whether - p  V q tautologically implies p  3 ( q  V r ) .  

( " P  V q )  3 [ P  3 ( q  V 711 
0 1 1 0 0  1 0  0 0 0  - - 

2 1 3 2  4 3 4  .'. - p  V q * p 3 ( q  V r )  
5L-L..A 

X 

Similarly, to  test whether a necessarily implies f i  we apply the MAPV test to determine 
whethe: a 3 /3 is a necessary truth. Remember that if o: and 0 ale propositions and a * 0 
then a necessaiily i r ~ ~ p l i e s  0, b - ~ t  the c3nveise resuit dces 3oi  kcld in general. 

7.7 . . . - 
rher- a(.; se:tfr$ sf-Fe~.el~: -i.loc:l:r:? Cc. :estrag 7 m e t - e -  a if .qhzva:eni 5. 

4 i r"Q ,r 1 3 -  - 
,A .,,, merllod is base0 c:: [n- iac.: ti:a"f 1s (s;:toiogicailyjIi~i:eSra:ii>, eq~-.iaiezrr 1-0 iff 

-. a -- 4 is 2 t~ta"rciogy/necess~ry truth: hex- we assign G to a P and see v,lhether Fail 
closu~e resulis. Although direct, this method begins wif.h a split and so car; be tedious. A 
second method is based on the fact that a is equivalent to 0 iff a implies /3 and 6 implies 
a:  here we use the implication test in  both directions and Look for full closure both times. 
Bur the method we favour is as follows: 

look a t  a and 0 and make an educated guess as t o  which value they will 
least frequently exhibit; 
assign this value t o  both and apply MAV (or  MAPV); 
a and /3 are equivalent iff the open cases remaining match exactly. 

You may think of this third method as finding the table rows on  which the formulae have 
the assigned value; obviously the formulae are equivalent iff these rows match. Assign- 
ments for each formula should be treated separately: d o  not copy values from one formula 
t o  the other. Testing for equivalence is perhaps the most useful application of MAV: 
besides providing a quick check for equivalent translations, the third method just discussed 
allows "lightning fast" proofs of many important logical laws to be produced. 

Example 2: A student translates the proposition 

Apples are on the menu unless bananas are. 

as --A 3 B but  the prepared solution is A V B. Is his translation correct? 
His translation will be correct if i t  is equivalent t o  the answer. Looking at  the 
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main operators (3  and V) it is clear that the formulae will be 0 less often than 
1. So we begin by assigning 0 to each. 

A V B  
0 0 0 Each formula = 0 iff A  = 0 and B = 0. 

2 3  1 2  2 1 2  So the formulae are equivalent, and the 
student's translation is correct. 

(This shows that both formulae = 0 on row 4, and = 1 on the other rows of 
their truth table.) 

1.  For each of the following9 use MAV to determine whether the first formuia tautologi- 
cally implies the second. 

( 2 )  - - p  3 q - 4  > p  
(b) p & ( q  V r: : (p \I q )  & P. 
( c ) p & ( p E z q )  ; q V u  

Example 3: Prove the Associative Law of Conjunction i.e. p & ( q & r) * (p & q )  & r 

Here we choose to assign 1 rather than 0 to  the formulae (why?) 

2. For each of the following use MAV to  determine whether the formulae are tautologi- 
cally equivalent. If not tautologically equivalent, state an assignment of values to the 
PVs where the formulae differ in value. 

P & (4 r) 
1 1  1 1  1 
2 1 3 2  3 

3. Given that A,  B and C  are indifferent propositions, determine which of the following 
pairs are necessarily equivalent. 

( P  & 4) & 7 Each= 1 iff p = l , q = l , r = l .  
1 1  1 1  1 So they are equivalent. 
3 2 3 1 2  (This shows the formulae = 1 on 

(a) A  &--B --(A 3 B )  
(b) A 3 (B V C)  ; ( A  3 B) V C  

*(c) ( C & A ) 3 B  ; - B V ( C & A )  

row 1 and = 0 on the other rows of 
their table.) 

In relation to the third method, although splitting may occur, it is often. possible by 
judicious choice to make the first case yield an assignment set for which the formulae 
differ in value: in such a case you can stop work immediately as this means the formulae 
are not equivalent. Note that if one formula splits and the other doesn't, this tells us 
straight away that they are not equivalent. 

5 -5 TESTING ARGUMENTS 

As regards argument-forms, a counterexample is an assignment of values to its PVs 
whichmakeseachpremise = 1 and the conclusion = 0. Recall from 54.6 that an argument- 



149 Section 5.5 

form is valid iff there is no row in its truth table with such an assignment. The MAV test 
for validity of argument-forms begins by assuming such a counter-row does exist, and 
then seeing whether this assumption generates a contradiction. 

PL-argument-form MAV test 
- 

valid assigning I t o  each premise and 0 t o  the conclusion + full closure 

invalid the  above test fails t o  give full closure 

We set out the argument-form as for a truth table but assume we are on  a counter-row. 
The original assignments t o  the premises and the conclusion are each numbered as step 1. 
As soon as an alternative is found which will remain open we copy the assignments of the 
PVs across t o  the matrix to  indicate the counterexample and thus establish invalidity. 

Example 1: Test the following argument-form for  validity 

P 14 1 1 P & 4 1 4 ' 1 ~ u l l  closure. 
/I 1 1 1 1  1 1 1 1  0 

- / I 11 2 1 2 1 1 3 1 1 ... Valid 

Notice from the above example that values may be copied across a row e.g., the value of  
q in the second premise was copied from the value of q in the first. This is allowed 
because on a truth table the P i s  must have the values of the matrix row. The second 
thing to note about the above example is that care should be taken about which proposi- 
tional-form to work on next e.g., here the firsi premise was worked before the second t o  
avoid splrtting, Lastly, ni;?e that if fz;L c'losxre occurs we leave the matrix IOVI blank. 

Example 2: Tesr the following argument-form for val~dity. 

" .  

; ; ; ; Y ; 1 ; iounterexamp1e as showii~ 

1 3 1  2 1 - 1 I .'. Invalid. 

As regards arguments, a counterexample is a possible world in which the premises are 
true and the conclusion is false. An argument is valid iff it has no counterexample. From 
54.4 and our earlier work, the following tests may be stated. Here "no cases close" 
means open cases occur for all assignments to  the propositional letters. 

Argument MAV test on explicit PL-translation 

PC-valid assigning 1 t o  premises and 0 t o  conclusion + full closure 

PC-invalid assigning 1 t o  premises and 0 t o  conclusion + n o  cases close 

PC-indeterminate assigning I t o  premises and 0 t o  conclusion -+ Just some cases 
close 
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Argument MAPV test on  any PL-translation 

valid assigning 1 t o  premises and 0 t o  conclusion + full closure 

invalid the above test fails t o  give full closure 

In addition, a check can be made on whether the premises are inconsistent, by assigning 
1 to  each and seeing whether full closure results. 

Example 3: Symbolize the following argument, then assess its validity. 
Either Cathy or Donna will be there. Alan will be there if and only if 
either Bill or Cathy will be. Now, Donna won't be there. So both 
Alan and Cathy will be there. 

Using an obvious dictionary, this symbolizes as: 
C V D ,  A = ( B  V  C) ,  --D / .'. A & C  

x .'. Valid 

As remarked earlier, private solutions can be sped up  by omitting step numbers, but  it 
is always helpful to  enter the initial assignments in a different colour and t o  underline 
copied values. With invalid arguments that split, thoughtful selection can arrange for a 
counterexample t o  occur in the first alternative, and work can immediately stop. Since 
truth trees (to be discussed in the next chapter) provide a simpler method of dealing with 
splitting, we have focussed our attention on  examples that need not split. 

A I B /  C I  Dl1 C  V  D  

1 1 1 1 0  - 

NOTES 

3 1 1 6 5 6  1 2  4 1 ,  closure 

A - ( B V  C)  

0 1 0 0 0  - 

--D 

1 0  

Our presentation of Ic3AV is a modified and extended version of the procedure developed by Nalcoim 
Rennie for use in propositional acd 1xoda.l logic (see Logic: Theory and hactice 5 51.8-1 .lo). Varia- 
tions oT MAV go under many names e.g.. "abbreviated irulli-table method", "'reduciio ad abs~~zdun: 
test'", "iriai-and-error method' . That the rneihod of setting out  is by no rneafis stanciardized can be 
seen by consulting recent treatments by other authors e.g.> Tapscott's Elementary Applied Symbolic 
Logic Ch. 14, and Bradley and Szvartz's%ssiblz Worlds 55.10. 

A & C  

0 0 1  Full 
- 

EXERCISE 5 -5 

1. Use MAV t o  assess the following argument-forms for validity. Where invalid, state a 
counterexample. 

(a) q > ~ ,  / .'.P 
(b) q, P 3 q  1 .'. P 
(c) p 3 q ,  q 3 r ;  r 3 s ,  s 3 t  / . ' . p 3 t  
( d l  P V  ( q  & r ) ,  q  & --P / .'. r  3 P 
(e) p 3 - ( q  3 r ) ,  - ( r 3 ( s  $ t ) )  / .'. - r V  t 

2. The following arguments are represented by their explicit PL-translations. Use MAV 
t o  assess them as PC-valid, PC-invalid or PC-indeterminate. 

(a) A  V B ,  -B  / .'. A  
(b) A > B ,  --A / :. - B  
( c )  A  > ( B & C ) ,  - D 3 A ,  -B  / ... D & - A  
( d )  - (D 3 E ) ,  C - A,  -(D & B )  / .'. A  V  B  

3. Given that A, B, C, D  and E in Question 2 are indifferent propositions, state which 
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arguments are valid and which are invalid. Where invalid state a counterexample. 

4.  (a) Use MAV t o  show that the following argument is valid. 
" ( A  V ( B  V  C ) ) ,  A V D ,  -D / :. --(B 3 C) 

(b) Is the argument sound? (Hint: Use MAV t o  test the premises for consistency). 

5. Symbolize the following arguments using the suggested letters, then use MAPV t o  
assess their validity. Where invalid state a counterexample. 

*(a) If the vorld is heading for a crisis then, unless people try t o  be more laving the 
human race is doomed. Obviously the world is heading for a crisis. From all this 
it follows that the human race will try t o  be more loving but will be doomed. 
(C, L,  D )  

(b) Meditation will be effective only if concentration is. Now for concentration t o  be 
effective it is necessary both that good posture be attained and that the mind be 
relaxed. Consequently, if either good posture is not attained or the mind is not  
relaxed then meditation will not be effective. (M, C, P, R )  

Puzzle 5 In a certain college, students always-lie and lecturers always tell 
the  truth. A,  B and C are three people from this college. When 
asked if she is a student, A  replied (with a "Yes" or "No"). 
B and C then commented as shown. 

How many of these three people are students? 

A is a student. $ 

5.6 SUMMARY 

The Method of Assigning Values (MAW often allows faster evaluations in PC than the 
truth table method. An RAA technique, it begins by assigning a value to  the main opera- 
t o r ( ~ )  of the formula(e) involved and determining by means of rules whether this generates 
a contradiction in all cases (i.e. ';full closure"). Assignment Rules allow values of 
operands to  be deduced from the values of their operators: some of these generate a pair 
of alternatives (this is called "splitting"). The Efficiency Rule advises us to  avoid using a 
splitting rule unless there is no choice. The Copy Rule permits values to  be copied to all 
other occurrences of the same letter in the same alternative. The Resolution Rule allows 
the value of a symbol t o  be resolved from previous values, by making use of implications 
from our operator definitions. The Closure Rule allows an alternative t o  be closed if (i) 
both 1 and 0 are assigned t o  different occurrences of the same expression, or (ii) an 
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operator value is inconsistent with the values of its operand(s) by violating the operator 
definition. A case remains "open" until closed. The Completion Rule allows us to stop, 
once all cases close or it is obvious that one case will remain open. 

The Method of Assigning Possible-Values (MAPV) adds the following Subatomic Closure 
Rule: close any alternative with an inconsistent assignment of values t o  its propositional 
constants due t o  the internal nature of the dictionary propositions. Like possible-truth 
tables, MAPV goes beyond PC in allowing internal analysis of atomic propositions. 

MAV and MAPV solutio~ls can be made more intelligible t o  others by underlining copy 
steps and numbering other steps. 

PL-forms may be assessed by M.4V as follows: tautology (assign 0 + full closure); 
contradiction (assign 1 + full closure); otherwise contingency. 

Propositions may be assessed by applying MAV t o  their explicit PL-translation as follows: 
tautology (assign 0 + full closure); PC-contradiction (assign 1 + full closure); otherwise 
PC-indeterminacy, Propositions may also be assessed by applying MAPV to any of their 
PL-translations as follows: necessary truth (assign 0 + full closure); contradiction (assign 
1 + full closure); otherwise contingency. 

As regards relations, MAPV is usually not very efficient unless just one relation is being 
checked. To determine whether a tautologically/necessarily implies 0, use MAV/MAPV 
t o  determine whether oc 3 0 is a tautology/necessary-truth. Equivalence is best tested as 
follows: make an educated guess as t o  which value a aild 0 will least frequently exhibit; 
assign this value to  both and apply MAV (or MAPV); a and 0 are equivalent iff the open 
cases remaining match exact1y.j 

_~~-argl.rfi2l?tttf()r?:~5 :Eay hf: t3'365~ed 5y h/FAa./ as _fol]c.hr;; i~a]i,: 3 1 9  :;rei-..ires 2:ld C 
. . rc coachstor; -a f I j 3 !  clos:iie: .?lhe;\,\;iif: iaii;iJid. / i w p : . : q < 3 - ~ i r  r r , - , ~  !-p P -  

" .  
, , . ; , ~ a ,  2 , J b s ,  ! d Y  J .  .~sesseci by applying . - 

[~IAV ;a irhe;;. p- - , i i r ; )  n: i. . . - ~ r a i ; r i a ~ i ~ n  ;IS faIl3.,wi.: F~..b~z~i~/Pt~-~ii~ia~jdiQCC~iI;~~-~-o~~~qic2+- b-&,.,-.- ' . , L r ,  

. .  - ac:'cr&:;g 8s ars;gg::?;g ! ;):ei-,~;~ec, ;:!i % :r; :o~ficl;s:c:: --; ~-,:~L~~~:;~ ~ 2 ~ ~ 2 :  c;l~;e/ 
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jusi sc::.ie :,ases :]ose. Argp,:rie~-~~; a:so oe assessed by ~ f ~ A ~ ~ i '  s;: failoa s .  :ai;& (ass$n 
I te premises and O t o  conc:usio-. + fid closure); o-iherwise invzlid. 



Truth  Trees 

6.1 INTRODUCTION 

We now move on to one of the most enjoyable parts of logic: truth trees. Though 
trees are delightful. they perform the same jobs as tables or MAV; so the less adventurous 
reader may object t o  learning yet another testing procedure for propositional logic. Two 
main reasons may be given in reply to  such an objection. The short-term reason is that,  
like MAV, trees often give quicker solutions than tables do, particularly if 4 or more 
propositionei letten are involved; moreover, trees provide a simple means ofdealing with 
cases which, by splitting; prove awkward for MAV. The long-term reason for studying 
truth trees is even more important: wkien we graduate from PC t o  the more powerflu! QT 
(Qrrantificatioc Theorj~), PC-trees maj? be eosily lj/.xteizded i.nto QT-f:"-hzes (currenzt?y the 
best  testing procedure availahit. in @':): iri; ;he sther hand, "rur!; tahies a n i  j.,4AV have 
->,e;y ii':7liretl applicatior in QT. 

v . _lke Jlj-::. :i.;>tki ;.-e.;s :.I.(- .r,::< :is&.: ili?i-!t ".-j:j!cg 3 c3yjs -.r.s.iJerry 9: c27i*,inIi 2-13 
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,:i,i trse the  tree method to iesl prrpositionz, zeiatiocs arid zrguments. The possible-trklth 
tree r n e t ~ ~ o d  also be introduced. and an advanced tree method empioying resolzrticn 
rules will be briefly treated. 

6.2 GENERAL RULES 

Replacement Rules : 

Unlike botanical trees, truth trees grow downwards from an initial formula or set of 
formulae. New growth results from use of replacement rules, whereby an expression may 
be replaced by another that is equivalent t o  it. The replacing expression is written below 
the replaced expression, the latter being ticked off t o  remind us that we n o  longer need 
refer t o  it since its information is now available from the replacing expression. As an 
example of a simple tree, consider: 

J --(P & q )  

~ & 4  

Here. ---- Cp & q) has been replaced by p & q ,  using the DN equivalence ----a * a and 
employing our practical concession which allows outer-most brackets t o  be omitted. 
Thus our first replacement rule is merely a reformulation of the Law of Double Negation. 



Rule 1 :  J --n 

n 

Now that you have the general idea let us proceed with the other replacement rules. 
In each of these we let a and /3 be any wffs. 

This is based on the idea that a & f l  is true iff both a and /3 are each individually true. 
We may extend this to 

Rule 2': J a,  & a ,  & ... & a ,  

01 

'32  

This amounts to the general result that a conjunction is true iff all its conjuncts are 
true. 

Example: i /  p & -q & ( r  2 pj 

This is our first example of '"branching". A disjunction is true iff at least one of its 
disjuncts is true. On the left branch we treat the case where a is true: on the right branch 
we consider the case where /3 is true. Note that we leave the question open whether P is 
true on the left and whether a is true on the right. The branch symbol //thus functions 
like a wedge (written upside down and bigger). From rules 2 and 3 we see that moving 
along the one stem or branch involves conjunction whereas the branching process itself 
is a matter of disjunction. Rule 3 may be generalised to 



Example: J -q V ( p  3 r )  V p 

/n 
-4 P=" P 

Though equivalent to  splitting in MAV, branching in trees is more economical since 
there is no need to make a second copy of the previous information (it can be readily 
accessed by climbing up the tree). The next rule, which is based on the equivalence 
a 3 /3 * - cu V 8, corresponds to the MAV assignment rule a 3 0 = 1 -+ a=O or 0=1. 

Rule 4: J a 2 /3 

Example: J -q 3 (p v r) 

In practice, to save a bit of writing, we would usually write instead 

On the lefi branch have rr.,entailjr applied the rule ~ i '  Doxble Negation 2nd on the right 
hand bral~ch the brzckets have been dropped since this leads to no ambiguity. 

You may be wondering if rule 3 may now be applied to the right branch. Yes, this is 
correct. By doing so we obtain 

You can now appreciate how application of several rules may lead to quite large trees. 
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This depends on the fact that oc is materially equivalent to  /3 iff they have the same truth 
value, i.e. they are either both true (left branch) or both false (right branch). 

Example: J ( q  3 r)  = -p 

Note that in the right branch the brackets must be retained and that DN has been used to 

get P .  

It is important to realize that since the replacement rules are equivalence rules for the 
whole formula being replaced, in any particular case it is the main operator which deter- 
mines the replacement rule to be selected. For instance, in the above example the main 
operator of (q 3 r )  r - -p  is G ,  not 3 ;  so in replacing this formula we must use the rule 
for a /3 (i.e. Rule S), not the rule for a 3 /3 (i.e. Rule 4). 

This follows from the fact that a & /3 is true iff a! and have opposite truth values. 

The rest of our replacement rules are for negated expressions 

A conjunction is false iff a t  Least one of its conjunces is false. This allowis the rule to be 
extended to 

Rule 7': d -(a,  & a,  & ... & a,) 

-a, -a2 

A disjunction is false iff all its disjuncts are false. Hence this may be extended to the 
following rule, 8'. 
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Rule 8': -(a, V 0, V ... V a,) 

-a1 

-a2 

Rule 9: J -(a 3 P )  
a 

-0 
As the truth table for a 3 f l  shows, the expression is false on and only on the second 

row, i.e. when a is true and f l  is false. 

This follows immediately from Rule 6 and the fact that -- (a r (3) is equivalent to  + 0. 

This .Follows from Rule 5 since -- (a  $ 0) is equivalent (by Double Negailion) to 
a = p" 

If you have previoras!y studied MAV, all of the basic hngrimed) replacement rules 
should have seemed familiar to you. The reason for this is that each of these is analogous 
to an MA87 assignment rule. You might like to check for yourself the fact that the second 
through the twelfth assignment rules of 55.2 correspond, in order, to the tree replace- 
ment rules 1,  2, 7 ,  3, 8, 4, 9, 5, 10, 6 and 1 1. The MAV efficiency rule also has the 
following tree analogue: 

Efficiency Rule: Don't branch until you have to. 

While it is not essential to obey this rule, it usually saves us work if we do. What it 
means is that ifwe have a choice between using a rule that doesn't branch (i.e. one of rules 
1 ,  2, 2', 8, 8', 9) and one that does (i.e. one of rules 3 , 3 ' ,  4, 5 , 6 , 7 , 7 ' ,  10, 11) we should 
use the non-branching rule to use first. If forced to branch, the replacement rules for 

and $ are usually best to apply first (where relevant) since they provide two entries 
on each alternative. 

Example: Suppose we have the two expressions below on a common branch of our tree. 



Applying rules 3 and 8' in that order gives: 

J - ( P v ~ v ~ )  

However, using our efficiency rule t o  apply 8' before 3 yields the shorter 
result 

J - ( p v q v r )  

Clearly this saves duplication. 

For obvious reasons. the MAV Copy Rule has no analogous tree rule. Tree resolution 
rules analogous to the MAV Resolution Rules may be specified, but  since branching does 
not engender as much work as splitting they are iloi as urgently required for laboilr-~2ving 
as their MAIT coun-ierparts are: we will ireat them as an advanced technique and postpone 
:he:: discussion tjii later i_r! the chzpter. BntUihe MAV ijlsiil 'e Rule and Completic;? 
& J I ~  do h21de co-lesgond!ng t;ee ru:es, ;c ;ef :s 2.1. these n,Jw W e  ,.;ii.i! ;,se ?lie w3i4 

,fi 5 : , describe a  coaziinuous, downwara route s l a r i h g  at the top of the tree. A tree 
has more than one path iff i t  branches. 

Closure Rude: Close a path ( q b 7  writing x underneath it) as sooil as a contradiction of  the 
form 

occurs in it (where a is any wff?. 

As an illustration, the left hand path in the above example should be closed since it 
effectively contains both q and --q in it. This would be written 



Because of our replacement rules, you are entitled to climb from any position on a 
branch all the way up to the start of the tree and count all the information passed on 
the way as being true of your particular path. However you are not allowed to climb 
up one branch and go down another: the information on one branch need not be true of 
another branch. The dotted lines in the diagram below indicate allowed and forbidden 
paths on a skeleton tree. 

ALLOWED FORBIDDEN 

For instance: the ~ight  hand path in the example above contains -- q and the left 
contains q :  but this does not constitute a contradiction since the elements are on different 
paths. Hence it would be a ""forbidden path error" to close the right path at this stage. 

Two further points are worth noting about the tree closure rule. Firstly, a and -- ar 
may occur anywhere on the path. For example, 
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may be closed. Secondly a must be a whole element on the path. not just a part. For 
example. 

P I 9  

may NOT be closed by regarding the "p"  in " p  3 q" as "a" and " - p n  as " -a" 

Earlier in this text we defined a propositional letter t o  be either a pi-opositional 
variable or a propositional constant. We now define an elementary wff of PL t o  be either 
a propositional letter or a negated propositional letter. For instance, each of the following 
is an elementary wff: "p", " - q", "A'', " -B". The tree Completion Rule may now be 
stated as follows. 

Completion Rule: Keep going until (i) there is a t  least one open path with unticked 
elements consisting only of elementary wffs, 

or (ii) all paths close. 

Note that alternatives (i) and (ii) are mutually exclusive. This is because once a path 
has been reduced t o  elementary wffs it can be simplified no further; so if a contradiction 
has not occurred by this stage it will not occur at  all, i.e. the path will never close. 

NOTES 
Trees for PC and QT are comparatively recent inventions. They derive from the semantic tableaux 
technique first set out by Evert Beth in 1955. Our rnerhod of setting ou.t trees is a modified version 
of that used by M. K. Rennie. 

Some auihois use '"branch" the lalay we use "path". Our tinge irea:s a tree c o i l r i s t i ~ ~ ~  only of ,i :ri~n:i 
as having one path but no branches. 

1. Which of the foliowing demonstrate correct v.se of replacement rules? 

6.3 TESTING PROPOSITIONS 

Any truth tree begins with a trunk containing one or more expressions. The immediate 
aim of growing the tree is to deternzine whether these original expressio~zs involve a 
contradiction. Since the tree paths are simply attempts t o  satisfy the original expressions, 
if there exists a t  least one open path that will never close this constitutes a way of making 
these expressions true i.e. the original expressions do not involve a contradiction. On the 
other hand. if all the paths close there is r?o way of ~naking the 01-iginal expressions true 
and so they must involve a contradiction. To  suni u p ,  tlze original expressio~zs irz a tree 



161 Section 6.3 

involve a contmdiction iff they generate a contradiction oil all paths. This general result 
undellles all of our tree tests. 

Before using trees to test propositions let's look at PL-forms. From the above result 
we can immediately write down the procedure for identifying a self-contradictory form. 
The only original expression in the tree will be the form to be tested, and it will be a 
contradiction iff it produces a contradiction on  all paths i.e. all paths close. Since a 
tautology always = 1 ,  its negation must always = 0; so a form is a tautoiogy iff its nega- 
tion is a contradiction. Any PL-form which is not a tautology or a contradiction must be 
contingent. These considerations allow us to  specify the following tree tests for PL- 
forms. 

PL-f orm truth tree test 

tau to1og.v negate the  form and apply the rules + all paths close 
contradiction affirm the form and apply the rules + all paths close 
contingency each of the above tests fails t o  give full closure 

Example I :  Show that p & - p  is a contradiction 

Solution: J !.i & -p  

This problen~ is about as easy as you can get; i t  needed only one applicatiori of Rule 2 
before closure. and you sllould have no difficulty in foliowing ihe solution provided 
above. H-lov~erie~, soineri~nes trees get yeiy lsng and complicaied; and to make them 
e;hsier to f o i ! ~ ~ ~  ii.re inrroduce d cofit!erytlog explain the sieps, ~ Y J  ti-le jeFi of ou- 

. ,. 
tree i v e  12uinber ~;.;e lines zonsecu;ivel): sc; h a i  rkey '3411 5e :-eferrea to easzy, This gives 

On the right of our tree we provide a justifiation column. First of all we identify the 
formula to  be tested for a contradiction by writing "F" (for "Formula"). Secondly, in 
applying the Replacement Rules we quote the line used at each step. This gives the final 
form of our tree. 

J p a - p  F 

Even though it involves more writing, it is best to  cia!-ify your moves in this way, at least 
until there are so inany branches that continuing the justification becomes curnhersome. 
Your tree will then he more intelligible not only t o  someone else, but also to jrourself if 
you return to  it after leaving it for a while. 
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Example 2: Test t o  see if p & ( p  3 - p )  is a contradiction. 

4 p & ( p  -.-,-i i Solution: 

All paths close. Therefore p & (p 3 - p )  is a contradiction. (Replacement 
Rules 2 and 4 were used in this solution.) 

Example 3: Test t o  see if p ( p  3 q) is a contradiction. 

x 
Tb  I-lire is zn unclosed path on the corfipleted tree, TherefOl-e p r j p  > a )  
is izoi a c c n r ~ a d i c t i o ~ ,  

?. , .,,.P 

L. i -  ~ r & c i  :C ;.a i ; c r : : ~  33 ,e;",:t ;::t:-l~ b11 lilt. SF.J~-C lirle. :be paths r;qay 
be o.(jej-e:l r"-"-.-i-.->- 

, ,. 
iAi,;iai.. bi.- ally :'rci1: r-,j i t- c-ig!-l%, Thus ' 9 7 7 "  ,.:& ;e:ers '- t<; 1 ~ :  :!el~* 31: 

i - . - 
. ; l~e  in rile l e f i ~ i o s i  p;t.": " ~ 3 ~ "  idenrlfies :be ele!xeni on Iine 3 ir; 
path which 1s secand f ~ o m  the lei?, etc.  

3 .  Our completion rule informs us that we may stop wcrk as soon as w e  find an 
open path with uniicl<ed elements consisting only of elementary wffs. Thus in 
the example above, if we had taken step 6 straight after step 3 we would have 
been able to obtain the following solution. 

The path second from the left cannot close. Therefore p r (p 3 q )  is not a 
contradiction. 
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When testing for tautologies we begin by  negating the formula, and t o  indicate this 
write "NF" instead of "F" in the justification column. Remember that if the formula 
has a dyadic main operator but no outer brackets, it must be bracketed for negation. The 
formula is a tautology iff all paths close. 

Example 4: Show that p V - -p  is a tautology 

Here we used Rule 8 (and also DN for line 3). 

Example 5: Test to see if p 3 ( q  z p )  i s  a tautology. 

. * ,  p 1 ( q  2 p) is a tautology. 

Here Rule 9 w a s  used twice. 

p 3 q . = . - 4  3 .up is a tautology. 

In going through this solution you should have noticed: 

1. the use of Rules 10, 9 ,  4 and D N ;  

2. space saving by having pa:hs share the same line and justification space. 
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Example 7: Test to see if p - ( p  2 q) is a tautology. 

The left path will not close. 

* ' *  p = ( p  I> 4) is not a tautology. 

You may have notice that the form tested in the latest example is the same one tested 
in the third example on contradictions. In both cases the test proved negative, i.e. 
p s @ 3 q )  is neither a contradiction nor a tautology. What is it then? It must be a 
contingency. 

Once you understand and learn the rules, all truth trees are easy. Like truth tables, 
some are just longer (rather than harder) than others. Let's look at a longer example 
now. 

Longer Example: 

Test to see if (-p v q) & (s =- i )  & - ( r  & --s) & ( q  -- Y) . 3 . p  I> 1 is a 
tautology. 

j 3 (Rule 93 
i 

I 2 (Rule 2') 

./ 9. 1 
10. -P 4 6 (Rule 3) 

x n 

11. 
/ \ 8 (Rule 7, BN) 

12. s A\ --s s i\, - s 1 7 (Rv'z, 5 )  
13. t --I 1 -? J 

" 
,\ X 

~ ' .  tne formula 1s a tautology. 
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Note carefully that t he  replacing expressioiz m u s t  alwrrys be  added to every open  path 
stemming fronz the  replaced expvessiorz, e.g., both pairs of paths on lines 12 and 13 are 
required. This is important. 

You will n o  doubt  agree that the above tree solution is shorter than the 32 row truth 
table solution. In the tree, the Replacement Rules used have been named to make it easier 
for you to follow. However you need not bother to  do this in your solutions. Neither 
should you learn which number denotes which replacement rule. All that is needed is that 
you understand and be able to  write down each Replacement Rule (not the name). The 
best way to do this is to  mentally derive them from our knowledge of the operators, 
and to have plenty of practice with them. 

EXERCISE 6.3A 

1. Use trees t o  see which of the following are contradictions. 

- ( P  3 P? 

P f P  
P -  " @ & P I  
p & -(q 3 p)  

-P & " ( P  3 4 )  
P 3 (-P v 4 )  

P - ( 9  $ r )  
( p - 3 q ) &  ( q  ~ r ) .  = .  ( p &  -r)  

- [ ( q  f (?-& - ~ ) V ( P  3 ( q  3 P ) ) l  
p & i-r - s )  & - ( a a  v - (p 3 q))  
( p ~  -(q v ~ ) > & ( q f  - f ) .  3 P I - r  
- p  & -0 & - P  & -S & -: 9 -(p \/ q \ /  rr \ S \ /  l )  

2 .  Use trees ro see which of the foliowing are tautologies. 

( a )  

(bl  
((.) 

id) 

lf.) 
( f )  

(E:) 

(11)  

( 1 )  

( J )  

( k )  
(1) 
(rn) 

D 2 p  

-tp 2 -p; 

- ~ ' - ( 9  2 ~ )  

P I ( P  V 9 )  
(P I $ ) 2 ( q 2 ~ )  
( P ~ q ) & ( q ~ p )  - - . p = q  
p ( q / r )  1 p i r  
( p - ' ( q  J r ) ) & C p  - q ) .  2 -p  

- [ r - ( q v p )  ~ . ( p & r ) l  
P v ( ( I &  r )  = ( p  v q ) &  ( p $  r )  
( p =  r )  2 ( - s  v q ) .  & .  - r ~ ( s I  -p)  
( p  3 S )  & -S  & ( q  -- r ) .  2 .  r v ( p 2  (-q & s ) )  

p & q & r & s & t . ~ . p v q v r v s v I  

Tlie standard tree method for discovering a contingency is t o  perform two separate 
tests, one for a tautology and one for a contradiction, and show that it fails both. This is 
what we did earlier with the formula of Examples 3 and 7.  But there is a superior method, 
whereby contingencies may be detected from a single tree: t o  explain this it will be 
helpful t o  introduce some new terminology. When we discussed truth tables it was 



convenient to speak aboui a particular "matrix r o w " .  but trees don't have such rows, 
so we need a more general term to convey the ided c:l' a particular set of truth value 
assignments: we will use the term "modei". A model f i i s  a PL-whf is an assignment of 
tnkt/z values to each of  its proposition01 letters. A formula with 12 propositional letters will 
have 2n models e.g., p V q has four models: p = l ,  q = i ;  p= l ,  q=O; p=O, q = l ;  p=G, 
q=0. To save writing let's agree that several letters may he strung together with "=" 

signs to indicate assignment of the same value to  each e.g.; the assignmentsp=l, q=1 and 
p=O, q=O may be abbreviated to  p=q=l and p=q=O respectively. Given any PL-form we 
may now classify it as a tautology iff it = 1 in all (its) models, as a contradiction iff it = O 
in all models, and as a contingency iff it = 1 in some modeis and = 0 in others. 

To  apply this theory to  truth trees we need to examine the connection between paths 
and models. If a completed path is open, it  cowesponds to one or more models, as found 
from the elementary wffs on the path (a letter is assigned O if it has a -- in front). 
Consider the following tree. 

On the left path p=I but the value of q is unspecified, so this path covers the two models 
p=q=l and p = l ,  q=O. On the right path q=l and the value of p is optional, so this path 
corresponds to  the two models p=q=l and p=O, q=l . Notice that both paths contain the 
model p=q=l. In general. the same model may be included in different paths. Although 
the paths above cover 3 models. they do not cover the model p=q=O: this model has been 
eliminated by  the Replacement Rule, thus revealing that p V q = O in this model. From 
this one tree then, we have been able to determine that p V q = ! in some models and = 0 
in others i.e. it is contingent. 

Si i~ce there is no model in which a con-iradiciio!' = 1,  and paths are closed only if ihey 
contain 2 contradicrii.,, jr fogov!s :hat aqv ct.ised par.'; :cr;*e,yp;.o&s r() ,qlod-l gi 221~ 
Conside: f e r  instance the io'i:oaiing tree. 

The left path is closed and hence contains no model (there is n o  assignment where p=l 
and p=O). The open middle path corresponds to  the model p=O, and the open right path 
t o  the model p=l .  Moreover, these two models are the only models for the formula. 
Hence the formula = 1 in all models and consequently is a tautology. 

You may have guessed by now that scanning open paths of a compieted tree for 
models will immediately enable a form to be classified, regardless of whether it is a 
tautology, contradiction or contingency. This is true even if we begin with a negated 
form. as it is easy t o  show. These considerations may be formulated into a technique 
which we call the "One-Tree Method" for classifying forms, because it tests for the three 
types of form in a single tree. The method may be summarized as follows. 

Method: 1. Make an educated guess as t o  which value the form will least frequently 
exhibit and assign this value t o  it (by affirming or negating the form) 

2. Complete the tree 
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3. If all paths close, the form is a contradiction or tautology according as the 
form was originally affirmed or negated 

4. If some paths remain open then: 
if the open paths cover all models the form is a tautology or contra- 
diction according as the form was originally affirmed or negated; if the 
open paths d o  not  cover all models the form is contingent. 

The first step in the method is one of efficiency: if in doubt, simply affirm the formula 
and the method will work anyway. When the form turns out to  be a contingency it is best 
to clearly demonstrate this by specifying a model where the form = 1 and another where 
it = 0. Since locating two such models is enough t o  prove contingency, it is not necessary 
to  complete the tree if these models can be derived from an incomplete tree: this allows 
the following modification to the above method: 

As soon as you find one permanently open path, and one eliminated model, 
stop the tree: the form is contingent. 

Please turn back t o  Examples 3 and 7 and you will see how the One-Tree Method 
detects the contingency from either tree. In Example 3, there is only one open path and 
this contains just the model p = q = l ;  so the form = 0 in the other three models. With 
Example 7,  which begins by negating the form, the open path indicates that the form = 0 
in the model p = l ,  q=O; from the two paths of the incomplete tree it is obvious that the 
model p=q=l has already been eliminated, so the form = 1 in this model. From either tree 
then. we are able t o  list two models in which the form has different values, and so either 
tree can be used to establish contingency. If desired, the values from the two models 
listed may be substituted into the form to check the result. 

When using trees to classify proposiiioiis we may ~ d o p t  the standard tree method as 
follows. 

Fropositioa A- L I L . ~ ~ U  ~ +b fTb3c .- -*, L.. L G S ~  on expiicil; $&-t~ansiatian 
- -- 

+fib! tC7l!0g)j ~iega te  tl?e n_~opcsitio;q + ail  psi:?^ rinse 
PC-conrmdict;ofi a f f i r l ~ ~  prop.js;tler; -+ paths close 

?C-lizdetermlnacy each oi the above tests fails to  giire full closure 

Ai'Lernaliiieiy. the One-Tree Method may be used on the explicit PL-translation 6i;s-c 
replace the  t e r m s  "form", ""colztradiction" and "contingency" .xiti? ""p-oposition", 
"PC-coniradiction" and "PC-isdeterrninacy"q. 

As wii-h possible-truth tables and MAPV, PC-indeterminacies may be further resolved 
into necessary truths. contradictions and contingencies by means of possible-truth trees. 
To construct these we augment the standard tree technique with the following rule. 

SraaPatsmic Closure Rule: Close any path which has an inconsistent assignment of values 
t o  its propositional constants due to  the internal nature of the 
dictionary propositions. 

Once this second closure rule has been applied, any permanently open path must contain 
at least one possible rnodel and consequently will represent at least one possible world: 
such a path may be called a "possible path". Possible-truth trees thus sort propositions 
as follows. 

Proposition Possible-truth tree test on any PL-translation 

Necessavy Tvu th negate the proposition + h l l  closure 
Con tvadiction affirm the proposition -t full closure 
Contingency each of the above tests fails t o  give full closure 



Alternatively, the One-Tree Method may be used on any PL-translation (just replace 
"form", ' tree" and '.tautologyn with "proposition". "possible-truth tree" and "necessary 
truth"). Like possible-il-uth tables and M A W .  possible-truth trees have no application to 
PL-forms. 

Example 8: Use possible-truth trees t o  assess the modal status of the following 
proposition. 

If Sue is neither angry nor upset then she is not  very angry. 

Using A = Sue is angry 
U = Sue is upset 
V = Sue is very angry 

this translates as - ( A  V  a 3 - V 

Since our intuitions suggest the proposition is a necessary truth, we begin 
by negating it. 

d 1,  - [ - ( A V U ) 3  - V ]  N F  
J 2. - (A V  U )  

3.  V 1 1  
4.  --A 
5. -U tz 

X 

Closure results from the fact that any path asserting both V and - A is 
impossible (there is no possible world in which Sue is very angry but not 
angry). So the proposition is a necessary truth. 

Soixe z c ~ h c ~ r :  Lee '[lit. Term ' :nodein I- a rqorz restricted qellse to ;near a set 3frssignrLei?ts f 3 i  vihich 

B o ~ h  th:: Z~?s-Tree  ?4etiro; ana Pcisibie-truih Trees a x .  sii fa>- as we k i m w ~  naw. A techi:iquz ar:alogouc 
to ille One-Tree Method n a y  be idopied For MA17 and RIAPV: for instance. If you look back to 
Example 3 of 55.3 coniingencyhood may be dediuced fiom ihe firs; rest d o n e  since the forin is 
therein s!lown to  = 0 only in the mode: p = 4 ,  q=O 2116. hence it = I in all other models. 

EXERCISE 6.3B 

1. For  each of the following paths, list the models that are included. In each case, the 
elements listed are the only elementary wffs on a completed path stemming from a 
PL-form whose PVs are p, q and v. 

(8) -P  jb) P (c) - 7  (dl  P 
4 4 " P  4 

- r  " P  

2. Use the One-Tree Method t o  classify each of the following forms as a tautology, 
contradiction or contingency. For  any contingency, list two models where the form 
has different values. 

(a) P 3 - P  
(b l  q 2 ( P  3 (2) 

(c) P 3 ( P  >(I) 
(dl  - P  & -(P 3 (2) 



3. Symbolize the following propositions using the suggested letters, then use the One- 
Tree Method t o  classify each as a tautology. PC-contradiction or PC-indeterminacy. 

(a) Although Plato is Greek it's not true t o  say that either Socrates is not Greek or 
Plato is Greek. (P, S) 

(b) Unless it rains, Tom will go to  both the football and the cricket. (R, F, C) 
(c) If the sea is blue then it's calm only if it's a calm, blue sea. (B, C )  

4. Given that R ,  F, C  as defined for Question 3 (b) are indifferent, give a more precise 
classification of the proposition there. 

5 .  Symbolize the following propositions using the suggested letters, then use possible- 
truth trees t o  classify each as a necessary truth, contradiction or contingency. 

(a) Sue is joyful only if she is not  miserable. ( J ,  M) 
(b) Sue is not joyful only if she is miserable. ( J ,  M) 
(c) Although the number is not  divisible by 2 it  is both positive and even. (DYP, E )  
(d) Tarski writes logic books bu t  is not  an author, only if he  is an author but  doesn't 

write logic books. (L, A )  

6.4 TESTING RELATIONS 

Although tmth trees 2nd possible-truth trees may be used t o  sort relations into the 
categories discussed f ~ i  tables in 53.7, in mosr cases they are less efficient th.n tables. 
Iae Iimir our i i ~ t e r e : ~  he!-e to  impiicatio:i and equiriale~ce. 

Cf . air0.2 2 ia~!ojcgica:!y eii21i~; 4 :r-r J 2 $ ii ; !a5'roicgy, tsc; iub-Tiler 3 " $ iA,e 
.';y.-.qi./ .,*..,. 
> J ~ ' + . )  ap"4' :he t r ee  tes; zo derc;mine uir~.eti:ei o! 2 fi a iadioiogy ;~F_~ llegale ~;i > p and 
see whether all pains close. 
F fixampie 1: Determine v~hether  p & q tar;.tologicaily implies q. 

.'.(p & q )  3 q  is a tautology i.e. p & q * q. 

Similarly. to  test whether proposition a necessarily implies proposition 0, we apply the 
possible-truth tree test t o  determine whether a 3 is a necessary truth. 

The straightforward way of testlng whether a is tautologically/necessarily equivalent 
to  0 is to  test whether oc -- 0 is a tautology/necessary truth i.e. negate a EE 0 and see 
whether all paths close in the truth/possible-truth tree. 
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Example 2: Test to  see if p V ( q  V r) is tautologically equivalent t o  (p V q )  V r. 

All paths close. .'. p V ( q  V r )  a ( p  V q )  V r 

NOTES 
A Two-Tree Method can be developed which enables several relations to be tested at  once from the 
trees for two formulae by comparing remaining models. But unless the number of propositional letters 
is very large. tables are more efficient. 

EXERCISE 6.4 
I . . For each of the pairs helavi, use trees to determine whether the firs: member tauto- 

logically implies the secogd. 

(a) j j&q ; p 

(b) ,ova. ; P 

( c )  -(p v 4 v w vs \/ ; (p 2 t j  3 ( r  3 S )  

2. For each of the pairs below, use trees to determine whether the members are tautologi- 
cally equivalent. 

6.5 TESTING ARGUMENTS 

As regards argument-fomzs, a counterexample is a model in which each premise = 1 
and the conclusion = 0. An argument-form is valid iff it has no counterexample. The tree 
test for validity begins by assuming a counterexample does exist and seeing whether this 
assumption generates a contradiction i.e. whether all paths close. 



PL-argament-form Truth tree test 
-- 

valid affirm each premise and negate the conclusion + all paths 
close 

invalid the above test fails t o  make all paths close. 

To indicate the form being tested is that of an argument we write "P" beside each 
premise and "NC" beside the negated conclusion. With tables the conclusion is not 
negated, but  with trees it  is: don't confuse the two procedures. Since any permanently 
open path contains at least one model we can read off a counterexample from it: this is 
best specified in the same way as for tables. 

Example I :  Test the following argument-form for validity 

i, _4 

A]! p&?-hs dose .  .". the a ~ . g u n ? e n * - f ~ r ~ ~  is valid 

Example 2, Test the foLlowrng argument-form for ~alidit .~, 

An open path remains. .'. the argument-form is invalid. 

Counterexample: +i+-k 
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As regards arguments,  a counterexample is a possible world in which all the premises 
are true and the conclusion is false. An argument is valid iff it has no cou~lterexample. 
Although the set of all models covers the set of all possible worlds. without an internal 
analysis of the dictionary propositions we are unable to  determine whether a particular 
model is possible. From earlier work, the following tests may now be stated. 

Argument Truth tree test on  explicit PL-translation 

PC-valid affirm each premise and negate the conclusion + all 
paths close 

PC-invalid the above test fails t o  eliminate any model 

PC-indeterminate the above test eliminates just some models 

Example 3: Test the following argument for  validity. 

If Bernard is my brother then so is John, and Vince is 
my brother only if Paul is. Now a t  least one of 
Bernard and Vince is my brother; so either John is 
my brother or Paul is. 

Dictionary: B = Bernard is my brother 
J = John is my brother 
V = Vince is my brother 
P = Paul is my brother 

Translation: B 3 J 
V 3 P  
B V Y  

J V P  

All paths close. .'. the argument is valid. 
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Example 4: Test the following argument for validity. 

If Lee learns astronomy he gains satisfaction, and if 
he teaches astronomy he gains money. Hence 
wheneve: he teaches astronomy he doesn't learn 
astronomy. 

Dictionary: L = Lee learns astronomy 
S = Lee gains satisfaction 
T = Lee teaches astronomy 
M = Lee gains money 

Translation: ( L  2 S ) & ( T = , M )  

. T 3 - L  

Tree Solution: 

The open path corresponds t o  the model L=S=T=M= I .  
The other models have been eliminated. 
So the argument is PC-indeterminate. 

With possible-tmth trees, the Subatomic Closure Rule ensures that any open path 
remaining must correspond t o  at least one possible world and hence provide a counter- 
example. This allows arguments t o  be classified as follows. 

Argument Possible-truth tree test on  any PL-translation 

valid affirm each premise and negate the conclusion -+ all paths 
close 

invalid the above test + a t  least one open path 

For instance, with Example 4 the surviving model from the standard tree test, viz. L=S= 
T=M=l, describes a world where Lee learns and teaches astronomy, and gains satisfaction 
and money. Clearly such a world is possible, so the argument may now be pronounced 
invalid and the counterexample may be specified in the usual way as: 
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That's enough examples. A few points are worth mentioning though, before you work 
through the following exercise. Remember that the same model may be catered for on 
more than one open path, and that one open path may supply more than one model. 
Although argument-forms and arguments may have several counterexamples, one is 
enough t o  establish invalidity. Sometimes you may find that a tree closes before you have 
ticked off all the premises: this happens sometimes because arguments may have redun- 
dant premises (i.e. extra premises which are not really required t o  establish the conclusion). 
Trees may also be used for detecting inconsistent premises: list just the premises and 
apply the ryles; if all paths close the premises are inconsistent. 

EXERCISE 6.5 

1. Use t m t h  trees t o  show that the following argument-forms are valid. (These forms will 
be used in the chapter on  natural deduction, so we have included their full and abbrev- 
iated names for later reference.) 

Simplification (Simp) 
Conjunction (Conj) 
Denying a Disjunct (DD) 
Addition (Add) 
Affirming the  Antecedent (AA) 
Denying the Consequent (DC) 
Chain Argument (Ch Ar) 
Complex Constructive Dilemma (CCD) 
Double Negation (DN) 
DeMorgan (DeM) 

2 .  Use t- ~ e e s  to test the following argument-forms for  validity Where invalid, state a 
cauneerexalnple. 

(a) " p  / '. p 3 ,-p 
(b) P 2 q, a l .'. E: 

- I P  & q ) >  P i .i. -4  
(d l  --!P 2 ba), P $ I? / ... 4 & "P 
te3 P 3 " Q ,  9 3 " P  / .'. "(P V 4 )  
(f)  P 3 (4 & 71, --q V -7  / . ' ~  7 
(g) P 3 4, 7 2 4, P V 7 / .~. q 
(h) P 2 4, P 3 r, P / .'. q V r 
(i) p > q , r > q , q  / . ' . p V r  
(j) p > q , r > s ,  - - q V  --s / . ' . - - p V  --r 
(k) p e ( q V r ) ,  --q r s , s  / . ' . r > p  
(1) - - p & ( r > s ) ,  - - ( s V q ) , q > p  1 . ' . r  $ P 
(m) ( p  3 q) & (s 3 t ) ,  --(r & --s) / .'. (q 3 r) 3 --(p & - t )  

3-5 Answer Exercise 5.5, Questions 2, 3 and 4, using truth trees instead of MAV. 

6. Symbolize and test the following arguments by possible-truth trees. Provide a diction- 
ary in each case, and where invalid state a counterexample. 

(a) If the Labor Government stays in power, inflation will continue. Since the Labor 
Government will not stay in power it  follows that inflation will discontinue. 

(b) The colour can't be both red and blue. It 's not  red. So it must be blue. 
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The teacher will resign if his job becomes intolerable. Now if the students become 
even more ill-mannered, his job will be intolerable unless he exerts greater disci- 
pline. The students are becoming more ill-mannered. Hence unless he exerts 
greater discipline the teacher will resign. 

It's not true t o  say that Peter's getting a job is sufficient t o  prevent Quentin from 
getting a job. However, both Peter and Quentin will get a job only if someone gets 
the sack. But someone's getting the sack guarantees that Peter will miss out  on a 
job. From all this we may deduce that Quentin won't get a job. 

Exactly one of Sharon and Maurice will go on  the trip. Sharon will not  go on  the 
trip only if she decides that she would rather spend her time studying logic. She 
won't decide that she would rather spend her time on  logic unless logic is very 
interesting; and Maurice will go on  the trip if and only if logic is very interesting. 
So either Sharon will decide that she would rather spend her time studying logic, 
or she will not go on  the trip, or logic is not very interesting. 
Either you are a logician or you are just an ordinary person; and if you are a male 
then you are strong. Now you are just an ordinary person unless you have been 
enlightened. Hence if you are neither strong nor enlightened then either you are 
a logician or a male or you have not  been enlightened. 

If I don't get fresh ideas you're not going t o  get any more problems t o  do. If you 
don't get any more problems you won't have enough work t o  do. If you haven't 
got enough work t o  d o  you'll either make up  some more problems for yourself or 
you'll have a loaf. If you have a loaf you'll stop improving. Hence, for you t o  
improve it's necessary that either you make up  some more problems for yourself 
or I get some fresh ideas. 

If 1 believe that God exists 1 am a thelst, whereas 1 am an atheist if I believe that 
God doesn't exist. However, I am neither a theist nor an atheist provided that I 
arn an agi~ostlc. Therefore 1 am an agncstic only i ~ ?  case that 1 do  not believe 
A: w a t  God exists a:rd I &I r,oS. believe thgt tG9d $3esg7t exist, 

" .  sumvec. Nevi- thel less, Darlene and Bert both survive or nei th- ,~ \3f them does. 
Fzom aii this we may con~Lude that Alan, Cindy and Earth2 sei?vive bs t  the 
athers don't ,  

If Special Relativity is correct this neutrino canriot move at  the speed of light 
unless it has zero rest mass. Now if this neutrino doesn't move at  the speed of 
light, momentum will not  be conserved. Either momentum is conserved or classi- 
cal physics needs further revision. No further revision of classical physics is needed 
however, so we may deduce that either this neutrino has zero rest mass or Special 
Relativity is incorrect. 

Answer Exercise 4.4, Question 2(h), using possible-truth trees instead of possible- 
truth tables. 

6.6 TREES WITH RESOLUTION 

Like MAV. truth trees are adequate for evaluation in PC but can be shortened by 
augmenting the rules with a resolution rule. 

Resolution Rule: Where possible. a value may be assigned to a symbol by resolving it  
wit11 respect to  values already assigned on the same path. 
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Since resolution sub-rules were discussed in 55.2, instead of repeating them here we'll 
look a t  just a couple t o  see how they carry over from MAV to trees. The presence of CY 
as a whole element on a path is equivalent to  the assignment a = 1 .  The presence of 
-- a as a whole element on a path is equivalent to  the assignment a = 0. When using a 
resolution rule we tick the resolved expression and place the appropriate resolution(s) 
on the paths stemming from it. In the justification column we note the line number (and 
path letter if applicable) of the resolved expression, and bracket the assignment(s) with 
respect to  which the expression has been resolved. 

Let's see how Example 2 from 56.5 comes out with resolution. 

4 1 .  ~ > ( q V r )  P 
2. P P 
3 .  -7  NC 

4 4 .  q V r  1 ( ~ = l )  
5. q  4 (r=O) 

Invalid. Counterexample: * 
Steps 4 and 5 used the following respective sub-rules: a 3 a V ,L? 

1 1 1  1 1 0  
* * 

As a more complicated case, consider the following One-Tree test with resolution. 

The resolution for step 5a used the following sub-rule: a 3 P 
1 1 1  

The resolution for step 5b used the following sub-rules: --a a 3 /3 
0 1  0 1 0  

The Resolution Rule may be applied to both truth trees and possible-truth trees, in all 
their applications. 

NOTES 
The resolution technique discussed here is a modified and slightly less powerful version of the method 
developed by Ian Hinckfuss for use with both PC-trees and QT-trees. 

1. Answer Exercise 6.33, Question 2 ,  using resolution. 
2. Answer Exercise 6.5, Question 1, using resolution. 



*3. Symbolize the following arguments using the dictionary supplied, and test them for 
validity using possible-truth trees with resolution. Where invalid state a counter- 
example. 

(a) Population growth will halt only if either the birth rate is reduced or the death 
rate is increased. Unless population growth does halt, the human race is doomed. 
For the birth rate t o  be reduced it is both necessary and sufficient that people act 
responsibly. Unfortunately however, people will not act responsibly. Nevertheless, 
the population growth will halt. Hence either the death rate will increase or the 
human race is d o o ~ n e d  or perhaps both. (H = Population growth will halt; R = The 
birth rate is reduced; I = The death rate is increased; D = The human race is 
doomed; A = People act responsibly.) 

(b) If we believe that reality is simply as we have been taught then our experience is 
limited by our descriptive framework. Unless we make proper use of our will, our 
experience of reality will be limited by our language and we will fail t o  activate 
one of our rings of power. Although we are luminous beings, we do not make 
proper use of our will. Hence, we will fail t o  activate one of our rings of power 
only if either we believe that reality is ju.st as we've been taught or we are not  
luminous beings. (B = We believe that reality is simply as we have been taught; E = 
Our experience of reality is limited by our linguistic framework; W = We make 
proper use of our will; F = U'e will fail t o  activate one of our rings of power; 
L = We are l u m i n o ~ ~ s  beings.) 

(c) Fromm is correct only if both (i) love is inexhaustible 
and (ii) one cannot love oneself if one is incapable of 

loving others. 
Unless Freud was wrong however, Love is not inexhaustible. Freud was wrong 
provided that one's incapability of loving others implies one's incapability of 
loving cneself. Obviozisly thzn, Fromm and Freud cannot both be correct. (C = 
Frornrn is correct; ; = l o v e  is inexhaustible; C = Cne is incapable of loving one- 
self; Q - Qne is incapable c:' !-:iirLg airier.: 7'J - F ~ e u d  was ~:~,roag). 

(6) - , .., L ~ ~ ~ o t i i d  believe i:; God ii sbmeor,e shzv(ei"i me au; 2,rgument ivhLc'P prosed Sod ' s  
existence; however ~ ~ o r j o d y  has shown me any such argument. Having 2 direct 
expei-ience of Go6 would be snfficient Csr me t o  believe in  Godi  provided tha"r 
knew what the experience meant. i wclild know wha-t the experience meant if my 
mind was I Zo not yet believe ir, God. From this it rnay be dedliced that 
either I have not had direct experience of God or my mind is not ready. ( B  = 3 
believe in God;  A = Someone shows me an argument which proves the existence 
of God;  E = 1 have a direct experience of God; X = I know what the experience 
means; R = My mind is ready.) 
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Puzzle 6 For each of the following, try t o  work your way from top t o  bottom, 
at  each step changing no more than one letter t o  produce an English 
word. 

(a) BASIS (c) CITES (d) THINK (e) TREES 

TASKS ----- ----- ----- 

(b) PATH ----- ----- ----- 

- --- MODAL ----- ----- 

---- PROVE ----- 

LAWS PLOTS 

TRUTH 

Truth trees provide a Pa'-evaluation method, pel-ticu!zrly useful when several propos~tlonal 
letters are involved, and extendable tc QT. 

Replacement Rules: J --a 
a (Double Negation (DN)) 

DN may be appIied at any stage without notification. With the other rules, tick the 
replaced expression and quote the line used. 



Extended replacement rules: 

-a, 

Efficiency Rule: Don't branch until you have to.  

Closure Rule: Close a path (with an x) as soon as a contradiction of the form 

a 

- .  
ban e&emei?t~.<v :.vjf of PE is eitt:e~ a prcpositjcnzi letter o i  3 negated ~roposit!onai i?ii$r. - .- 

Paths go ail the way to rhe iop cf the tree. When ai? expression is replaced, ~ i r e  replacing 
expression should be iilcltided on  ali zpen paths steixming from rhe ticked expression. i n  
setting out a tree, a justification column is advised (until it becomes unwieldy) t o  help 
explain :he steps. 

Possible-truth trees add the following Subutomic Closupe Rule: Ciose any path which has 
an inconsistent assignment of values to  its propositional constants due 4 0  the internal 
nature of the dictionary propositions. 

The original expressions in a tree involve a contradiction iff they generate a contradiction 
on all paths. 

!'/,-forms may be assessed by truth trees as follows: tautology (negate the fonn (NF) + all 
paths close): contradicrion (affirm the form ( F )  +- all paths close; contingency (each O F  
the above tests -> an open path). 

A model for a PE-wff is an assignment of truth valries TO each of its propositional letters. 
A closed path contains no models but a permanently open path contains at  least one 
model. A PL-form is a tautology/contradiction/contingency according as it = 1 in all/norie 
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/just some models. The One-Tree Metlzod for PL-forms starts by affirming or negating the 
form: if all paths close it is a contradiciion or tautology by the usual test: as soon as one 
permanently open pat11 and one eliminated model are found the fcrm may be declared 
contingent. 

Propositions may be assessed by applying truth trees to  their explicit PL-translation as 
follows: tautology JNF + all paths close); PC-contradiciion (F + all paths close); 
otherwise PC-indeterminacy. The One-Tree Method may also be adapted for use here. 

Propositions may also be assessed by applying possible-tmth trees to any of their PL- 
translations as follows: necessary truth (NF + all paths close): contradiction (F + all 
paths close): otherwise conti~lgency. The One-Tree Method may also be adapted for use 
here. 

As regards relafions, trees are not as generally efficient as tables. Relations may be tested 
b y  applying a tree test t o  the appropriate formula. For example, a * J3 iff T: a > J3, and 
ol 0 Dif fT:a !  - 0 .  
BL-argumen-forms may be assessed by trees as follows: valid (affirm pren-lises (P) and 
negate conclusion (NC) + all paths close); otherwise invalid. Argwleizrs may be assessed 
by applying truth trees t o  their explicit PL-translation as follows: PC-valid/PC-invalid 
PC-indeterminate according as affirming premises and negating conclusion + all paths 
close/no models eliminated/just some modeis eliminated. Arguments may also be assessed 
by possible-truth trees on any of their PL-translations as follows: valid (affirm premises 
and negate conclusion + all paths close); otherwise invalid. Inconsistent premises may 
be detected by just affirming the premises and seeing whether all paths close. 

A_ more sophisticated tree method with resoiuticn adds the following Resolutic;laz Rule: 
A value may be assigned t o  a symbol by r e s o l v i ~ ~ g  it with resipec: to  values already 

* ~ 

zssigned. o : ~  eize sarii.e p"t'".. Pile seb-miss For resoiutlon a;e disci~,ssed tlle MAT:/ sectiofi 
55.2. 



The techniques you have learned for analysing arguments are quite powerful, but they 
should not be applied blindly to arguments met in everyday situations. Frequently a 
certain amount of common sense, or even uncommon sense, is necessary to appropriately 
assess everyday argunlents. In this chapter we discuss a number of issues which should be 
borne in rnind when conducting such argilment analysis. 

If we maintain our forinai notion of t5e term ""argcrr1entn, an argunient redly has only 
:wc ;spects 10 'ge i;i:i?stigz:ed: 1311.5 !/:gicg;.iil (do t h e  premises scppcrt the GOIIC~ICS~OII  ir: 
[he 17-ianner cla&%ed'?); t:le n-Ll:e?: 1 l i 2 ~ t e ~ i ~ l  the :pre:yri..ises$ 2s a inar;c,r : :~f  fact :run?\ " ' 1 .  

i,ri&e,- ;he r_.;iicr: ef e:gzme:i; :a ir:ci~,ds p e - s ~ ~ a ~ o n - e h ~ ~ e f l  BCLS, Hcqicve~,,  f we 
. . a -'-:..A 

- - I - ~ ( -  . ,I:, , ip , -~ d: . .-qpTo, . I .  1 :  lkfr ,~ .  :isa-,c;P is ckz:'i qtii?e irr_pfir!ac; 
& .  .Icnl tire i:uman poi3-l cf vlerir ,iild is ~sii,t;;~ of sei;cr;s ;t.ydy, ju: we have space here t- 

offer ~ocly the following few pieces of advice in this regard. 

.- . 
PlTsr, eir:~a!ly 9slej.; ro ~uiihat ' he  speakel- !las :o ;a:/; try not to let a y  persomi 

prejlndice you might ]lave against the speaker bias g7our analysis of his actual argument. 
Secondly. determine what the speaker is trying to  do with his words e.g., arguing for a 
conclusion, offering an explanation, shocking you out of a blinkered approach to the 
topic, emotionally nlanipulating you. Try not to be tricked by the speaker's rhetorical 
skill into letting your emotions carry you to irrational courses of action. Thirdly, it is 
sometimes helpful to empathize with the speaker: by imagining yourself in his shoes, 
having gone through his experiences, it will help you to understand why he has adopted 
his position. Finally, Edward de Bono's PIWI analysis can be of use (i.e. isolate the plus, 
minus and just plain interesting points in the speaker's approach). Matters such as these 
may be pursued further ir, texts on informal logic. We now return to the analysis of 
arguments as entities which, once clarified, can be studied independently of their propo- 
sers. 

In the next section we consider tile problem or' determining just what the argument 
is, then look at vhrious ways in which the argument migilt 5e modified. In the following 
sections we discuss a recently developed method for deciding, in particular cases, whether 
a PL-translation is adequate for evaluation purposes. 
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4.2 IDENTIFYING AND MODIFYING ARGUMENTS 

Given an argument. there are tlrree main questions that need to be answered in order 
to identify precisely what the argument is: 

What type of argument is it? 
What is the conclusion? 
What are the premises? 

The type of argument is deducrive or iizductive according to whether the conclusion is 
claimed to follow certainly, or just probably, from the premises. The methods discussed 
in this book apply only to deductive arguments. If you have some doubt about locating 
the conclusion, or you find the conclusion unclear (e.g., because of an ambiguous term), 
you have two options open to you: if the proposer of the argument is available you can 
ask him to  clarify what he meant; or you can state clearly what you take the conclusion 
to be and proceed on that basis. Sometimes the proposer of the argument leaves the 
conclusion tacit (i.e. unstated), expecting you to infer the "obvious" implication of his 
premises, but this is fairly uncommon. It is quite cominon however for one or more 
premises to  be !eft unstated, usually because the proposer assumes they would be corn- 
mon knowledge to his audience. Technically, any argument with a tacit premise is called 
an entkzymerne. Here is a simple example. 

Socrates is a man. 
Therefore Socrates is mortal 

This enthymeme has the tacit premise "All men are mortal": this premise must be taken 
into account when assessing the argllment for validity. When unclear about any premise 
(stated or tacit) we agajn have the two standard options: request clarification horn the 
pyoposer; or state our interpretation aaa proceed., 

Once the j?~ejx?i.ses haiie 5ee3 cieariy idsl;;i5ed, their may be ckeclied 131. i'achal errors, 
." . ,. . ~ 

k: a zv  rel,?;/,q,-?; @;cm!s:: I:.?. 2 pre:-,ls- ~ ~ / ~ c L ~ ~ e  . r , ~ t s ~ n ~ e  is ;ic-ssary ;3 es:ablisb tibe vaiii:i':y 
,-c ,. A .  ?i"re zi:gume~;:'? is ha:::! tr. be <:alse, bs arn.;;;:eni clay klmediateiy be assessee: as 

unsoilnd. X t h i  argurrent has no ielevant factua; error, and is proven to be valid (e.g., 
by tlre tec11niques of prcposiiionai logic), ther it mzy be assessed as sound and the 
conclusioi~ accepts? as true. IT the argcment is found to be invalid k e n  i: is unsonnd 
and the conclusion is in doubt. The standard way to  demonstrate invalidity is to produce 
a counterexanzpie, either by a logical technique such as tables or simply by using one's 
imagnation. Another effective way to cllailenge the validity claim of an argument is to 
produce a counteuarpment i.e. an argument which is obviously invalid but which has the 
same relevant logical form as the argument ir, question. Consider the following argument 
for example: 

If he's a communist he favours strike action. 
He does favour strike action. 
So he's a communist. 

An appropriate counterargument would be: 

If you're a communist then you breathe. 
You do breathe. 
So you're a communist. 

Sometimes, what appears to be a counterargument turns out not to be because the 
original argument differs in the way its component propositions are modally related e.g., 
(3) above is not a counter to argument (5) of 54.6: production of an apparent counter- 
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argument is still useful however since it can help to reveal relevant subatomic structures 
in the original argument, 

Sometimes, people confuse the procedure of testing an argument with that of testing 
an argument-form: this can lead to arguments being prematurely branded invalid. It will 
help to guard against this confusion if we draw a distinction between the terms "counter- 
example" and "countermodel" as they apply to arguments translated into PL. A coun- 
terexample is a possible world in which the premises are true and the conclusion is 
false. A countermodel is an assignment of truth values to the propositional letters which 
makes each premise true and the conciusion false. Countermodels sometimes describe 
possible worlds: in this case they describe counterexamples. However, some counter- 
models are impossible: these fail to  describe any possible world and hence do not describe 
a counterexample. In short, a countermodel provides a counterexample iffthe counter- 
model is possible. 

Once a countermodel for an argument has been detected, there are two questions that 
ought to be asked about it: 

Is the countermodel possible? 
Is the countermodel factual? 

If the countermodel is seen to  be impossible (either by a more powerful logic or "natural 
intuition") then it fails to provide a counterexample; in this case, unless some other 
possible counterrnodel is detected, the argument may be pronounced valid. If the coun- 
termodel is seen to be possible then it does provide a counterexample, and the argument 
may be declared invalid. You are dready familiar with this sort of analysis from your 
work on possible-"il.utl~ tables. M A W  2nd po~sible-twth ti.ees, 

-2 i i ie  most usefir1 application of the factual check on the countermodel is when it is 
determined to be aorl-factual. ira such a case the original argument can be modified to  
produce a new argument with a better chance of validity. This is done by adding an 
additional premise which denies some non-factual assignment in the countermodel and 
hence eliminates it as a counrermodel to the new argument. In some cases this additional 
premise may be just an undetected tacit premise of the original argument; in other cases 
it reports an item of information whose relevance was not reailzed by the proposer of the 
original argument. If the original argument had only one counterx-lode1 then this single 
move will produce a new argument that must be valid. If the original argurnent had more 
tharl one countermodei and eii of these were detected, then none could examine aU of 
these Eor factuality and try to eliminats all the count err node!^ by a number of additional 
factual premises. In practical logicai debare, it is more usual For just one counterlnodel to  
be produced at a time (usually by imagination): this often results in an original argument 
being gradually improved by a series of modifications each of which eliminates a counter- 
model discovered since the previous modification. Sornetinles all countermodels are 
eliminated and hence a valid argument results; sometimes a factual counter~node!. is found 
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and the conclusion is then known to  be false; sometimes countermodels are found whose 
factuality cannot be determined without further logical or empirical investigation. 

To illustrate some of the above ideas, let us consider the following argument. 

If Cod exists He is all-powerful and perfectly good. If God is willing to  
prevent evil but cannot do so He is not all-powerful. If God can prevent evil 
but is unwilling to do  so He is not perfectly good. Now evil does exist; 
moreover, it can exist only if Cod either cannot, or is unwilling to, prevent 
it. Hence God does not exist. 

It is left as an exercise for you to  symbolize t h s  in PL, and then test it with a truth tree, 
using the following dictionary: G = God exists, A = God is all-powerful, P = God is 
perfectly good, W = God is willing to prevent evil, C = God can prevent evil, E = Evil 
exists. 

Your tree should have yielded just the following countermodel: 

This countermodel describes a world in which an all-powerful, perfectly good God co- 
exists with evil. The 0's infom us that this Cod is both unwilling and unable t o  prevent 
the evil. Now many Christians would say that this countermodel is not factual e.g., they 
may say that Cod is capable of preventing evil. Suppose we now add "God can prevent 
evil" as a premise in the argument. This will obviously dispose of the previous counter- 
model, since now Cmusi be t a e .  So the new argument is valid. Does this mean we must 
accep-t the concEusion i.e. God does not exist? 0 6  course not. It is soundness, not just 
validity, which guarm.tees " i h e  conclusion. To be sound a r  argumenr n u s t  be valid and 
have true premises. There art a nwmber of premises in the argument above to which ;_ 

Christiian might take excepiicn e.g,, h e  filight reject the ihi;d premise o r  ihe gr~unds chat 
.r --< c-06 ;fiigi-(i:; see :hzt greater gcod ov:l& wjli cveiit,ate ; r  kAe aucws the e:ris:ence ef ; ~ r ; - e  

pvii. 

Given our notion 3f argtisimeni, there are three ways Lq wlzich 312 argument may be 
modified: modify the prerfiises; modify the conclusion; modlQ the claim as to how 
strongly the premises support the conclusion. We have looked xi the first of rhese ways. 
The second and third W ~ Y S  are also important, particularly the second. If i't becomes 
clear that the conclusion is false or that it cannot be deduced from the available evidence 
then, rather than dispensing with the whole argument, it may be useful to try for a 
different conclusion on the basis of the same evidence. For instance, in the light of a 
counterexample to the original argument we may argue for a weaker conclusion that is 
not open to  this counterexample. In some cases, when we regard any further weakening 
of the conclusion to be unacceptable, we may choose to weaken instead our claim of 
support e.g., from validity to inductive strength, or from higher to lower inductive 
probability. 

NOTES 
Our usage of the term "countermodel" for an assignment of values to  the propositional letters which 
makes each premise = 1 and the conclusion = 0 means that with argument-forms (as distinct from 
arguments) the term "countermodel" is synonymous with "counterexample". 

For an in-depth treatment of argument analysis which employes a minimum'of symbolization, we 
suggest that you consult Xichael Scriven'sReasorzirrg (New 'York: McCrav-Hill, 1976). 



EXERCISE 7 .2  

1. Write down what you would normally assume t o  be the tacit premises in the following 
enthymemes, 

(a) She's a woman. So she must be inferior. 
(b) Tom is not a financial member of the union. Consequently, he will not get the  gay 

rise. 
(c) All enthymemes have tacit premises. So this argument must have a tacit premise. 
(d) To  achieve anything really worthwhile requires a good deal of effort. Hence we 

must work hard if we are t o  become competent logicians. 

2. Each of the following passages contains an argument with the conclusion left unspok- 
en. Identify this tacit conclusion. 

(a) Since you asked for  my opinion on whether you should employ Fred I would like 
t o  point out that anybody who is lazy or lacking in self discipline is unfit for 
your job. Fred lacks self-discipline and is very lazy. 

(b) I put it t o  the Honourable Member of the Government that if he was really inter- 
ested in maintaining a high standard of education in our country then he would 
support the view that  funds allocated t o  the education sector should be increased 
by at least the inflation rate. But  here he is suggesting a percentage increase well 
below the rate of inflation. I leave it t o  those acquainted with these facts t o  draw 
their own inference. 

3. Set out  an appropriate counterargument for  each of the following. 

(a) Dad, if you were z mean old buzzard you wouldn't double my allowance this 
week. But I Icnow you're not a mean old buzzard. So you will doable my allow- 
aqce this week, won't yea? 

4.. Car! you f51d a counterargument for the foliowing example? Discuss. 

If the set is empty it has no members, 
The set is not  empty. 
So it has members. 

5. Mr Theist is trying to prove to Mr Agnostic that  God exists. Read the following 
descriptions of their discussion, and answer the questions indicated (a), (b), (c). 

Mr Theist : "If the  universe exists it had a start, and the universe obviously 
does exist. Now, for  something t o  cause the  universe it is bo th  
necessary and sufficient that  God exists. Thus it follows, m y  
dear Mr Agnostic, that  God exists." 

Mr Agnostic: "Not so fast, my dear Mr Theist. I can produce a countermodel 
to  your argument." 

(a) Provide a dictionary using the propositional constants U, S, C, G and symbolize 
Mr Theist's argument. Then use PC to derive a countermodel. 

Mr Theist: "Nice work my dear Mr Agnostic, but your countermodel is not 
likely to be consistent with your  beliefs. Do you believe that t h e  
universe had a start only if something caused it?" 
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Mr Agnostic: "Well ... Yes." 

Mr Theist: "Aha! I can now modify my argument to produce another 
argument which is unquestionably valid." 

(b) Show how Mr Theist can do this, demonstrating clearly that validity results. 
* * *  

Mr Agnostic: "Well done, my dear Mr Theist. However it is soundness, not 
just validity, that counts; and the soundness of your argument 
is still highly questionable." 

(c) Discuss briefly what Mr Agnostic means by this, giving an example if you think he 
has a case. 

6. For each of the following arguments invent a counterexample, then modify the 
conclusion a little to produce a valid argument. 
(a) If he studies Chinese Philosophy he knows of Lao Tzu. If he studies Indian 

philosophy he knows of Shankara. It is not the case that he knows of both Lao 
Tzu and Shankara. So he studies neither Chinese nor Indian philosophy. 

(b) If he follows Yogananda then he values both Hinduism and Christianity. If he is 
an atheist he values neither Hinduism nor Christianity. Now it is a fact that either 
he follows Yogananda or he is an atheist. From all this it may be inferred that 
either he doesn't value Hinduism or he doesn't value Christianity. 

7. Produce a counterexample to the following argument than weaken the claim of 
support to  make it logicably respectable. 

A h o s t  every logic student gets married. So the next student t o  enrol! in logic ir~ill 
get married. 

11; many cases y = u  wi;i be able ic lnei1lall-y assess CQ.:- validity of deducj-ii~e argunlerits 
e,g., 5y nai-;~rdljr I?ediicinc -0 the c-sr;clmsior? fiom the pre i~ i ses  (See Ch. 8) or by icvenci?;g 2 

~c,ul.;";er-exal~ip1e cr co~nherargumen:. 11: more csil?piicated cases Bowe:ier, 3 [011?12? 

iranslatiol-i and written assessment (e.g,, by MAV) may be required. As a matter of 
practical efficiency the tvrp.ns1atio.n should pre~fevcrbly be as simple as possible. B y  and 
large, we should translate to a language richer than PE only if the validity hinges on more 
than the use of propositional connectives. Sometimes we can even get away with less 
than explicit PE-translations (recall 54.2). This general labour-saving approach of using 
the least detailed translation which is adequate for our purposes is summed up in Quke's 
maxim of shallow analysis: "'Where it doesn't itch, don't scratch". If PC is inadequate for 
evaluation purposes we have three main choices open to us. We miglit use PC anyway and 
supplement this with our own intuitions: this was the approach adopted for possible- 
t ~ u t h  tables, MAPV and possible-truth trees which called for an intuitive sub-atomic 
analysis. We might use a richer formal ianguage and evaluation system: examples of this 
approach will be considered in Part Two. Or we might just work in English, using 
relevant skills developed by our work in formal systems, and adding our own logical 
insights. 

It was noted in 52.4 and 52.6 that, when synonymous or equivalent translations are 
unavailable in PL, we often resort to implied translations. i t  is now time to consider in 
some depth the circumstances under which such implied PL-translations may be confiden- 
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tly regarded as adequate for evaluation purposes. For purposes of concise expression, we 
now introduce symbols for three of the modal relations discussed in 5 3.7: 

p + q p is necessarily equivalent to q 

p -t q p necessarily implies q 

p + q p is necessarily implied by q 

Since our main use of these symbols will be to discuss the theory of translation adequacy 
developed by Phillip Staines, we will refer to  the symbols collectively as Staines arrows. 
We read "+", "+", "+" respectively as "is equivalent to", "implies" and "is implied by", 
with the "necessarily" understood. 

It will be convenient to describe a proposition expressed in Enghsh as an English 
proposition, and the proposition expressed by its PL-translation as a PL-proposition. In 
the case of dictionary entries, the English proposition and the PL-proposition will be 
identical, and hence equivalent. For example, if 

R = It's raining 
then R ++ It's raining 

However, it will often be the case that the implication holds in one direction only. From 
our work in 52.4 and 52.6 we are able to determine the appropriate arrow for our stan- 
dard translations in PL. In the following basic list it is assumed that "and" is used purely 
conjunctively. 

not p +> -p p o r q o r b o t h  ++ p V q  
(Conj.) p and q * p & Q p or q but not both + p $ q 

p o r  q + p V q  neither p nor q * - ( p  V q )  

p o r q  + p f  q neither p nor q <+ -p & -q 
i f p t h e n q  + not boih g and q <-> --{p & q )  

iff -> E 6 . no t  . 7 gr ncr: q -> ..x p '\I , ~ q  

As was noted in 52.6, "and" is sometimes used in the tempord sense of ""and then'' (c.g. 
"%e got married and had a Ir;ahy."), and is sorneiirnes used r,oaditior.ially (e.g., ""Eat lo-is 
oflollies and J J O U ' ? ~  rot your teeth."]. Su.ch cases are treated as follows: 

(Temporal) p and q + p & q 
(Conditional) p and q + p 3 q 

Remember that if the context makes it clear that "or" is being used inclusively then it 
will be equivalent to "V"; similarly if the context reveals that "or" is being used exclu- 
sively this will be equivalent to " $ ". 

Look back now to  the translation summary in 5 2.7. In general the phrases there may 
be treated in a similar manner to  the basic phrase above with which they are grouped. 
An exception must be made for the phrase "is incompatible with" however, because it 
usually has a modal connotation: we treat is as follows. 

p is incompatible with q + -(p & q )  
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You may recall from 52.6 how we dealt with the word "obviously". Various modal 
phrases may be dealt with as indicated below: 

it's necessary that p + p it's possible that p +- p 
we know that p + p it might be that p -+ p 

obviously p + p 
certainly p + p it's impossible that p + -p 

it must be that p + p it can't b e t h a t p  + - p  

Note that in the context of an argument, modal phrases may sometimes indicate a 
validity claim rather than being part of the conclusion. In the following argument for 
instance it seems appropriate t o  regard the conclusion as being simply "Smith is female". 
Taking the disjunction in the first premise t o  be exclusive, the three English propositions 
will then be equivalent to the three PL-propositions shown. 

Smith is either male or female. * M $ F 
Smith is not male. " -M 

(So) Smith (must) be female. ++ .'. F 

A related case is: 

If p then it must be that q + p 3 q 

NOTES 
The single horizontal bar in "M', "+" and ""' reminds us that these denote weaker relations than 
'"37 , '"" and "e". Some authors use single-barred arrows for material relations (e.g., "+" for our 
"I") and double-barred arrows for necessary relations (e.g., "*' for our "+"). 
The theoreticai basis for the treatment of translaxion adequacjl given in ',his chapter is prcvided ir? 
Phillip S taines' paper '"orne Formal Aspects cf the e 4 r ~ . i m e n i - S y m h o i i ~ a t i ~ ~  Relation", A~istvaiiirrz 
Log'c Teachers iozern~l iio! 5 No 3 (1381 August). 

7 - :. Insert the approprhte Staines arrow berweer, the following pairs of propositionr, 
(Dictionary: F = Tom is a farmer; .p = Tom is poor; I? = Tom is rich; G = TOE? is a 
grocer) 

(a) Although Tom is a farmer he is poor. T&P 
(b) Although Tom is a farmer he is not poor. T & - - P  
(c> Tom could be rich. R 
(d) If Tom is a grocer he is not a farmer. G 3 -F  
(e) If Tom is rich he is a grocer. R 3 G  
(f) If Tom is rich he is a grocer. - R V G  

2. Use the dictionary in Question 1 to translate the following into PL. Then use Staines 
arrows to  show the relationship between the English propositions and the PL-propo- 
sitions. The English proposition may be abbreviated to  the question label i.e. "(a)", 
"(b)", etc. 

(a) It's not true that Tom is not a farmer. 
(b) It's certain that Tom is not a grocer. 
(c) We know that Tom is rich but not a grocer. 
(d) Tom is not rich and yet he is not poor. 
(e) Either Tom is rich or he is poor. 
( f )  Either Tom is a farmer or he is a grocer. 



(g) Tom is a farmer only if he is not a grocer. 
(h) Tom can't be poor. 
f i )  It cannot follow that if Tom is rich he is a farmer. 
(j) Tom's being a farmer is incompatible with his being rich. 

7.4 PRESERVING ARROWS IN COMPLEX CASES 

In the previous section, the appropriate Staines arrow holding between the English and 
the PL proposition could immediately be determined. In more complex cases, where 
several propositional components are involved, it will be necessary to  translate from Eng- 
ligh t o  PL in a number of steps. At each step we need to  check whether the Staines arrow 
holding between the English proposition and the previous stage of translation will be 
preserved at the new stage. In this section we investigate how such a checking procedure 
may be carried out. 

In translating from English we will first replace the dictionary propositions with 
propositional constants, and then proceed top-down, symbolizing the main operator and 
then working down through the main operators of sub-formulae. Consider the following 
example. 

If she doesn't diet or exercise then she won't lose weight. (1) 

Using: D = She diets 
E = She exercises 
E = She loses weight 

we obtain the equivalent translation 

If not (D or I?) then not L 
rv ihc: !nai:-i operator is now ti-a:lsiated is glve: 

7;3 t  (D 2: r:'7> not < 
Let 81s call the Siaiiles arrow that holds between the English proposition and the proposi- 
tion expressed at this stage of the translation (where the main operator has just been 
syrn'ooLized) the "iaii-id arrow'. En this exunple, since (1) * (2), and ( 2 )  -+ (3) we 
have (1) -> (3) i.e. the initiai arrow is +, It Chouid be dear that the arrow hoiding at  
a particular stage of translation will be preserved at the next stage if this next stage is 
obtained simply by replacing components with equivalent ones. ahus, since not p * - - p ,  
the antecedent and consequent of (3) may be translated to give: 

--(D o r E ) >  --L (4) 

Since (1) + (31, and (3) * (41, we have (1) + (4). Suppose you're not sure whether 
the "or" in "D or E" is inclusive or exclusive, so to be on the safe side you translate 
it by "V". This yields: 

- ( D V E ) > - L  ( 5 )  

The question now arises as to whether this final step, based on an implied rather than an 
equivalent translation, will preserve the arrow. That is, does (1) + (5)? Our previous 
work does not tell us. Although we know that D or E + D V E we do  not know whether 
using this implication to translate (4) into (5) will entail that (4) + (5). To appreciate 
that replacing a part with an implied proposition will not necessarily lead to an implied 
whole, consider the following two propositions: 

If I'm a woman then I'm female. 
If I'm a human then I'm female. 
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Although the component "I'm a woman" implies "I'm a human" it is clearly not the case 
that (6) + (7). What we need then, is some procedure for determining in particular 
cases whether a non-equivalent translation of a component proposition will preserve the 
arrow. Fortunately, such a procedure has recently been developed by Phillip Staines, and 
it is to this that we now turn. Although the procedure is fairly easy t o  learn and apply, 
its proof is rather involved and is consequently left for the interested reader to consult 
in Staines' original work. 

In order that the rules of the procedure may be specified concisely we will introduce 
some new terminology related to scope. The operands of any operator are said to con- 
stitute the scope of the operator, and any operand parts are said to  lie in t h e  scope of the 
operator. Look at the following cases: 

The monadic operator - has only one operand. In (8) the scope of - is p. In (9) the 
scope of the first -- is - -p ,  and the scope of the second -- is p. In (10) the scope of 
the first -- is (q V - p) ,  and the scope of the second - is p. Note that in (8) p lies in 
the scope of one -- , in (9) p lies in the scope of two --s. and in (10) p lies in the scope 
of two --s. Dyadic operators have two operands. So any dyadic operator has a le f t  scope 
(its left operand) and a right scope (its right operand): the left and right scopes together 
are said to constitute t he  scope of the operator. In example (10) the left scope of the V 
is q ,  and its right scope is --pi so here p Lies in the scope of two - s and one V. In exam- 
ple ( 4  1) the p lies in the left scope cf one 3, but in (13) the P lies in the left scope of two 
> s 

-p ~.i j , ;at~~e r:f 2)~: C O ~ - ~ S C ; I : ~ : ?  apprcack, ax E~c:! j i ~ g ~  ,.f .;hc!.:ia-t;cq hc:e3. xii( Firs! ; i - ~ .  
. . 

' ., C girovczeni w v  beii?g eranslated .,i;iili lie in ?-he scope sfPk-o;peratoi5 ,rlIji Enghsh 3ps-a- 
k r s )  ,?us PL-cpei-aiors are: -- , &; \/: 3, E $ . if the i.e!-i.ponent lies in rhe scope of 2 
-- - - 6.1 $ h e n  i r  can be shown thar an equivdent translation is required for i t ,  Wheq a 
componelir is translated fcom E~ngIish i~ PL we say that  i t  has been replaced by f i e  21 
conlporrent. 

!&ale 1: If the component lies i~ the scope of a r or $, then to  preserve the arrow 
(*, + or +) adopt an equivalent translation. 

if the component does not lie in the scope of a -or $. then a non-equivalent transla- 
tion may be used. In this case the component will be either "odd" or "even" as described 
below. Recall that the numbers 1. 3, 5 ,  ... are odd whereas 0, 2. 4, ... are even. If the 
component lies in the scope o f t  tildes and in the left scope of h hooks then compute tz = 

t + h :  if n is odd the component is said to be odd: if n is even the component is said to 'be 
even. Consider the following examples: 

(A only if B )  V --(A or B) 
--(B i f f  A )  3 (A but not B) 

In (13), (A or?!y i f  B )  is even since it has 11 = 0, but (A or B )  is odd since it has n = I (it 
lies in the scope of one -1. In (14). (3 iff A )  is even since it 1:as n = 2 (it lies in the 
scope of one -- and in the left scope of one I), and (A but  plot B )  is even since it has 
n = 0. We now state the following rule (without proof3. 
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Rule 2: If the component does not lie in the scope of a or $ , then: 

(a) to preserve +: if the component is even replace it with a proposition 
that it implies; 

if the component is odd replace it with a proposition 
that implies it. 

( b j  to preserve +: if the component is odd replace it with a proposition 
that it implies; 

if the component is even replace it with a proposition 
that implies it. 

At last we are in a position to determine whether the translation from (4) to  (5) ,  repeated 
below, preserves the + . 

-(D o r E j  3 -L  (4) 
-(D V E ) 3  -L  ( 5 )  

In (4), (D or E )  does not lie in the scope of a r or $, but it does lie in the scope of one 
-- and in the left scope of one 3 :  so here n = 2 and (D or E )  is even. To preserve -+, we 
use Rule 2a: we must replace (D or E)  with a proposition that (D or E )  implies. Since 
(D or E )  + (D V E) ,  the translation adopted in (5 )  will preserve the arrow. Since the + 

has been preserved at each step, we know that the Enghsh proposition (1) -+ the PL 
proposition (5).  

Let's see how the method works on some more examples. Consider the following 
proposition. 

If whenever she laughs people feel good inside then she is 
not a bad person. ( 1 5 )  

Using: L = She laughs 
@ = People feel good mside 
B = She is a bad person 

\we translate to the following equivalent proposition 

If (whenever L ,  @) then not B 1 61 

Translating the main operator gives: 

(whenever t, G )  3 not B (17) 

Since (15) i-. (16) and (16) + (171, we h w e  (15) + (17) i.e. the initial arrow is + . Can 
we preserve this all the way through to the end? Let's see. Since not B * --B the arrow 
is preserved when we go to (18): 

(whenever L,  G) 3 --B (18) 

Propositions of the form whenever p, q are standardly translated as p 3 q. If we do this 
we obtain: 

Was the + preserved here? In (18),  (whenever L, G )  has n = 1 since it lies in the scope of 
one -- only: so here (whenever L, G )  is odd. Rule 2a now directs us to replace (when- 
ever L, G )  with a proposition that implies it. But it is not the case that (L 3 G )  + (when- 
ever L, G) ;  in fact the reverse is true. So (19) fails to preserve the -+: it is not true that 
(15)  -t (19). In a case like this, about the best we can do is change our dictionary so that 
the troublesome component is represented by a single letter. Using 

W =Whenever she laughs people feel good inside 



(15) may now be translated as: 

Though detail has been lost here, a t  least we have (15) + (20). 

As we will see later, it is sometimes important t o  translate so that  the English proposi- 
tion is implied by  the PL proposition. In these cases we need t o  preserve the t-. Consider 
the following example: 

It's not true that if it rains then it pours. (21) 

Given an obvious dictionary, this translates t o  the  equivalent: 

not (if R then P) 

Since not p * - - p ,  (22 )  trarislates t o  the equivalent: 

-(if R then P) 

Since (2  1) * (231, both + and +have been preserved u p  t o  this point. In (23) the com- 
ponent (if R then P)  is odd since it lies only in the  scope of one - . Suppose we now 
translate thus: 

--(R 2 P) (24) 

Before reading on, use Rule 2 t o  determine whlch of + and + w a s  preserved by this step. 
Since it  is true that (if R then P)  + (R 3 P), and the component is odd, it follows that the 
+ is preserved. It is not true however that (R 3 P) + (if R then P); so the + is not 
preserved. 

NOTES 
lr! Sizines' ierrizhoingy~ a,hat  we hawe called an ' b o d  ccompone~it" is :I "puureiy negative occuirence of 
a :ompcner?.i", a:-id "ever compoliieni" ic 2 "-,ure!y positive occurrecce of a i:omponenim. 

1. For each of the falo-wing p~opositions: 

i semi-symbolize the proposition by syrnboYizi~ag the main operator only, and 
set out  the initial arrow. 

(ii) If the initial arrow can be preserved using only the dictionary provided set 
out the full translation. 

(iii) If the initial arrow cannot be preserved using only the dictionary provided set 
out the dictionary required and the  full translation. 

Let: R = It rains. 
F = There is a flood. 
C = The bridge will collapse. 

( a j  If it rains, then if there is a flood the bridge will collapse. 
(b)  If i t  does not  rain then there will not  be a flood. 
(c) If it rains, then if there is no flood the  bridge will not  collapse. 
(d) The bridge will not collapse if it's not  true that  if it rains then there is a flood. 
(e) The bridge will collapse if it's true that if it rains then there is a flood. 
(f)  The bridge will collapse only if it's true that if it rains then there is a flood. 
(g) The bridge will collapse only if it's not  true that if it rains then there will be a 

flood. 
(h) If it neither rains nor is there a flood then the  bridge will certainly not collapse. 



(i) It's not true that if there is a flood only if it rains, then the bridge will not collapse. 

Q) It's not true that if there is a flood only if it rains, then the  bridge will collapse 
only if there is a flood. 

(k)  Either there will be  a flood if it rains, or the bridge wiil not collapse. 

(1) Either it's not true that if there is a flood the bridge will collapse, or it's not true 
that if it rains there will be a flood. 

7.5 ADEQUATE TESTS FOR PROPOSITIONS AND RELATIONS 

Before using Staines arrows in the analysis of arguments, we investigate their use in 
determining the modal status of  propositions and relations. In earlier chapters, although 
implied translations were often used in testing modal properties and relations, it was 
assumed that this would have n o  serious consequences for the adequacy of the testing 
procedures t o  handle the original English propositions. In point of  fact, such an assump- 
tion is not  always justified; and it  is now time we looked at this more carefully. 

T o  simplify our discussion we now introduce a convention which will be adopted for 
the rest of this chapter only. When speaking generally about a proposition expressed in 
English as compared with the proposition expressed by  its PL translation we will use a 
capital letter for the English proposition and the corresponding lower case letter for the 
PL proposition. We will standardly place the English proposition on the left and the PL 
proposition on  the right. For example, 

P + P  

indicates that  the Eriglish propositior,P implies the PL proposition p. 
- 

Suppose we wan! to test whether some 2i:glis'il p::.iposi?ian P is a necessa-y truth. '!Ale 

b g i n  by i;ainslating P to  p, and iken test ~*,,he:!~e; ;j is n..cessary, L e t  13s conside- 5rsl :I:- 
case i ~ h e r e  art a:-e able ':.I: Cfi3w that ZP '"2 i;eCesSai-y (c.g., > y  iisi?g ir,.rijl -,ahips ; r.ossi[3?e~ 
+..7"+: 
L s 3r1c:vEng ;!:at p AS necessa:-y ~,z/i:i no: aiw:lys gna:-arl:e,c ti;at P i ;  necessaq 
Consider the 'cllo.a~ii~g :ranslation for instance, ~ G r g  ljle dictic.mTy: .= He read a book; 
.F = He fell asleep. 

E h e  ;ead a hoolc and fell asleep; then he f e u  asleep and read a book. ( 1 )  

( R & r ' j > ( F & A )  j 2: 

Although ( 2 )  is a tzutology, and hence a necessary truth, if we take '"and" in ( 1 )  t o  be  
used in a temporal sense, it is clear that (1) is not a necessary truth. What we need then, 
is some condition which Lets us know when the proving of p t o  be necessaiy is adequate 
for proving P necessary. inie now use the definition of necessary implication to derive 
such a condition. If p is a necessary truth then p is trile in a11 possible worlds. If P + p 
then in every possible world tliat p is true, P will be true too. So if p is necessary, and 
P + p .  it follows that P is true in all possible worlds i.e. P is necessary. So we have: 

If p is a necessary tmth, and P + p ,  then P B a necessaly tmth. 
In other words, the above result says that only necessary t ruths  are implied by necessary 
trutlzs. Note the direction of  the arrow in this result. The opposite relationPp> p would 
not be adequate, since any proposition implies a Ilecessary t ruth (see 54.5). 

In the case of  (1) and ( 2 )  above, we do ilot have that 4 1 )  + (2);  and so the necessity of 
( 2 )  does not establisli the necessity of (1 ) .  Let's apply this adequacy resuit to a couple 
more examples. Suppose we translate ( 3 )  as (4). using: R = i t 's  raining. 



It's raining or it's not raining. ( 3 )  

Slnce we can s l~ow by PC that (4) is a necessary truth, and we know that ( 3 )  + (4), 
this sllows that ( 3 )  IS a necessary truth. Suppose however that  we adopted the foliov~zr~g 
translation for (3) .  

R V - R  (5 )  

Unless we knew the "or" in ( 3 )  was inclusive, showing (5) t o  be necessary would not 
immediately establish that (39 was necessary because at  this stage we would not know 
that 43) + (5). However, we can show indirectly that  ( 3 )  + (5) b y  proving that (4) t. 45) .  
Notice that since p V q + p $ q: it follows that  if p $ q is a necessary truth then p V q 
is too. So in practice, if we want t o  prove an English disjunction is a necessary truth and 
we aren't sure which type of disjunction is intended, it is best t o  translate with $ rather 
than V. 

Now consider (6) translated as ( 7 ) .  

If  it's raining then it's raining. 

Slhowing that ( 7 )  is necessr,ry will not  immediately be adequate for showing that (6) is 
necessary, since at this stage we d o  not  know that (6) + (7). One way t o  proceed here 
is t o  use our English intuitions to  see that  (6) is equivalent to: 

Either it's no: raining or it is raining. ( 8 )  

2i1d then see irk Fnglish that (8) +-,- (3 ) .  Our proof "at (3) ii  necessarj now establishes that 
(6) 1: nectssary. 

Notice &a:, rtie arrow here is the reverse of Illat in 1-11s previous resiiit. As an exal-pie, 
consider (9) translated as (10) with an obvious dictionary. 

If  the sun is shining then it's raining. (9)  

S 3 R  6 10) 

A possible-truth table reveals that (10) is false in the possible world where S = 1 a n d R  = 

0. So (10) is not  necessary. Sicce (3) + (10) this proves that (9) is not necessary. 

We now set out adequacy conditions for testing self-contradictions and various modal 
relations. Tile proofs of these conditions may be  developed quickly from :he definit~ons, 
and are left as an exercise. 

If p h z, con;radiction. and P + p, then P b a co~~tradicfion. 
If p is not a contradiction, and P + p ,  then P is not a contradiction. 



Weiation established 

p is equivalent t o  q 
p is contradictory t o  q 
p is contrary t c  q 
p is subcontrary t o  q 
p implies r: 
p is implied by  q 
p is indifferent t o  q 
p is consistent with q 
p is inconsistent with q 

/ Adequate conditions for same reiation 

/ t o  hold between P and Q 

- j + c t  P eeL2. 
* P  e + + q  
P i p  J Q - 4  
P t P  3 Q - 4  
B + p  & + q  
P t P  , &+(I 
+ , Q - c b  

P ~ P  , e - ~ j  
P i p  9 Q 1 4  

If afiy of  these relations is shown not t o  hold between p and q ,  then the  same relation will 
not hold between P and Q provided the two conditions listed in tile relevant row of tlle 
above tzble hold; with all the single arrows reversed. 

A t h ~ u g h  we l-izve taker? p, q to  be PL proposi t io~~s,  and P, Q tn be English proposl- 
?ions, the adequacy results in this section (and the next) are quite general for any prcpc- 
sitions expressed in any language, natural or artificial or mixed. 

1. For  each of the following insert the appropriate Stakes arrow between the English alld 
the r"L p~cpocltion. The? state whether deterixlning the modal jtati;s of ;he EL 

. ,  . . .- 
;,~ODCS:~~O;: vi';:l c, .'" .,I.-;(,,. A ? ~ ~ "  -,e fei ri;erm;;;kg t:?_e -ii&;._: $tat.As :;le E~g;isb ?i.e?asi 
i:,- .- ~l.111 

& -.-,>. ," "4-7, " . - . r , ; i :  2 - . -  7-...-.'-' , " , " -.,,. , - 5 - .  :I :-LC_ a :a7r: TLj;l;".;" 

:\;eT :s i'i?c:iey a ;2rat ;?--;s~ri 03-  l:,s: ; j?:~; i t L 2 s F i  
. . '  ?e1e: 15 : l ~ c c -  i24( 2; ~ ; ~ i ~ ~ & j ~ ~ ~ q ~ l  S:;;(.X~>!$ 3; b&kL, 

- ,  - - - -  
L a,=TU L .  is :, #~.ai>,er-r;at:ss stcc,en.;t ~ i l a r ,  he 13 pq: z 

:~?atiierriarics s:z;de;:t. ]k7 2 - 44 
(e) 2 Pete- is a law student end a philosophy student then 

he is a philosophy s t a d e ~ ~ t a n d  a iaw student. (J; $i P) 3 (P & 15) 
jfj it's obvious t o  everyone that if Peter is a law student then 

Peter is either a phiiosophy or  a law student. L 13 ( p  v I,) 

2. If we use only the given dictionary for  translating the  following pairs of propositions, 
in which cases will PL be adequate to  test for  (i) contraries, (ii) implication, and (iii) 
converse implication? Where PL is adequate, carry out  the test. 

Dictionary: C = The clock is slow 
B = The bus is late 
E = The bus is early 

(a) P If the clock is slow then the bus is late. 
Q Either the ciock is not slow or the bus is late or both. 

(b) P The bus is no t  both late and early. 
Q The bus is either not late o r  not early o r  both. 

ic) P The clock is slow and the bus is late. 
Q The clock is slow but  the bus is no t  late. 
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/ d )  P If the clock is slow then the bus is late. 
Q If the clock is slow then the bus is not  late. 

(e) P Either t he  bus is early or it is late. 
Q If the bus is not late, then it is not  eariy. 

'7.6 ADEQUATE TESTS FOR ARGUMENTS 

Let us refer to an argument whose propositions are expressed in English as an EizgZish 
argument, and an a]-gument expressed in PL as a PL c~ygunzeizt. i n  this section we examine 
the conditions ~ i n d e r  which the validity or invalidity of a~ English argument follows from 
that of its PL translation. First we wiil deal with t l ~ e  case bvl~ere the "P aapprnent cari be 
provec valid (e.g,, by  tiuth tables or pssible-tr:sth tables). En. seiting out examples we 
will use Staims arrows t o  display the relaticli between th English a d  PL propo~ii ions 
involved. 

Let'c begin with a very sinrple example. 

Yn7~ are inteiligent and kind ++ P & K  

.'. Yor; are intelligent 6 .'. I 

Elere r12ere Is no p:-nbiem becailse the two arguments ar- equivalent. The PL argument is 
vd id ,  and so tlie EngLisi: argument is xralid t o c  (and ilo doubt  sound!), Usually- however, 

..- the arguments w ~ i l  as: be ecpivdent, Fortunately, vae don't iic:ed t i ~ e ~ n  tc  be. So iongas 
each 5 , :e l i~h n:,es?ir,? iv:rlia,i t ke  . : ~ r i . ~ q p o n & ~  _DL p/uini;a, aild :hip ,Dl, CO{$C;~_C!O~~ 

[;72!3iii9z tk2  ,-.e..#,u plP.c !? L ~ ~ & L . ; , - . S ~ J :  n, *7- - ' ? a  c:,,~-- iF  ;LC :>:, , - ~ ~ g ~ ; q < ~ , ~ ;  i~ uc,rid ;J;sx !,$? z~?~V~f;  i ~ ; ~ ~ ~ ~ ~ ; t ? q , ~  j~ 
.. - 2fi;;<; -?>,is r c . - e . ; '  ;s:-it .#;,>-*:I..<- c=:- <- ,? :  < - . . , e ; 7 , 2 + ; , ~ 2 j ; : A  f,:!,,,-, 

- --- ;:, . -- ~ L,, -.,. ". - -  - .-.-< b -L.L., L-. -. ,',Ts 

- -. 
This result inay :?"i-,CELi\; a p;ovea, - 1ier;aii hfi argwxe.;.: is i i&d iff l;lie cr ;nj~nct ion of 
its preimises necessar5y i~npiies tile conclusion. Note also that  + is transitive (i.e. give11 
any propositions p, q, i.: if p i- q znd q + r then p i- i.. This follows obviously from the 
defk,piion of +. r,, . .dlihitivity ..- will be dealt with in detail in Ch. 16). Now if P, + p , ;  ..., 
1% + pP1 then (PI & ... & .pn) + (p, & ... & p,), If the Pk argunrent is valid then & 
... & PI-,) + c. So if c i- C we now have (PI & ... &P,) + Ci.e .  the English argument is 
vdid.  

Let's look at  some more examples. To  simplify things a bit, English arguments will 
be abbreviated wit11 the aid of propositional constants. Three vaiid argument-fonns con- 
sidered in 5 4  5 were AA. DC and DD. As the examples below show, English arguments of 
these f o r ~ n s  can be proven valid by  testing thei; PP. rrandatioas. 

b f A t h e : l B + A > B  P f A t h e n B P > A 3 B  A o r B  + A V B  
A Not B " -B NotA * -A 

- 
" A 

-- 

:. B +- .. B .'. N o t A  :. -A . B * .i. B 

In each of these czses we have tile English premises implying the PE premises, and the 
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PL conclcsion implying tlze English conclusion. The next argunent however fails the 
adequacy test: 

It's false that, ycu  are intelligent oxiy if you're kind + - i i  3 I<) 
-- 

. You are intelligent and not kind " . ' . I&  -K 

The negand in the premise is an odd component, so the arrow points to the !eft but not 
to the right (see Rule 2b in 57.5). Although the PL argument is valid, tlze adequacy test 
is not passed: so it does not av.tomaticaLly follow that the English argument is valid. This 
is good news actually. If you look at the English argument, you wouldn't want to call it 
valid anyway. 

Here is one example however where the English argument is obviously valid but the 
standard PL translation of it will typically be unable to  show this. 

If A then B + A 3 B  
If B then C + B 3 C  

.'. If A then C 3 .'. A 3 C 

The PL argument is valid but, except in those rare cases where If A then C is seen in 
English to be equivalent to Either not A or C or both and hence is equivalent to A 3 C, 
the PE conclusion does not imply the English conclusion. So the validity of the PL 
argument does not automatically guarantee that the English argument is valid. Of course, 
the English argument is v2lid: both it and the PL argument are said t o  have the valid form 
of "Chain Argument". But the validity of the "if ... then ... -version" of Chain Argument 
depends on more than the vdidity of the "3-version". The following related argument 
however can be adequately tested in PL. 

If A iher: B i- A 23 

.". If n o t B  then not A + .'. -B 3 - A  

Again, the arrow between the conct~sions does not go in the required direction. So the 
validity of the English form of Contraposition depends on more than the validity of the 
PL form. 

So if we want to use PL to  prove the validity of English arguments we need to watch 
out for cases where the adequacy arrows are not satisfied. In pal-tic~alar, be on the look- 
out for negated conditionals in the premises. and conclusions that are either conditionals 
or disjunctions. Disjunctive premises, when not clearly exclusive, should be translated 
with V ;  disjunctive conclusions, when not clearly inclusive, should be translated with $. 
In drastic cases, negated conditional premises might be treated as simple negations and 
conditional conc!usions might be treated as atomic propositions. 

Finally, let's turn to the case where the Pk argument can be shown invalid 4e.g.. by 
possible-truth tables). Recail t h t  an argument is invalid iff illere is a counterexample to 
it i.e. there is a possible wcl-ld where all the pren:ises are tme and cke conclusion is f'alse. 
We leave the proof cf the follo~,ving result a s  an easy exercise. So ! ~ i l g  as each PL premise 
implies ;he covrespo~iditlg Etlglish premise, ancl li'ie English conclu~iorz implies the PL 
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conclusion, i f  the PL argument is invalid then the English argument is invalid too, Schem- 
atically we have: 

Adequate Invalidity Test: If PI t P I  

pn + pn 
- - 

C ' c  

then INVALID + INVALID 

Notice that the arrows required for invalidation are simply the reverse of those required 
for validation. 

Consider the following example. 

Lee smokes e S 

.'. If Lee smokes then he drinks + . ' . S > D  

The PL argument is invalid, as can be shown by producing the counterexample: S = 1, 
D = 0 (i.e. a possible world where Lee smokes but does not drink). Since the required 
arrows are present, this automatically proves the English argument is invalid. But now 
consider the following example. 

If Lee smokes then he drinks + S 3 D  
Lee does drink CJ D 

... Lee smokes ++ *~~ S 

A- possible-truth tabie generates the folio.hiing counierexample fo: the PE argument: 
- 

= 9: D = i 6.2. a possible ws;ld i>i!ler Lee drlfilcs does; fioi snlckej. So the PI_ 
argu-men; i s  invaifii; ill .Fact if i'.o--~mjts tilt? ; $ zaq i  .;f /Ifr'jr.:iing [he Conse,~c"t (see 
54,s). T1-l;~ 6 ~ - s  es i2b i i s i r  >f t k ~  Z:;,iish - ~ y g i i r w n ~  u kiowe*5ie~, since 

. . ~. 
-.~- w ,  ds ::ot h ~ v e  trLe :t?rl;ulreci arrow 14"he Ersi premise. In cases [ikc. this xNe si?_cu.ld 
lake the counterexamp:e rc? ths PL argur~~e-tlt (let us call this a PI, counlerzxainple) 

% .  . and, r;iii?-cmg In Fr!gEish, try :c: const:i.icr out of it 2. c3unterexampie tc the EngIi& 
argcmec'r (an .',r<glis,k coi[nler,?xanzpe'=i>. 1% e-~anrpi-, any possible v l ~ r i d  .ji:hsre 
Lee drinks Sct does aoi s~noite will constitute a Pt ccunterexarngie: there are infinitely 
many such possible worlds: using our English intuitions we should be able to see that in 
some (but not all) of these the first English premise will be true e.g., suppose Lee is 
determined that if ever he does take up smoking he will continue his drinking. We now 
have an English counterexampie and the English argument may be declared invalid. 

For each of the following arguments, set out a dictionary and then translate it into PL. 
Then test the PL argument for validity. Then use Staines arrows to determine whether 
your test was adequate for determining the validity of the English argument. 

1Vote:In each of the arguments. certain letters have been emphasised. These should be 
used for your dictionary. For example, the dictionary for Question 1 will be: 
G = Susan has a good excuse; E = Susan is exempted from attendance at practical 
class; H = Susan stays at home. 



1. Only if Susan has a good excuse is she exempted from attendance at the practical 
class. If Susan stays at home then she is exempted from attendance at  the practical 
class. But, since she does not have a good excuse, she will not  stay at home. 

2. We get money and staff, if either the Budget is increased or we write a good submis- 
sion. Since we get no staff, we did not write a good submission. 

3. Student numbers will be increased if and only if the Universities Commission 
increases the quota. Either the Government will not  be kind or more money will be 
given for education. So, if the  Government is kind, and more money will be given 
for education only if the Universities Commission increases the quota, then student 
numbers will be increased. 

4. The symbol fo r  tungsten is W if and only if it is not T. This follows from the 
following assumptions: either the symbol for  tungsten is not T or  else wolfram is a 
meta!; either the symbol for tungsten is T and is not W or  e k e  wolfram is neither a 
metal nor a gas; if wolfram is not a metal then it is not  a gas either; and finally, if 
the symbol for tungsten is T then the symbol is T and not W. 

5 .  Either the manager will agree or he  will fire you.  If the project is good he will 
agree. He will fire you if the project is uneconomical. So the  project is either good 
or uneconomical. 

If the wheat grew and it did not  Pain during October, then there would have been a 
good harvest. But there was not a good harvest, even though the wheat grew. So it 
must have rained during October. 

If penpie are oppressed the11 there rvili be violence. ISlJ'hji? Becaxse, people are 
' . Zppressed ii.t;iesj ,force is used. If force is used "en nither therz is czmplete sub- 

. . . ,. mlssron or tiler:: Is resistance, :r there is 'asir"sance f k r ~  ~ i ! l  be ~ i i ~ l e l ~ c e ;  ~ r d  
.L.evq 1s er co-q~lc,-ie sr?b~.r,iss:c::. 

- *  - .." . 
lr jr;;-;es beco~8i-s ;i; 3 ~ 1 1 ~  if the tttaitie 're% b i o o ~ n ~ .  :Lei: :ie is a t h e r  zliliergic to 
wattle or sometbi~lg else is car;s:ng his fi!ness. Since he is not allergic: to raiattle but 
he has beccrne fi:, i i  fojiows that sometiling else is causing his iliness. 

John will be  embarrassed only if he feeis em'canassed. Sc, if he does not feel 
enlbanassed he will not be embarrassed. 

Uranium should be mined only if there is a foolproof way of disposing of the waste 
products. Since there is n o  such foolproof method, it follows that it's not the case 
that uranium should be mined. 

Weather forecasting is an exact science. Hence it will either rain or not  rain tomor- 
row. 

If the Premiers do not get more money they will cut back on services t o  the public. 
If they d o  cut back on such services, then [he public at  large will protest. If the 
Premiers d o  get more money then the taxpayers wil! protest. So, either the public 
at large or the taxpayers will protest. 

Jones will meet the contract deadline only i f  there has been n o  strike. Since there 
has been n o  strile it follows that  he will meet the  deadiine. 
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Philosophy will be offered externally only if both the Board of External Studies 
and the Faculty approve. So either the Faculty approves or  Philosophy will not be 
offered externally. 

The Government will continue t o  cut  expenditure if there is an.increase in the 
deficit. There is an increase in the deficit only if either tax revenue is decreasing or 
spending is increasing. But spending is not  increasing. Since tax revenue is decreas- 
ing, the Government will continue t o  cut  expenditure. 

If John Dunmore Lang had been friendly with Samuel Marsden then Lang would 
not  have said that Marsden was 'Slimy Sam'. Now, both Lang and Marsden were 
clerics, and if they were then they should have been friendly. Since Lang did say 
that Marsden was 'Slimy Sam', it follows that although they should have been 
friendly they were not.  

Unemployment will decrease if, and only if there is an upswing in the economy. 
If the Government decreases spending, then only if there is t o  be massive private 
investment will there be an upswing in the economy. Since there will not be 
massive private investment, and since the Government will decrease spending, it 
follows that  unemployment will not decrease. 

The Church supports self-determination only if it supports the decisions of the 
aboriginal people. If the Church supports the decisions of the aboriginal people 
and the aboriginal people d o  not  want a State takeover, then the Church will 
oppose a takeover. The aboriginal people do not want a State takeover. Hence, if 
the Church does i20t oppose a takeover, it does not support self-determination. 

If the Minister acted prudently and received the best available advice,  the^ i'f it 
was correctffcr the law to be altered witishaat any opposition there would hwe 
Seen no ,controversy. But rhere has beet controversy. Since t h e  Mirister. received 

:Ss~t a--~ai?~lrsle advice. i: isii3x,vs :j:& 1v!!gisi-r 2is nrjt p.r~,,:ij-~:iy, 

If either Rod or .&II!< invented 'the arguinents then, if the arguments are either 
about political characters or about zisorai systems then those argnriients are both 
valid and soul~d.  Onlji if the arguments are instructive is it uiltrue that  the argii- 
merits a ~ e  both frivial and sotl~zd, Thus, either the arguments are izsiru.ctive or it 
is false both that Rod Inveiited those arguments and that the arguments are about 
political characters. 

If the government wanted t o  encourage the  people t o  conserve petrol then it would 
allow the import of  fuel saving cars. Either the government is not really interested 
k conserving fuel or it would want t o  encourage the people to  conserve petrol. 
Since the government does not allow the import of fuel saving cars, it follows that  
it is not really interested in conserving fuel. 

If I am early at the post office there will be no queue. If there is no queue I will 
waste time waiting around after being served. If I am late at the post office there 
will be a queue. I will waste time waiting around before being sepl~ed if there is a 
queue. If I am early I'll not be  late. So, either 1'11 waste time waiting around after 
being served or before being served. 

If the vacuum cleaner and the stove are both switched on, then the power goes off.  
Since the stove is not switched on. the power will n c i  go off. 



The theory that spacemen carved the  Faster Island statues is plausible only if the 
locals could not have carved the statues themselves. The locals could have carved 
the statues themselves if there is afilm of the locals carving a statue in recent times. 
Since there is such a film, it follows that the theory about spacemen carving the  
statues is not plausible. 

Either we don't really believe in our basic principles or we will not support the  
executive, because the executive is passing resolutions which are contrary to  our  
basic principles. And, if we  really believe in our basic principles; we must oppose 
resolutions which are contrary to  our basic principles. Furthermore, if we support 
the executive and the executive is passing resolutions which are contrary to  our 
basic principles, then we will not be opposing resolutions contrary t o  our basic 
principles. 

Either we will plan ahead for adequate water resources o r  we will not have enough 
water. We will plan ahead for adequate water resources only if we allocate funds 
for research. So, if we d o  not allocate funds for research we will not have enough 
water. 

The education system will be able to  kelp students t o  reason and think if there are 
logic courses in the schools. If the education system is able so t o  help students, 
then it is on the way t o  being a good system. If the education system is not able 
so t o  help students, then it is not on  the way t o  being a good system. So, either the 
education system is on  the  way to being a good system or  there are n o  logic courses 
in the schools. 

If Jones' theorjj were carrect then there w~i31d have been a disaster ~I-I 1975. But 
since there was no such diszster, jf f31!ow~ that  his tliecqr b not csrrect.  

Either :he sta'.bn--ent undel- disr.issls:- ij 2 d:sjunctioi~ or ;s a;i equ;vaiencc. if 
, . 

the si;i'tetmen: 3;;dzi discassioa is 22 eqc,p;alcr!i;i. then it cor?tains 2s Lmpfica?-ii:n. 
The statti-rient i;nder discussion does not contain an  impiicatioii. 'Therefore, it is 
a disjur?r,tion. 

The lights will turn on  only if the fuses are intact. If the power gets t o  the house 
then the fuses are intact. So, if power gets t o  the house the lights will turn on. 

If terrorists' demands are met. then threats of  violence will be rewarded. If terror- 
ists' demands are not met, then innocent hcstages wiil be murdered. So, either 
threats of violence will be rewarded or  innocent hostages will be murdered. 

Bf rain continues. then the river rises. If rain continues and the river rises, then the 
bridge will be washed awey. if rain coiitii~ues only if the bridge washes away. then 
a single road is not  adequate for the town. Either a single road is adequate or the 
traffic engineers have made a mistake. Therefore, the traffic engineers have made a 
inistake. 

I f  Mary goes tc live iii a College and gives in lo key inch~~at ions ,  then her soclui life 
will jlourish. Ef her social life flourishes then her academic recerd will suffer.  
Mary wiil give in t o  her inclinations but her academic record will not suffer. So, u.2 
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conclude that she will not go t o  live in a College. 

If James gets a salary rise or inherits a large sum of money, then he will buy a new 
sports car. James will race in the rally only if he buys a new sports car. So it 
follows that James will race in the rally only if he  either gets a salary rise or inherits 
a large sum of money. 

Since Kevin was not elected, it follows that either most preferences went t o  his 
chief opponent o r  his campaign was not  o n  k e y  issues. If most preferences did not 
go t o  his chief opponent then Kevin would have been elected. 

Either J o h  will give in o r  Ma1 will. J o h  will not give in. If Ma1 gives in then he  will 
tell a good story. If he tells a good story his party will bow out  of the argument. 
So, Mal's party will bow out  of the  argument. 

Either the pepper or the singing makes the  baby sneeze. If the pepper makes the 
baby sneeze then Alice should take him outside. If the singing makes him sneeze 
then either Alice will prevent the singing o r  she should take him outside. Since 
Alice will not prevent the singing, it follows that she should take the baby outside. 

If the consumption of petrol is not cu t  then the city atmosphere will become more 
polluted. If the  city atmosphere becomes more polluted then more people will go 
t o  dive in the country. If more people go t o  Live in the country then more of the 
rural environment will be exploited. So it follows that if no more of the rural 
environment is t o  be  exploited, the consumption of petrol will be cut. 

1 ordered turf fo r  the terrace only if 1 wrote out a cheque for $100.00. If I ordered 
turf for. the terrace it is to arrive next Tuesday~ Since ! w r o t e  oat e chequ-, for 
S10Q.00, it follows that the tg.~"wili arrit7c next Tuesday. 

. " ,?I 8, Eagle  is piai;r;igg Lo be a candidate; $Eel.: if ;:?e reps~t- ; rs  had fisi;ed f i g ~ ,  :r 

&clzra hi-ils.iif thee ti;.,.; wo-yld ?~,frrse ;"a sc. &ir, Ezgle is p l a n j ~ j c g  ;o P- 5 cal:-Ji- 
date, blr-,; he has 110': refused i:o declare klmseir" The~er'ore, the reporters aid rot 
ask him to declare himself. 

.- ~ bather that  figure is a square o r  it does not have f i u r  i d e s .  That fgure  Is not a 
square. So, it does not have four  sides^ 

If the  Depadment  is running ou t  of money then it will try t o  cut  costs. If it 
tries l o  cut costs then the new social science programmes will be shelved. The 
Department 2s running out  of money. So, the new social science programmes will 
be shelved. 

Either the maid is guilty o r  the butler is lying. If the maid is guilty, poor old Lady 
Maud was murdered for the ruby brooch. Now, the butler was not lying. So, poor 
old Lady Maud was murdered for the ruby brooch. 

Either expenditure on  education will increase or  it will decrease. If it increases, then 
&axes will increase. If it decreases, then standards will fall. If standards fall, then 
money will be spent and qualified people will be imported from overseas. If either 
taxes increase or money is spent, then you will pay  more. So, you will pay more. 

Considering that a laboratory will be buiit only if there is a large sum of money 
available and a suitable set of plans are drawn up, and also that  a large sum of 
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money is available and suitable plans have been drawn up, it follows that a labora- 
tory will be built. 

Either logic applies t o  the real world or  it is just a game with marks on  paper. 
If logic is a game with marks o n  paper, then it is no use. If logic is no use then 
it  should not  be studied for  an examination. So if logic should be studied for an 
examination then it applies t o  the real world. 

If every country signed the  treaty, then every country would have t o  allow inspec- 
tion of its territory. If every country allowed inspection of its territory, it would 
n o  longer be true that every country was in complete control of its territory. If 
every country was in complete control of its territory, there would be no wars. 
It  follows that if every country signed the treaty then it is false that  there would 
be no wars. 

John will win only if either Tames forfeits o r  Jenny sits on  the sidelines. So, 
either John will win only if James forfeits, or if Jenny sits on the sidelines John  
will win. 

There will be a good season if and only if the cattle thrive, but there won't be a 
good season. So if it rains then freight rates will go down, since unless the cattle 
thrive it won't rain. 

If you have a TV set then you need a licence, and you  don't need a licence provided 
that you hire your set. Of course if you hire a TV set then you  have a TV set. If 
you hire your set then you have to make regular rentalpayments, and so it is clear 
that whenever you have a TV set you h w e  t o  make regular rental payments. 

i f  aboi~sirhg ihe advertising of tobacco ~ e s u l t e d  k pec;ple smol<Lrig less then we 
c lc ld  just;r'y zkccshiag: s ~ c h  &vi.,r:is+La;g. Sii-:ce aba!ishLqg the advedising i:obsc- 
co dces not resale peopl- ~:;,:.3kk~g i e ~ 5  $32 c,afi~o; just:?y ab0Eshk-g srjch aixi-rt- 
. ~ 

:sing. 

Nejther Socrates nor Aristsi:re disbelieved Lq! the existence of the external world, 
and if Socrztes did riot disbelieve in the exisknce of the external world, then 
Eiato's dialogues misrepresent the  tiuh~king of Socaates. Now either PPato9s dialogues 
do not misrepresent the thinking of Socrates o r  Aristotle was right ji? criticising 
Plato. Evidently, then, Aristotle did not disbelieve in the existence of the external 
world and was right in criticising Plato. 

The green post is either longer o r  shorter than the red post. If it is shorter than the  
red post, it is not the same length as the red post, if it is longer than the red post it 
is not the same length. Therefore, the green post is not the same length as the red 
post. 

The flooding of Lake Pedder is justified only if it is not  the only wilderness area in 
Tasmania. Since it is not the only wilderness area in Tasmania the flooding of the 
Lake is justified. 

If you dress the timber you must sharpen the planer knives; and you must take 
down the planer heads if you sharpen the knives. Yet, although you sharpened the 
knives you did not dress the timber. So it follows that  you d o  not  take down the 
planer heads unless it is not the case that you  sharpen the planer knives when you 
dress the timber. 
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Brown was t o  tell them where the money was or he would have been tortured. 
Since he did tell them where the money was it follows that he was not  tortured. 

The majority of people are at first confused by logic if there are large numbers of 
different symbols. The majority of logic students find the subject useful even 
though the majority of people are at first confused by the subject. If, and only if, 
there were not large numbers of symbols would the majority of logic students find 
the subject useful. So, whether there are large numbers of symbols or not,  the maj- 
ority of people are confused at first by logic. 

Only if we are not successful will the operation fail, and we will not be successful. 
So the operation will fail. 

Action will be taken only if we can assume that there is a crisis. We can assume 
that there is a crisis if there is enough evidence. Since there is not enough evidence, 
no action will be taken. 

James is not  both a doctor and a dentist. Since he is not a dentist, it follows that 
he is a doctor. 

If Susan studies logic then she will find it useful for all sorts of things. If she studies 
computing then she should get a good job. So, if she studies both logic and compu- 
ting, she should get a good job. 

There used t o  be capital punishment, and at  the time when there was the crime rate 
was very high. If the crime rate was very high at the time when there was capital 
punishment then capital punishment was n o  deterrent against -rime. So it is just 
faise that  w h e ~  rhere used to be capital punishmenq it was a deterrent agzinst 
crime. 

If the water Is clear a.nd germ-free then "rliie purification plant is working. So if the 
wazer is not clear the p~~.rification plant is nor ~~ori t i izg.  

Punzfe 7 Here is a fairly typical dialogue between a zen master and his 
student. Has the master contradicted himself? Explain. 

Master, what is 
enlightenment? 

The oak tree is in 



7.7 SUMMARY 
Realistic analysis of everyday argument should take note not only of the logical aspect 
(do the premises support the conclusion as claimed?), but also of the material aspect 
(are the premises true?) and ~lzetovical aspects (e.g., what is rhe proposer trying to do 
with his words?). 

Identgying an argument entails identifying the conclusion, premises and support claim 
(deductive or inductive). Arguments with tacit (unstated) premises are called enthy- 
memes. In practice it may be necessary to ask the proposer to  clarify his argument. The 
best ways to  counter an everyday argument are l o  state a counterexample in English, or 
to produce a courzteraugimeizt (an obviously logically defective argument with the same 
relevant form). 

A cnuntevm~de: to  an argument expressed in PL is an assignment of tmth values to  the 
propositional constants which makes the premises true and the conclusion false: i f  this 
describes a possible world then it provides a counte~example. A countermodel isfactual 
iff if describes the actual world. Detection of a non-factual countermodel may suggest 
additional premises to provide a better argument. Remember that valid arguments may 
have false conclusions if they have a false premise. In general, arguments may be modified 
by altering the premises, the conclusion, or the support claim. 

Translation from English to a logical language is most efficient if an adequate mi,qimun? 
of detaii is represented. If a logical system is inadequate for evaluation purposes it may 
be augmented by our Englis-h logical intuitions; alternatijiely, a move powerf~d logicel 
system may be aaeq~1ate. The adequccy of PL for the agdiysis of propositions, rela*ilons 

,. , - 2nd arg~~y-fits ii; cngind: !?nay oSlen be L2ecided G , T ~ T ~  1ri;- heip o-: ,Yf~ifi,os ars.nws, " 2  us- 
+., ->, -:- ;espec+j-i-1~ .Ti;i- ne.;essery eqgiv&snce, I~~piisa-jrjfi  ar,d ZonverTE: ~r;rgjis;~~cr-;. 

~. . : ; . - 5  ti.3'".';-l:~-.I. ' , V V L  u- I - *  b4*~lva.,!jL r l , . l b . a 5 1 0 ~ i ~ s  CY: -&is V:I$ 531 d'uqi(; be p(:;s;ble. ir. 
-i!e :"'I; ,2x> j,i"sg CS\> .*., @laa ~ - , > ,  A. ;- - -  uai,, 7 c A  A 

,. c - , ,-.. , , d", .- :)Cp-i;:;'C: 1'" StSSe, 

+ ," ;- p .>I q or both ." 0 'L; .- 
A -i 

. ! c.-,~: u z j , j  pi3iibq + , ! & q  or i; - Lu.5 !?-+ .-or I i d L  b ~ : : ~  b.-rh '-' $ 
2 or q --? 9 'id i, neither p cgr q " .- (p ?J q )  
9 0l-q .+- p 9 neither p n3r 4 -dp & ,.- q 

i f p t h e n q  + 3 q  not both p and q <+ -(' C% q) 
p i f f e  + p ~ . q  n o t p o r n a t q  4 - p V - - q  

Some other exarnpies are: 

(Temporal) p and q + p & q obviously p + p 
(Conditional) p and q + p 3 q it's possible that p + p 

p is incompatible with q -+ " ( p  & q )  it's impossible that p + - p  

In translating complex propositions, first substitute the propositional constants and then 
proceed top-down. Try to  preserve arrows as far as possible. Suppose that a cornponent 
proposition about to be translated lies in the scope of t tildes and in the left-scope of h 
hooks: the component is then said to  be even or odd according as t + h is even or odd. 

Rule 8 :  If the componenr lies in the scope of a E or f ,  then to  preserle the arrow (+, + or 6) adopt an equivalent translation. 

Rule 2. if the component does nor lie in the scope of a - or f ,  then:- 

(a) to preseme +: if the component is ever! replace it with a proposition 
that it implies; 



if the component is o d d  replace it with a proposition 
that implies it. 

(b) t o  preserve +: if the  component is odcl replace it with a proposition 
that it impl ies;  

if the component is even replace it with a proposition 
that implies it. 

In general results an English proposition may be represented by a capital letter, and the 
PL proposition by  a lower case letter. The following adequacy conditions may be applied 
t o  the testing of modal properties. 

A table of adequacy conditions for testing modd relalions is supplied in 5 7.5. Adequacy 
conditions for testing arguments are given below. 

Property established 

p is a necessary truth 
p is not  a necessary truth 
p is a contradiction 

Adequate condition for same 
property t o  hold for P 

p e p  
P + P  
F + P  

p is not  a contradiction 1 P + P  



Ralusa l  Deduction 

8.4 INTRODUCTION 

In everyday life, as a way of  reasoning something out ,  we often argue in a step-by-step 
manner from premises to  conclusion. Each step usually involves a simple valid argument- 
form. To  illustrate this method of reasoning. consider the following detective problem: 

If the burglar did not come through the door then he  came either 
across the roof o r  up the wall. If he came across the  roof then 
someone would have seen him. If he  came up the  wal! then he  would 
have used a iadder. No one saw him. Me did nct use a ladder. 

How did the burglar gain entry? 

Before reading on, try so!-ling this prohiem yourself. 

.r,e ~3,:rgia:- :,~r~i;e :'il$v&l; L,k."d~~j: 3 = -'- 

:? = Tk-, bu~gia:- canle ae:.oss t;t. ro-f 
< > , ,-> . :v - 1 rie b ~ r g l a r  came ap the v,rai2 
S = Someone saw t h e  burglar 

-7. i = ne burgla: rised a ladder 
-0 
I he given Pacts may now be symbolized as the following pren~ises, which we r;urnber for 
reference. 

1. -D 3 (R V W )  Premise 
2. R 3 S  Premise 
3. W 3 L  Premise 
4. --S Premise 
5. --L Premise 

Since we are now going to quote some valid argument-forms studied earlier, it would be 
a good idea if you reviewed the lists of  tautological equivalences and valid argument- 
forms given in 53.9 and 54.7. before continuing. 

Frorn lines 2 and 4,  by the valid argument-form known as "Denying the Consequent" 
(or "Modus Tollens"), we may infer: 

Similarly, from lines 3 and 5 ,  by Denying the Consequent we deduce: 
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Now since a conjunction is true if both of its conjuncts are true, f r o ~ n  lines 6 and 7 we 
may infer: 

The rule underlying this latest inference is known as "Conjunction" (Conj): it will be 
formally defined in 98.3. The next step is t o  use one of De Morgan's Laws on line 8 
t o  deduce: 

Now, from lines 1 and 9, Denying the Consequent yields: 

Finally, by Double Negation on  line 10 we obtain: 

So we may conclude that the burglar came through the door. A truth table will show 
that the argument with propositions 1 - 5 as premises and proposition 11 as conclusion 
is valid. Indeed, all of propositions 6 - 11 follow validly from 1 - 5. 

Since this technique of  using valid argument-forms t o  deduce our way step-by-step 
t o  the conclusion resembles the way in which we usually reason deductively in everyday 
life, it is called "natural deduction". When employing this method in logic it is customary 
t o  provide a justification column t o  explain how each line was arrived at.  We will use 
"P" as an abbreviation for "Premise". In most cases, the conclusion t o  be argued for will 
be determined at the outset: this will then be  displayed t o  the right of the last premise to  
remind us of whal we are aiming at. Inferences are annotated by  quoting the lines and 
rules -iised. So the above example - w d d  be set out as follows: 

Such a sequence of propositions is known technically as a "deduction". The line numbers 
and annotations are not, strictly speaking, part of the deduction. Furthermore, there is 
usually just a limited set of simple valid argument-forms available for justifying the steps 
in the deduction. The set we have c h o s ~ n  will be detailed in the next two sections. 
Later in the chapter, the method of "Conditional Proof" will be introduced t o  augment 
the basic deduction method. 

The PC methods used in previous chapters are examples of what logicians call "algov- 
ithrns" or "decision procedures". An algorithm for a class of problems is a method which 
always produces an answer in a fizite number of steps, purely by inechanical application 
of the method (which must be describable in terms of a finite list of instructions). For 
example, the truth-table method provides an algorithm for classifying any PL-argument- 
form as valid or invalid: you simply apply the procedure and. barring carelessness. you 
can be sure of getting the right answer. In a similar manner, t ruth trees and MAV provide 
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an algorithm for this type of problem: once you understand the procedure it becomes 
just a "turn the handle" process; no original "insights" are required. Is natural deduction 
also an algorithm for validity determination in PC? Decide for yourself before reading on. 

It should be fairly obvious that natural deduction is not an algorithmic procedure. 
Steps in a deduction require use of previous lines and valid argument-forms: but the 
procedure does not tell us which ones t o  pick; so rather than the steps being purely 
mechanical. we have to rely on our own logical insight as t o  how to proceed. Sometimes 
we will choose wisely; sometimes unwisely. If we manage t o  produce a deduction from 
premises to  conclusion then this establishes validity. However, regardless of how much 
effort has been put into it ,  failure to produce a deduction does not establish invalidity: 
perhaps the argument-form is invalid; but perhaps it is valid and we simply lacked the 
ingenuity t o  produce an appropriate deduction. 

Since tables, trees and MAV do provide decision procedures for PC and natural deduc- 
tion doesn't, why study natural deduction at all? Well for starters, some everyday situa- 
tions (e.g., dialogue) call for a quick, mental evaluation of  arguments: here a mind skilled 
in natural deduction has a distinct advantage. Secondly, there are many problems in 
mathematics, science and advanced logic for which there are n o  known algorithms: here 
natural deduction is often the best available procedure. Thirdly, even when algorithms 
d o  exist, natural deduction lends itself more readily t o  the discovery of  various unantici- 
pated and useful conclusions which follow from a body of evidence. Finally, although 
the natural deduction approach can at times be frustrating (we may not produce a deduc- 
tion even after a lot of effort), its essentially challenging nature leads to  a greater sense of 
satisfaction when we do get a deduction out  than would be obtained with an algorithmic 
approach. 

E e c a ~ s e  of the comparatively chaY!erigicg nci;Jr r ? f a n a i u r a ?  deduction, :he exercises 
will bc k e ~ t  I - fairly simrr;:e u ~ l i i  variou!: s i~afegies  ilave d s c ~ ~ s s e d  kq 39.5. fir. ,,,ib,:i. 

. a  

of' exe;.cises .:I. <.he chapter- 341ilI give l,rcirn i::ie 3ouor.r.;nitjr L ;3 ~ O Y : ; ~ ~ C ; D  ; / O G ~  . fi2[7:~.-- 'ii dl 

deduciioa ii;&~er. 

The approach to logic via the notion of deduction was given ?petus by a seminar held in 1926 by 
J. Lukasiewicz. Sometime iater botll 6. Gentzen and S. Jaskowski published papers setting ou t  
systems of natural deduction. Deductive approaches to  logic are as old as Aristotle, and were used by 
Frege and Russell, but  deduction itself was not seen as primitive or fundamental in the sense in which 
deduction is seen in Gentzen's work, especially Untersuchungen iber  das logische Schliessen (Investi- 
gation into logical Deduction) published in1935. 

Once Conditional Proof is sowed (see 5 8.4), an algorithm for natural deduclion can be specified. 

8.2 RULES OF SUBSTITUTION 

In the previous section, we saw how t o  llse simple valid argument-forms such as Double 
Negation and Denying the Consequent to  deduce a conclusion from a set of premises. 
In natural deduction systems, such forms are usually divided into two separate groups, 
each gr9u.p being associated ivirh a parricula: set of raies. Double Yegation finds meneicn 

within the Rules of Substitictkm, which we discuss in this section. Denying the Conse- 
quent is e~lcompassed by the Rtlles ofInference, which will be treated in the next seciion. 



The Rules of Substitution are more powerful than the Rules of Inference in two ways. 
First, the Rules of Substitution all work in both dlvecfions. For example, with Double 
Negation we know that bo th  of the following are vaiid: 

Secondly, the Rules of  Substitution work o n  parts of formulae. For example, all of the 
following are proper uses of Double Negation: 

Though deduction systems may be developed independently of the semantic treatment 
we have adopted in earlier chapters, it will simplify things in this introductory text if we 
connect the two approaches. In particular, each h l e  of Substitution may be regarded as 
a statement of tautological equivalence, together with the instruction that the tautologic- 
ally equivalent items may be substituted one for  the other at any point in a deduction. 
In listing the rules we use "p'" "q" and "r" t o  denote any wff or proposition, and use 
"::" as an abbreviation for "may be substituted for or replaced by". Our Rules of Sub- 
stitution, together with their names and abbreviations, are as follows: 

Double Negation (DN) Commutation (@om) -- p  : :  p  p & q  :: q & p  

p v q  :: q v p  

Association (Assoc) Distribution (Dist) 

p & ( q & r )  : :  ( p & q ) & r  p & ( q  V r )  :: ( p & q j V ( p & v )  
p V ( q \ / v )  : :  j p V q ) V r  p V ( q & r )  :: ( p ' d y ) & ( p \ / r )  

De Morgan (DeM) Contraposition (Contrap) 
-(p : :  -.p V --q " : > q  : :  "'4 3 -p 
"" j V  .<, " . . -, ;; <& ,-- - 

C ' )  .. 

Bxport-%mpori ( E x h ~ )  Material Implicatio~ (lbfs) 

( p & q > > ,  : : p  >jq 37) p > q : :  - p V q  

Material Bquisalence (ME) Idempotence (Idam) 
p " q : :  ( p > q ) & ( q > p j  p & p  : :  p 

p = q  : :  f p & q ) V ( - p & - - q j  p V p  :: p 

Exclusive Disjunction (ED) 

P f 4 :: " ( P  ' c a )  
Most of these are familiar. You may care t o  check the tautological equivalences for the 
new ones (e.g., Idempotence) with a truth table. 

The fact that the Rules of  Substitution may be applied t o  any well formed part of a 
formula is very important: you will find several instances of this in the example below. 
To  save writing, a rule may be applied more than once in a single step: in such cases the 
notation "x 12" is appended to the quoted rule t o  indicate that the rule is applied n times. 
This practice is illustrated in lines 10, 11 and 12 of  the following deduction. Although 
this example would be a difficult one for you to generate yourself a t  this stage, it is 
worth your while to  go through it thoroughly, checking that you understand each move 
in the deduction. As has been done earlier, we will occasionally use propositional con- 
stants in examples and exercises without supplying a dictionary. 
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Example: Use the method of natural deduction to prove the following argument is 
valid: A  3 ( B  3 C) / .'. B  3 ( A  3 C )  

1. A > ( B > C )  P / .'. B  3 ( A  3 C )  

2 .  ( A  & B )  3 C  1 Exim 
3. ( B & A ) > C  2 Corn 
4 .  - ( B & A ) V C  3 M I  
5 .  ( -B V  - A )  V  C 4 DeM 
6. - B V ( - A V C )  5 Assoc 
7 .  ( - B & - B ) V ( - A  V C )  6 Idem 
8. ( - A V C ) V ( - B & - B )  7 Corn 
9 .  (( - A  V  C )  V  - B )  & (( -A V  C)  V  - B )  8 Dist 

10. ( - - B V ( - A V C ) ) & ( - B V ( - A V C ) )  9 C o r n x 2  
11.  ( B > ( - A V C ) ) & ( B 3 ( - A  V C ) )  10 M I x 2  
12. ( B  > ( A  3 C))& ( B  > ( A  2 C ) )  11  M I x 2  
13. B > ( A  3 C) 12 Idem 

Since only Substitution Rules have beer1 used in the above deduction, and such rules 
work in both directions, by reversing the steps above we could show that the converse 
argument B 3 (A 3 &3 / .'. A 3 (B 3 &3 is valid. As a x a t t e r  of  interest, the associated 
equivalence p 3 (q 3 r) * q 3 @ 3 v )  is called "Permutation". 

NOTES 
Rules of Substitution are sonretiines called "'Rules of Replacement". - i k e  tern? "iidem6;ctenc.e'' derives frow r!ic Latin id~rr? (the same: and polens (pcwer), i~dicai ing that 

firs; " q 2 ~ e r "  cf ! j  :; eq!~i.ja!e*;L to its ":;eco;id po;uc~" i7 :he form of ;L; &, p <1r \ j  p, zfld (by 
recursici-c) to ~ 7 : ~  ijirl?er 9oix;cr. 

'01 eac r~  of the  foilowing dedil;ciior,s~ name zhe Scbstitu.iior Ruie xsed. 
L ~ 

(a) 1. - A V B  P (b) I .  A & b  P 
2. -A V *---B 2. --(A. &B) 

(c) 1. ( A  V B )  3 C  P (d) I . A & - - ( C V B )  
2.  - C 3 - ( A V B )  2 .  A & ( - - C & - - 8 )  

( g )  1. -A  V i B  &C) P (h) 1. ( - - A V B ) & ( - A  V C )  P 
2 ( - A ' J B ) & ( - A V C )  2.  (A 3 B )  & ( A  3 C )  
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2. In the following deduction some of the entries in the justification column are correct, 
and some are incorrect. Where incorrect, write the correct justification. 

1. ( A  3 (B  3 C))  3 ( ( A  3 B )  3 ( A  3 C) )  P 
2. ( A  3 (B  3 C))  >(( - A  V B )  3 ( A  3 C ) )  1 M I  
3 .  ( A > ( B > C ) ) > ( - - ( - A V B ) > ( A > C ) )  2 DN 
4. - ( A > ( B 3 C ) ) V ( - - ( - A V B ) > ( A > C ) )  3 DeM 
5 .  - (A 3 (B 3 C) )  V ( -(  --A & - B )  3 i A  3 C ) )  4 MI 
6. - (A  3 (B 3 C ) )  V ( --( - -A & -B)  V ( A  3 C))  5 DN 
7 .  - (A 3 ( B  3 C ) )  V  (( --A & -B)  V ( A  3 C))  6 DN 
8. - (A  3 (B  3 C) )  V ( ( A  & -B)  V  ( A  3 C))  7 DN 
9. - ( ( A & B ) > C ) V ( ( A & - B ) V ( A > C ) )  8 Contrap 

10. - ( ( A & B ) > C ) V ( ( A V ( A > C ) ) & ( - B V ( A 3 C ) )  9 Assoc 
11. - ( ( A & B ) > C ) V ( ( A  V ( - A  V C ) ) & ( - B V ( A 3 C ) )  10 M I  
12. - ( ( A & B ) > C ) V ( ( A V ( - A V C ) ) & ( B > ( A > c ) )  11 MI 
13. - ( (A  & B )  3 C) V  ( ( ( A  V  - A )  V  C) & ( (B  3 ( A  3 C))  12 Assoc 
14. - ( ( A & B ) > C ) V ( ( ( A V - A ) V C ) & ( ( ( B & A ) > C )  13 Exim 
15. - ( (A  & B ) >  C )  V ( ( ( A  V  - A )  V  C ) & ( ( ( A  & B )  > C )  14 Corn 
16. ( ( A & B ) > C ) > ( ( ( A V - A ) V C ) & ( ( ( A & B ) > C )  15 ME 

3. Using the Substitution Rules, construct deductions t o  show that the following argu- 
ments are valid. 

(a) A  /.'.---(A & A )  
(b) --(A & -B)  / :. -B 3 --A 
(c) A  f -B / .'. ( A  3 -B)  3 -( -B >A)  
(d) (A 3 A )  v (B 3 B )  / .'. ( A  3 B )  v (B 3 A )  
be) (A > A )  3 A  / .'. A  V  ( A  & - A )  

*(f) {A V  B ) & ( B  3 B) / .~. ( A  3 B) 3 B 

8.3 RULES OF INFERENCE 

We now set out the simpler Rules ofhf irence.  Although in 2 general sense the Sub- 
stitution Rules considered earlier are used for drawing inferences, what we call Rules of 
Inference in natural deduction are distinguished by working in one direction only. Iri 
addition, the Inference Rules are to be used on whole formulae only, not parts of forrnu- 
lae. Each of  the Inference Rules we discuss here corresponds to  a valid argument-form: 
some of these you have met before; you may wish to verify the others by means of a 
truth table. Our Inference Rules make no mention of - or $ : these operators are 
dealt with by means of the Substitution Rules. The simpler Inference Rules are now 
listed, together with their names and abbreviations. 

Simplification (Simp) Conjunction (Conj) 

Addition (Add) Denying a Disjunct (DD) 



Affirming the Antecedent (AA) 

~ 3 4  
P  

Denying the Consequent (DC) 

~ ' 4  
- 4  

Chain Argument (ChAr) 

~ ' 4  

q > r  

. p 3 r  

Complex Constructive Dilemma (CCD) 

These rules must be used in strict accordance with the way in which they are set out .  
For  example, a t  step 3 in (a) we use DD correctly: 

(a) 1. -A  V  B P 
2.  ---A P / .'. B 
3.  B 1 , 2  DD 

But in (b) DD is not correctly used at step 3:  

(b )  1. - A V B  P 
2.  A P / .'. B 
3.  3 1 , 2  D D  

We should have first deduced --A as in (c) 

,4!?11ough in the ahoove exarrpies we l a v e  allowed m l y  on:: mie a1 each step, fcf 
puTpose.3 c l  abbxei/is:isa we i?i.ay camoine several rnoires in one step. The jastificafisn . -  - 
foi the step shoui3 tiier? include al? :he lines 2nd i.u:ss used. For example, ",he :wc; 
lnfereilces in (c) niay bs combined ds ir~ciicated on !ire 3 below: 

(cl) I .  -A v B P 
2. A  P / .'. B 
3.  13 1 , 2  D N , D D  

As discussed in the previous section, it is also permissible t o  use the same rule more than 
once. in the one step. In the  next example AA has been used twice to  yield line 4. 

(e) 1 ,  A 3033 @) P 
2 .  A P 

3.  B P / .'. C 

4. C 1 , 2 , 3  A A x 2  

Deductions may. of course; be set out  in e purely formal way using only forms. In 
this way we can show that an argument-form is valid by deducing its conclusiorl i'rorn 
the premises. Consider (f) where we show that Simple Cor:srrucrive Dilemma (SCD) 
is a valid form: 



P 
P 
P 1 .'. r 
1,  2, 3 CCD 
4 Idem 

NOTES 
The names of the basic Rules of Inference vary from text to text. We have adopted descriptive names 
where possible. Here is a table of names: 

This Text 

Simp 
Conj 
Add 
DD 
A A 
DC 
Ch Ar 
CCD 

Traditional 

Simplification 
Conjunction 
Disjunctive Addition 
Disjunctive Syllogism 
Modus Ponens 
hfodus Tollens 
Hypothetical Syllogism 
CCD 

Other 

& Elimination 
& Introduction 
V Introduction 

3 Elimination 

Constructive Dilemma 

1. For  each of  the formulae, other than the premises, in the following deductions insert 
the correct justification. 

(a) 1. ( ( p  ei. 4) & r) &. s 
2. p 3 t  
4. ( p  & q )  & r 
$.. p & q  
'i 
.A , P 
6. r 



2. Construct deductions t o  show that the  following are valid. 

( 2 )  p > q ,  q 3 . 7 ,  -r  / :. -p 
(b)  2, p I), q> 4 3 P / .'. r 
(c) p \/ q,  q 3 P> -v I .", p 
(a) p > ;, q 3 ', -2 p 1 . ^Y p & i-i _? 

1 ,:. Pd Vr (el p I), I., q 3 i: --.:. r, -- 4 
( f )  p  & q ',. p v ' q  
(g)  -r'\i -'3, p > r ,  4 3 s  ,I .,. - p V  - q  
(h) ----p I q ,  g / " ~ '  p & q  
ti) (p & q )  > ir p, p 3 4  j .'. r. 
(j> ( p  v q )  3 v, q / :. T v s 

8.4 CONDlTHONAL PROOF 

Sometimes in everyday argument a person will say. "Let us assume, for the sake of 
argument. that ... ". This type of reasoning is illustrated b y  the following example. 

(a) If' the burglar did not come through the door then he came either 
across the roof or u p  the wall. If he came up  the  wall then he would 
have useci a Ladder. Let us  assume, for  t h e  sake of argument, that he  
did not nse a ladder. I t  follows that he did not come up the wail. 
From. that it foilows that if he  did not come through the door then he 
came across the roof. So we may conclude that if he did not use a 
Iadder, then if he did not come through the door he came across the 
roof. 
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We can use the dictionary 

D = The burgiar came through the door 
R = The burglar came across the roof 
W = The  burglar came u p  t h e  wall 
L = The burglar used a ladder 

and symbolise (a] t o  get: 

(b) 1. - C 3 ( R  V Wj 
2.  W 3 L  
3 .  --L 
4. -W 
5 .  - D 3 ( - - R 3 W )  
6. (-D& - R ) > W  
7. -1 -D BL -R) 
8. --D V ---R 
3. --D 3 R 

10. -L  > (  -D 3 R )  

P 
P 
Assumption 
3 , 2  DC 
1 DN, MI 
5 Exim 
4 , 6  DC 
7 DeM 
8 DN, MI 
Since, given the premises, line 3  
leads t o  line 9 

Note carefully the last line. Given the facts in the premises, it follows that if -- L then - D 3 2. If you feel uneasy a b o u ~  ihls step, consuk the Nores t o  tbls sectlon f c r  an 
explanation as to  why such a move is legtimate. 

In deductions, ar, assumption may be introduced at any point. But the assumption 
must be used to justify some conditionai, and then be discharged, before the deduction 
ends. The conditional estabiished wiih bile aid, of the assumptior, will have the assump- 
iion as its a~~ecede!::., an5 rhe i?revic;iis ill;. of 'El15 ded-ictioi; fo;3- i:s cc?lisequer.ii : ~11es1~ - -  , this c)li: [s: ;:zes : : j 3  .3 ant 9 .:c ~ ; ? e  ejkarfi!3:e 3 b ~ ' j ~ .  

-.. - ,  ,,!erv ?.~,c;~;:-~>~,;i l-lhc ;. :c:~,̂ _R, '::j",Si~i::~ : : !i;c -;~~di-iii)ri~;: / 3 t i :  ?tpd "j-j.y I;;:: :!;- 
&b;;(:;?.~? 5 < ! 7 " < 7 - )  ;> :.I"~? L:j:< L - - s  

. . -,;-.>:-e -LA5 ~~f~:lv,l>:,G'z Ls : L ~ ~ s , , ~ & t - ~ ~ : ~ .  cL?f; l;!??!; 
. , tile s c 2 p  a r s ~  ;i-t 2 \,,--. ,pc<y 5:: ~ ~ o i a . ~ e ~  <ed~~;1'\1:!. e~(;ep: L ~ C :  tr1ey ~ ~ ~ 2 l j i ;  ;naicc-, . . yr:: 

,. . 
0: lines uerr,i:e rf.E scope. insi2,i S C ~ D ~  are &.e::ic;ng ~?~ri-.at Foiiaws X A ? ~  at"d 
the assurnptioc tii tk-e premises. Once that  i3 cizeckec out, a ~ i d  the assn;qpiioc discharge-, 
r-0 appea: iifia!i I?e r - s d e  ;Q iifies iaGd.2 <n,i sciue or i :~~c;  assi~;r;,plor,. T t e  j m ~ a  eL\j' 

. .' . . 
assumptions ere usuaily d!splai/ea by means of scope lines I!-L the justiication cohrni:, 
we wili use ""A" as an abbreviation for  "Assumption", and "mP" as an a.%b;e.iiiaiion Cor 
"Conditional Proof"; when CP is used, the scope of the  assumption is also quoted. We 
now rewri'ce (b) using these conveations. 

-D 3 (Pi v W) 
W 3 L  
-L 
--W 
-D 3 ( "R 3 W) 
( -D & --R) 3 kl/ 
-( -D & --R) 
---D V ----Pi 
- D 3 R  

P 
P 
A 

3 , 2  DC 
1 DN, ME 
5 Exim 
4 , 6  DC 
7 DeM 
8 DN, MI 
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The assumption in line 3 has lines 3-9 as its scope. The horizontal line indicates that the 
assumption has been discharged. More than one assumption may be introduced in a 
deduction. For example: 

(c) 1. -D3(RVW) P 
2. W 3 L  P 

A 
A 
3 , 2  DC 

6. - R &  -W 4, 5 Conj 
7. --( --R & -W) 6 DN 
8. -( --R V ---W) 7 DeM 

8 DN 
9 , l  DC 

13. -L  3 ( --R 3 D >  3-12 CP 

Here one Conditional Proof has been ""nested" inside another Conditional Proof. Notice 
that the scope lines did not cross each other, and that the assumptions were discharged 
in reverse order. It is important t o  remember that scope lines must never cross. 

The general procedure of conditional proof may be summarised in terms of two rules 
of inference, whicl-i we nomi set ou t  bo th  sihernatically and in words. 

Assnmpkiori (A] Any assumption may be introduced as a line in a dedrrction provided 
it is eventualiy discharged. 

Conditional Proof (CP) A proposition or formula of the form p 3 q may be added 
(as line m+1) t o  a deduction as soon as q has been, deduced 
(as line m )  with the aid of assumption p (on  line n ,  where 
n 5 m ) ,  provided that :  

there are n o  undischarged assumptions in lines n-m 
( the scope of p ) ;  and 
this scope must not be used t o  deduce any lines after 
m + l .  

Note that this procedure allows the following deduction: 

(d l  1. P P / .'. p 
1 2 .  P A 

3.  P ~ P  2-2, CP 
4. P 1 , 3  AA 

This is a case where 11 = m in the CP rule. 
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Conditional Proof is particularly useful for deducing conditionals. The usual strategy 
is to introduce the antecedent of the required conditional as an assumption. This tech- 
nique is employed twice in the below example, where we first assume the antecedent of 
the conclusion, and then assume the antecedent of the first assumption. 

(el I. ~ 3 ( q 3 r )  P 1 .'. ( P  3 9 )  3 ( P  3 r )  
.2.  PI^ A 

A 
4 .  q 3 r  [I: i~::: 
6 .  r  4 , 5  AA 

7. p 3 r  3-6 CP 

8. ( P  3 q )  3 ( P  3 r )  2-7 CP 

Besides offering an alternative and often easier way to demonstrate the validity of 
various arguments, the method of Conditional Proof expands the range of arguments 
testable by natural deduction. For example, our previous substitution and inference 
rules are inadequate to test the obviously valid form p 3 q / .'. p 3 (p & q); we leave 
it as an easy exercise for you to show this is valid using Conditional Proof. 

Although it can be shown that our set of rules, augmented by the method of Condi- 
tional Proof, is now adequate for testing any PC-valid argument, it will be useful to add 
Reductio ad Absurdurn (RAA) as one of our rules. You have already met the general 
foam of RAA in 54,6, and applied it to  both truth trees and MAV. The specific version 
of M A  that we will use in naturai deduction is set out schernaticaily and in words as 
fo%lobvs: 

"P pi-m RAA 

Rednctio ad Absurdurn (WAA) To deduce any proposition or formxla, assume its nega- 
tion and then show this leads to a contradiction of 
the form q & - q ;  then discharge the assumption and 
deduce the proposition or formula. 

Using the above schema, it is easy to  show that the RAA principle may be derived from 
the rules we already have (see the Section Notes). Because CP plays the major role in 
this derivation, M A  is often viewed just as a special version or application of Conditional 
Proof. 

The RAA technique may be applied to an argument or argument-form as a whole, by 
negating the conclusion and then showing this leads to a contradiction. Here is a simple 
example: 



P 
P 
P / : . r  
A 
3 , 4  DC 
5 , 2  DC 
1, 6 Conj 

4-7 RAA 
8 D N  

The following longer example illustrates the use of RAA o n  the argument-form already 
considered in example (e). 

P / .'. ( P  3 4 )  3 ( P  3 r )  
A 
2 M I  
3 DeM 
4 Simp, DN 
4 Simp 
6 MI 
7 DeM 
8 Simp, D N  
5 , 9  A A  
l , 9  AA 
10, 11 AA 
8 S ~ m p  
12 I 3  Con1 

NOTES 
Conditional Proof may be represented as the following argument-form: p, @ & a )  3 c  / .', a 3 c .  Here 
p denotes the conjunction of the premises in the deduction, a denotes the assumption introduced, and 
a 3 c  denotes the line deduced by CP. We leave it as an easy exercise for you to demonstrate the 
validity of this argument-form, b y  use of tables, trees or MAV (MAV is quickest). 

RAA is often called the method of "Indirect Proof'. We now sketch how RAA may be  derived from 
the other rules. From the scope p, ..., q & -q  deduce p 2 (q & -q)  b y  CP. Then assume q and 
deduce q 3 q by CP. Convert this to -q V q b y  MI, and b y  use of Corn, DN and DeM convert this 
to -(q & -q) .  Finally, use DC on  t h e  underlined results to  deduce - p .  Hence RAA. (We leave 
the fully detailed proof as an exercise). 

With the aid of CP, the truth tree algorithm can be converted into an algorithmic procedure for 
natural deduction. Moreover, this technique , as developed by one of the authors, can also generate 
countermodels and hence may be used to  establish invalidity etc. 
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1. Complete the justification columns for each of the following deductions. 

(a) 1.  P & - q  P (b) 1. p > q  P 
2. p ' q  2. --q P 
3 .  P  3 .  P  
4. q  4. q  
5 .  --q 5 .  q & - q  

6 .  q &  - q  
6 .  - p  

7 .  - ( P  2 q )  

P (d) l . p V ( q & r )  P 
P 2. P  

3.  P v q  
4.  p V r  
5 .  ( p V q ) & ( p V r )  

6 .  P 2 ( ( P  V  q )  & ( P  V  r ) )  
7 .  q & r  

P 8. q 
9.  P V ~  

10. r  
11. p v r  
12. ( P V ~ ) $ L I P V Y )  

3. Construct deductions t o  show that  the following are valid. In each case use Reductio 
Ad Absurdurn by assuming the negation of the conclusion. 

(a) P 3 4 ,  - - ~ ' q  1 .'. (1 

(b) P 3 q ,  P' N q  / ~'. -P 
(c) P 1 .'. 4 v -4 
(d l  - - (p  - q ) ,  -P 3 q / ... q 
(e) p V  ( q  & v), r  3 - p  / .'. q V  -r 

8.5 THEOREMS AND PROOFS 

Wow that we allow Assurnpcions into our deductions we llave the possibility of a 
deduction with no premises. For example: 



The final line of such a deduction is called a theorem or Zero Premise Conclusion 
(ZPC). Note that once proved, a ZPC may be inserted into a deduction at any point. 
This is because the deduction which proves the ZPC could be inserted a t  any point in the 
overall deduction. 

We now set ou t  two further examples of proofs of ZPCs. In the first case the main 
operator is - .  So, in this case we prove two ZPCs of the forms ac 3 P and 0 3 a and 
then,  by  Conjunction and Material Equivalence derive the desired ZPC. 

Example I :  Prove: ( ( p  3 q )  3 q )  - ( p  V q )  

A 
1 MI 
2 MI 
3 DeM 
4 DN 
5 Corn 
6 Dist 
7 Simp 
2 Corn 

12-12 CP 
13 MI 
11, 14 Conj 
1 5 C o m x  2 
16 Dist 
17 Com, DN, DeM, MI x 2 (reverse 

19. ( P  v q )  3 ( ( P  3 4 )  3 q )  11-18 CP 
20. ( ( P  3 q )  3 q )  -- ( P  q )  10-1 9 Conj, ME 

In  the second example we need t o  prove the equivalent of  the ZPC given. The equiva- 
lent is - - (p  3 q )  3 (q 3 p), so we assume its antecedent. 
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Example 2 :  Prove: ( p  3 q )  V ( q  3 pj  

A 
1 MI 
2 DeM 
3 Simp 
4 .4dd 
5 MI 

The natural deduction procedure may also be used to show that a set of propositions 
or formulae is inconsistent. We extend the notion of inconsistency to PL-forms as 
follows: a set of PL-forms is inconsistent iff there is no model in which each form = 1. 
It was noted in 54.5 that a contradiction does not follow from anything but a contradic- 
tion. So if we deduce a contradiction of the form p & --p from a set, taken as premises, 
then that set is inconsistent. 

Before ending the section, we lay down some formal definitions and take note of some 
important properties of oui deduction system. 

A deduction is a sequence of formulae each of which either is a premise, a discharged 
assumption or a ZPC (with no premise inside an assumption's scope) or follows from 
previous formulae by Substitution or Inference Rules. If A ,  , ..., A, is a deduction wirh- 
out premises then it is a proof o f  An, and A, is a theorem. If A,, ..,A, is a deduction 
with premises A ..., Ap then i: is a proof ~f A, porn the premises, and A I  ..., Ap 
i .~, A, is a valid argu;nent. 

1. Construct deductions to show that the following are ZPCs. 

2. Construct deductions to show that the following are inconsistent sets. 
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8.6 STRATEGIES FOR PROOF 

A fair amount of inventiveness is needed if you are to make proper use of natural 
deduction. It is therefore useful to know about some of the typical strategies for proof. 
We will look at five typical strategies for proofs of validity. 

The first may be called the Simple Extractio~ strategy. In an argument we have to  
deduce the conclusion from the premises. So we begin by looking to see whether the 
conclusion or its negation occurs as a well-formed part of one of the premises. If we can 
see it there then we may try to  "extract" it. For example, consider (a). 

The conclusion occurs in the consequent of 1 ,  so first the consequent 

then the conclusion is extracted 

In the next example, (bj, the negation of the conclusion occurs in the premises. Find it: 

The negation of the conclusion is in the second premise. We first get the consequent of 
the second premise by Simplification from 3 and then AA, 

3 Sirrip 
4,% AA 

3 Simp 
6, :j DC 
7,s DC 
8 DN 

-- 
lire second strategy is used where the concIusisn is act  a well formed part of any 

premise. This is the partial deduction strategy. When the conclusion is a conjunction we 
deduce each conjunct. When the conciusion is a disjunction we deduce one disjunct or 
use Constructive Dilemma. 

For example, where the conclusion is a conjunction: 

we first deduce C from 3 and 4 

then we deduce B 

then conjoin them 

8 .  C & B  
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If the conclusion is a disjunction then we might need to deduce only one disjunct and 
then use Addition. 

P 
P / :. H V - F  
1 , 2 D D  
3 Add 
4 Corn 

If the conclusion is a disjunction and we cannot see how t o  deduce one disjunct alone, 
consider the possibility of using Constructive Dilemma. F o r  that we need two condition- 
als and a disjunction. 

The second strategy of partial deduction is really a specific case of  the general strategy 
of  looking for intermediate goals. In (e) is it clear that  we can soon deduce the conclu- 
sion if we can deduce a conditional t o  connect the first and third premises. This gives us 
an intermediate goal: B 3 C 

P 
P 
P 
P / . ' . A > D  
4 Simp 
2 assoc  
5 , 6  DIP 
7 MI (Intermediate Goal) 
1, 8 C h A r  
9 , 3  Ch Ar 

Sonetknes an intermediate goal will Be simply to  ge t i n to  the picture a part of [tle 
coraciusia:~ whjci-! does not o.:c:ri. in the prcfi:ires. C ~ n S j d e ~  h i l c - w i ~ g  ~ x ~ m ~ : . : ~  

Notiice that ' - , r  occurs in the conclusion, while r occurs in the second premise. When csn- 
d: ~ t ~ ~ n a i i s  :.. are involved, Contraposition is useful for either introducing or efirninati~g --. 
By applying Contrap t o  line 2 vile are able to  get - - r  into the picture (our intermediate 
goal), The rest of the solution is then obvious, as shown below: 

2 Contrap 
l , 2 C h A r  

A fourth, though related, strategy is t o  work backwards from the conclusion, either 
mentally or on  scratch paper. If you arrive at the premises then simply reverse your 
steps. Sometimes it is helpful t o  work forward from the premises and backward from 
the conclusion, and try t o  meet in the middle. In working backward, AA and DC tend to 
be very useful. Consider the following example. 

1A7e want r .  We could get this from line 4 b y  AA if we had s. We could ger s from 3 by 
A4 if we had - p .  We could gel - p  from 1 by DC i f w e  had --q. We can get -ci from 
2 by  Simp. We now reverse these steps t o  give the following solution: 



5 .  -4  2 Simp 
6 .  - p  1 . 5  DC 
7 .  s  3 , 6  AA 
8 .  t 4 , 7  AA 

Obviously, this strategy overlaps considerably with earlier strategies. 

The fifth strategy is used as a last resort, or as a partial strategy in combination with 
the other techniques. It  is known as the monkeys on typewriters approach. Though 
iligllly improbable, it is conceivabie that a monkey randomly hitting the keys of a type- 
writer might produce a correct proof simply by accident. So if you haven't got a clue as 
to  how to proceed, just randomly apply the rules and hope that either the conclusion, 
or at least something useful, will pop up .  The name "monkeys on  typewriters" is a little 
misleading, as in order t o  be sure that you are applying any rule correctly your intellect 
will need t o  be involved in pattern recognition. 

While for the chapter exercises you are expected t o  limit yourself to  the deduction 
system developed, in practical situations any argurnent-form deduced to be valid may be 
used as a derived inference rule (cf RAA earlier). Moreover, while our system of natural 
deduction is independent of the semantic approaches to  PC developed in earlier chapters, 
it is a fact that substitution rules, inference rules and theorems do correspond t o  tautolo- 
gical equivalences. PC-valid argument-forms and tautologies. So in practical situations the 
deduction (or proof-theoretic) approach may be combined with the semantic approaches. 
For instance. any argument-form shown t o  be PC-vaiid by  a t ruth table could be used as 
an inference rule. On the other hand, the rules of our deduction system could be used t o  
augment the tree method (if you look back t o  86.6 you will see that something iike this 
has already been done by the introduction of the Resolution Ruie: for example the 
sub-rule a 3 P is just a semantic version or 'kA.)  

1 1 1  

1.  Use natural deductior, to prove that each of the foUo\ving argumerrt-forins is .valid. 

(a) q 3 v ,  r 3 S >  q / .'. s 
('0) - - p 3 v ,  - p  / .'. q v v  
fc)  p > q ,  r > p ,  4 3 - p  / .'. 7 3 - p  

id) q > p ,  - v 3 - P ,  q / .'. Y & - - - P  

(e) - p > q ,  - q & ( r > t ) , p 3 ~  / .'. t V t  

(f) q & v ,  s 3 - 4 ,  p 3 s  l .'. - p  
(g) - ( p  V q ) , s 3 p ,  - 3 > r  / .'. v  
(h) p  3 4 ,  q  3 r ,  - r ,  - P  3 s  / :. s v t 
(i) v, v > - q , p > q ,  S I P  / .'. - S  

(j) - p & - q ,  r > ( p V q ) ,  - r 3 s  / .'. t V s  
( k )  p  3 - 4 ,  - p  3 ( v  & s), -7 V  -s / .'. -4 
(1) p  3 ( q  & -7) 1 .'. P 3 jr 3 4 )  
(m) p 3 ( 4  3 r ) ,  r  3 ( s  & t )  / .'. p 3 iq  3 S )  

(n) p  V  ( 4  & r ) ,  P 3 r  / .'. 7 

( o f  s 3 if) 3 q ) ,  p 3 ( q  2 v )  / .'. s 3 ( p  3 7 )  

(p) [ ( p & q ) > v ]  & [ - s > i q S L - v ) ]  / .'. p 3 s  
( q i  { I  3 - p  1 .'. -p 
( r )  q > - q . ( p & - q ) > r ,  ( q & ~ ) > p  j ~ ' .  - s V - ~  



2.  Provide proofs that the t'ollowiiig lire ZPCs. 

3 .  Symbolize the following arguments using the emphasized letters, Set your dictionary 

out ,  Construct deductions t o  show that the symbolized arguments are valid. 

(a) The new logic course will be offered in 1988 if the Committee approves. Further- 
more, this new course will be  offered in 1988 only if some member of staff is 
willing to  teach it. So it follows that if no member of staff is willing t o  teach this 
new course the Committee will not approve it. 

(b) John's political career is at an end unless his union backs him, because he will 
stand for election only if his union backs him and if he doesn't stand his political 
career will be at  an end. 

(c) If Canberra has a beach then it  is either natural or artificial. If Canberra's beach 
is natural then Lake Burley Griffin is a natural lake. The latter is so only if there 
is no dam on  the Molonglo River. But since there is a dam on the Molonglo River 
and Canberra does have a beach, it follows that the beach is artificial. 

(d) People want somewhere t o  live, but if typical suburban homes are built then land 
must be cleared. If land must be cleared then we must raze natural bushland. 
But, since it is utterly false that we must raze natural bushland, it must be con- 
cluded that it is also false that if people want somewhere to  live then the land 
must be cleared. 

(e) My sop is watching the Jerry Lewis film if it is on television now. If n ~ y  son is 
watching the J"er1-y Lewis film then ths relevision set will be buz!.iei! up loud. 3 
hear rhe set f r sm my c t ~ ~ d y  if ar;d oniy if j t  is cd;ned 7-~p iocd. Sil:ce ! do ncr 

.- . hex: set :!err: m7i stid!?, _^oll.z-.qs i-at $lie Jerry LeTiiis j~ :~G.I ri2:r. (311 
. , 

;eievlsrs;i. 

j f )  Either studyirzg pal-G-time is easy, or else, if it is not easy, then part-time students 
either work very hard and do well or they d o  not do well. But part-"rime students 
do  well, and s tudykg  part-time is not easy. So it fallows that part-ti1-e students 
work very hard. 

(g) If the extraordinary set is a member of itseif then it is not a member of itself. 
Since it is a member of itself it follows thar it does not  exist. 

(h) The majority of viewers watch light programmes. If there is a real choice and the 
majority watch light programmes then the majority prefers light programmes. If 
the majority prefers light programmes but says that it prefers heavy programmes, 
rhen either the majority of viewers are deceiving therr~selves or they are lying. 
Since they are not lying and yet  say that they prefer heavy programmes, it  follows 
that either the majority of people are deceiving themselves or that there is no 
real choice. 

( i )  Either all knowledge comes from experience or all knowledge comes from reason. 
i f  all knowledge comes from experience, then logic is based on experience but not 
o n  reason. But logic is based on reason. So, all knowledge comes from reason. 
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( j )  Either taxes will be increased or spending on education will be cu t  further. If 
spending on education is cut further, then people will not be properly prepared 
for entry t o  the workforce. Either people will be properly prepared for entry t o  
the workforce or  there will be economic chaos. But, fortunately, there will not 
be economic chaos. So, unfortunately, it follows that taxes will be increased. 

(k) If I had paid both the principal and the interest, I would have received a letter 
stating that my account is in order. But, if I did not pay the principal o r  did not  
pay the interest. then they have probably issued a warrant for my arrest. I have 
not received a letter stating tliai my account is in order. Hence, they have proba- 
bly issued a warrant for my arrest. 

4. If you feel like some more deductions, try t o  produce a deduction for those arguments 
shown to be PC-valid in eariier chapters (especially the arguments at the end of Chap- 
ter 7). 

Puzzle 8 
After all those "linear deduction" problems, here is a 
"lateral thinking" puzzle to  stimulate your creativity 
in  a different way. 

A fair maiden is trapped on  a square island surrounded 
by  a crocodile-infested moat of width 2.4 metres. You 
are on the outside bank with two planks each of length 
2.3 metres. 

Suggest two different ways to rescue the fak maiden, 
oae  of which depends os her being free to move ox the 
isiasBj and one of whitch will v~ork ever? if she is tied tip, 

8.7 SUMMARY 

An algoi'ithm or decision procedure for a class cf problems always produces the answer 
in a finite numher of steps purely by mechanical application of its rules. In contrast 
io  tables, trees, and MAV, ~zaturul deduction is a non-algorithmic procedure for testing 
PC-validity.* Given our system of rules, an argiimeni is PC-valid iff there is a deduction 
from premises t o  conclusion: failure t o  produce such a deduction however does not prove 
invalidity. 

The Substitution Rules correspond to tautolcgical equivalences: they work in both direc- 
tions and on  parts of for~xulae. The Iizj'ereizce Rules correspond to PC-valid argument- 
forms: they work in one direction only and on  whole formulae or?iy. Steps in a deduction 
should be justified by quoting the rules and previous lines used. 

*With the aid of CB, the cleduciion melbod c a i  be made aigorithrnic but t h i s  fomal tecknique is not 
treated in this text. 



Substitution Rules 

D N  -" P 
Com P & 4  

P V 4  
Assoc p & ( q  & v) 

P v ( q  v v) 
Dist p & ( q V r )  

P V ( 4  & r )  
DeM - ( p & q )  

- ( P  V 4 )  
Contrap p 3 4 
Exim ( p  & q )  3 r 
M I  ~ 3 4  
M E  P E 4  

P - - 4  
Idem P & P  

P v P 
E D  P $ 4  

Infeveizce Rules 

Simp 

Conj 
Add 
DD 

A A 
DC 
Ch Ar 
CCD 
CP 

P & q  I .'. P 
P & 4  / .'. 4 
P, 4 / . '~ P 6r. rl 

P I .'. P V 4  
P v 4 ,  -P / .'. q 
P vq , - -4  / .'. P 
P 2 4 ,  P / .'. 4 
P 3 4, " 4  / .'. " P  
p > q , q > v  1 : . p > v  
p V q , p 3 v , q 3 s  / .'. r V s  

RAA . 

. 

Another useful Inference Rule is: SCD p V q ,  p 3 r ,  q 3 r / .'. r 

With G'onditio~zal Proof (CP) and its derived version Reductio ad Absurdum (RAA), 
any assumption (A) must eventually be discharged: once an assumption has been dis- 
charged, its scope must not be used for later inferences. An assumption's scope may 
be one or more lines long. Scope lines must not cross. 

A deduction from a set ~ f f o r ~ i l u l a e  10 a contradiction of the Form p & - p  show"tjie 

set .is Zizconsisteni. 

A deducrio:~ ~jr i lk 1;s p i e m ~ g ~  -ol;s;itu?es 2 pr,gq,ff:)l- the f ~ ! - ~ u i a  on Its f ind  line, which 
---. 7 is c;ilerj a thet;r.e;y or 2c.r.: i"e:nt;e cofl.=/;isj<)i; iZP?(i)~ !;i p(cCic,c any '::~lo\;.n I y i -  

li:ay i ; ~  ;;ise;.:ed as 2 l i ne  .:J[ a cieciuciior.. Ou; sysrem i;i' narui.a! deduction i s  consisterit 
auld cornpieic with respecI t o  PC: i t s  thefirems exactly match the tautoiogies. 

Strategies for ~:.o:?r' include the ~irdp le  exfraction r3f tile conc!usion fiom tlie ~renaises ,  
deduction of conciusion parts Cor later joining, use oC intermediare goals, working bacic- 
wards from the conclusion, and random appiication of pattern recognition (monkeys o n  
typewriters). 



In case you're not already convinced about how marvellousiy versatile and usefi~l 
propositional logic is, this chapter should dispel your doubts. In it we investigate further 
applications, additional operators and alternative notations of propositional logic. To  
begin with, you will be treated t o  a modest feast of entertaining logical puzzles (Who 
said logic wasn't fun?) and shown systematic techniques to help you solve them. After 
that, we go formal for a :,vhile and introduce you, axiomatically, t o  Boolean Algebra 
as an unlnterp-reted ca lc~ ius .  YOU. may be in for a surprise o i  two xsvheii we iclok at ways 
of inierpl-eiing iiiis aigebra. Ar! amazing link icp between PC, Set Theory 2nd Switchicg 
r ,  . , ,:crcur~.is 1 3 ~  discozjered p ~ 7 -  i good dse. OGI- biizf Icek eiec':rorlic icgir circuihs 

. <  - , 1 ..<.*> ).e :.:,;,,:, ,- . ,% ."L -, " #  .- ,-.. , A . i L I J - : L &  .,.' s:..-:- n :  ,.,. '>..,> ,-,-o -,,ri .:- .xri, > 'I-?": ., , <  ,." ,, .: ,.; 
8,L \,.,,-.--. ~,,a. *,u.21 ,L., . < A ,  , J  ,. - l c J l -  \.,.,A, ,~,c.,. .<,I t , .  , . t . ,  

-- 
. . -, > 

. " 
;;5aur. >dr f;id 2, s-.-,ig;:skss.-d 3i 3pe:a!:,!: i111.C zjiei::dil:!e 2g;zti:)n~ f ~ ; ?  ;~:l,i;g 
iormuidi-: i s  PC: amang i;'&c!- thinos a 3 c h i s  will h;eli3 ; iod  :o lead :rllose iogic 'T)cjoi(~ ,vhiCi; 
er-r?pli"~ a different nolation Ei-oin ours, 

9.2 PUZZLES 

Many logicial puzzles begin by listing a set of conditions and then asking you t o  
deduce which option, o u t o f  many starters, is the one that is compatible with these 
conditions. Effectiveiy. they are asking you t o  produce a possible world \\>hich satisfies 
the conditions of the puzzle: let us speak of sitch a world as being satisj~~~ijzglj~ possible. 
Such puzzles heconle easier to  solve once we have a systematic way of recording the 
information and of keeping track of which options have been eliminated at the various 
stages of play. 111 this conrlection there are several different types of logic diagrams which 
rnay be of use. but  we will confine our attention here primal-ily to  tmth tables and 
recovdilzggrids. Logic diagrams are explored further in Chapter 13. 

Conbider the following problem 

On being asked what his favourite co1o~:r was, John responded as follows: 



It's not red. 
It's blue. 
It's neither red nor blue. 
It's not blue. 

A lie detector revealed that John had made just one true statement. What is 
his favourite colour? 

Before looking at the solution below, try your own hand at solving the puzzle. Then 
write down clearly how you managed t o  solve it o r ,  if you didn't solve it ,  what deductions 
you rnanaged t o  make before throwing in the towel. (Regardless of whethel- you solve a 
puzzle, watching how you think as you try t o  solve it and working on  a clear explanation 
of your moves are educationally very valuable activities.) 

The above puzzle may be solved with a little bit of initiative and some trial-and-error 
"if ... then ..." reasoning. But it may also be solved quickly and systematically by means 
of  the following t ruth table. Using the dictionary 

R = John's favourite colour is red 
B = John's favourite colour is blue 

John's four statements ax-e evaluated as shown. 

Once the standard truth table has been constructed we cross off ally rows wltich are ilot 
satisfyingly possible. Here row i gets eliminated because iis mode! R = B = I  is 3 i l~p j - j  

i:xpnssib!e. This leaves rows 2 ,  3 and 4 as or;r (iogicali)~) possihle-tru~h table. ';a\>; rcws 
3 azid 4 mey 5- eiimi~iatecj becai~se ' : l i e ~ i  [ail i:, satisfy the  ccnditii:r; ifla,; ::I:; age 

. . -. , jo:.;n'c s;a:emer;.-s 's irae. Ti12 sniy saci;fYyir1g[i/ poss;bio i~,or!.is are ihas i j c s c , i b 2 i  hv T:~,,,: 

2, and ihis has clre model R=l , B=O. 50 J'ohr;'~ favourite colour is red. 

Eeie's a slightly harder pu::zle, where trush sables can help. Try it yourself before 
loolting at our soiution, 

During an i~~vestigation into the mysterious disappearance of a Mr. Eickit 
ice-cream van the following statements were made by the prime suspects. 

Alan: I wouldn't steal ice-cream unless Charlie helped me. 
Bill: Me? Steal ice-cream? Of course not! I'm too honest for that.  

Besides, I hate the stuff. 
Charlie: If 1 pinched it then either Alan or  Bill were in it too. 

Des: Neither Charlie nor I were involved. 

Given that exactly one of  the four suspects is lying, and that exactly two of 
them were involved in the theft,  determine who stole the ice-cream and who 
is lying. 

To solve this, we begin by setting up the following dictionary 

A = Alan stole the ice-cream 
B = Bill stole the ice-cream 
C = Charlie stole the ice-cream 
D = Des stole the ice-cream 

-Next we symbolize the four clairns made by  the suspects. 



-A V ( A  & C) 
-B 
C > ( A  V B )  
- ( C  V D) 

Note that we did not bother t o  try t o  symbolize the irrelevant part of Bill's reply. The 
first claim may also be symbolized as - A  V  C  since this is logically equivalent to  the 
translation above. While at this point a 16-row truth table may be constructed, it will save 
us  work if we cut down on  the number of rows by immediately applying the condition 
that exactly two of the suspects were involved in the theft. The only options which 
satisfy this condition are: A  & B; A & C; A & D ;  B & C;  B & D ;  C & D .  (Notice the sys- 
tematic way in which these options were listed: first we list all the pairs containing A ,  
then the remaining pairs containing B, and so on). This yields the following table. 

To satisfy the condition that exactly one of the four suspects is lying, three of the claims 
should be true and one should be false. This is the case o n  the second row only. Reading 
off the information contained in i t  we conclude: Alan and Charlie stole the ice-cream; 
Des was lying. 

When using truth tables for puzzle analysis, he on the looliovi for s:hortcu*is. Fr3r 
example. if all iize symbolited propositions are lequired to be true, as so011 as one O 

. " .  . . - .  .. . 
appeal-s on '; :ilal p a y  b:, e:li-filn;lec: 1; g 0:; :':::ow t ! ~ ; ;  jssL 3115 Qz:~ic:i;aj .i 

, . 
progositicfi is :me, the-; :-ed;c.z thr, table marrix accc;.dir~gry; .fsl exai.np!e, lF f-; , h o v e  
problem you had beer1 'icld instead that exactly cine of the suspects was involved in the 
theft you could have got a.ii?iay withjluse the blIoa;ii~g 1nar:i;i. 

B C D  

1 0 0  
0 1 0  
0 0 1  
1 1 0  
1 0 1  
O l / l  

When puzzle options can be expressed in terms of a small number of  propositions, 
truth tables are usually quite useful. But with some puzzles the options are more efficient- 
ly catered for by means of recording grids. The following problem will be used t o  illus- 
trate the use of such grids; since it is pretty easy to  solve anyway, even wit!lout the aid of 
a grid, you might like to  have a go at it yourself first before checking our solution. 

1. t t t 

-B 

0  
1 
1 
0  
0  
1 

- A  V ( A & C )  

0  0  0  
0 1  1  
0  0  0  
1 1  0  
1 1 0  
1 1  0  

Of Alice, Bill and Cathy, one is a logic teacher. one is a science teacher and 
one is an artist. though not necessarily in that order. The follow~ng facts are 
known: 

1. The two teachers teach at the same school. 
2. Bill and Cathy live in cities 1OOO km apart. 
3. Alice doesn't know the difference between "if" and "only if". 
4. Bili is the artist's uncle. 

C > ( A V B )  

1 1  
1 1  
1 1  
1  1  
1 1  
0 0 

- ( C V D )  

1 0  
0  1 
0  1 
0  1 
0  1 
0  1 



What is each person's occupation? 

Figure 1 shows tile I-ecording grid at the start oi'tlze solution. To save writing the follow- 
ing dictionary has been adopted: a = Alice, b = Bili, c = Cathy. L = Logic teacher, S = 

science teacher, A = artist. The grid contains nine cells, each of which is empty to begin 
with. Results deduced as the solution proceeds are entered in the cells according t o  the 
following convention: entering a 1 in a cell indicates a matching between the coordinates 
(i.e. the row and column labels) of the cell; entering a 0 in a cell indicates that the co- 
ordinates of that cell do not match. For  example. a 1 in the top left cell means that Alice 
is the logic teacher; a 0 in this cell means that Alice is not the logic teacher. Let's have a 
look now at the solution. To  explain how the grid is filled in we have drawn it more than 
once so that you can see some of the intermediate stages; in practice all of the entries 
would be made on  the one grid. 

L S A L S A  L S A  

Fig. I Fig. 2 Fig. 3 

> = 
iuos: puzzles require :he solve: :o make reasonable assumptions. It  is reasonable to  assume 
that if the two teachers teach at the same school they d o  not live in cities 1000 km apart. 
So from facts 1 and 2 of the puzzle we deduce that Bill and Cathy are not both teachers. 
Hence Alice is a teacher, and consequently not the artist. This allows us t o  enter 0 as 
shown in Figure 2. From fact 2 of the puzzle ii is reasonable t o  assume that Alice is not 
the logic ieac!.ei-, so we enter anothe~- 0 i i l  the grid as shown in Figure 3. Since each of 
a, E arid ,- is to  be unlyueiy matched with one of L, S arid A 1; foiloitis thai Alice is the 

, Y A , S T.~- ..i. - -- L S A  
? 7 ---..-.-Ah-- 

g /  C - i -:. 
7 - k  pL ;L2--:--i I 

5 
C 

7,. 

iig. 4 Fig. 5 Fig. 6 

science teacller. This is :ecorded as a in the top row of Figure 4. Note that because of 
the one-to-one inatching of coordinates, once a 1 hzs been er i te~ed in a cell all other cells 
on  the same row or c o l u n ~ n  may be assigned 0.  So we may enter 0's in the second column 
(see Figure 4). Wow fact 4 (Bill is the artist's uncle) implies that Bill is not the artist: 
this is recorded as a 0 in the rightmost cell of  row 2 as shown in Figure 5. Since, as noted 
before, each row and each column must have just one cell with the entry 1 ,  all the other 
values may now be filled in: first we enter 1 in the leftmost cell of row 2, then a 0 in the 
bottom left cell, and finally a 1 in the bot tom right cell (see Figure 6). Our answer is 
thus: Alice is the science teacher; Bill is the logic teacher; and Cathy is the artist. 

1. Mrs Q. T. Pie doesn't always tell the truth about her age. Over the  past month she 
made the following statements: 



1. I'm either thirty or forty. 
2.  I'm not forty. 
3. If I'm thirty then I'm not forty. 
4. I'm forty. 
5. I'm thirty. 

What can you deduce about Mrs Pie's age for  each o f  the  following cases? 

(a) Exactly two of  her statements are true. 
ib )  Exactly three of her statements are true. 
(c) Exactly four of her statements are true. 

2.  Major Colorado is distraught over the theft of his recipe for fried chicken. There are 
three suspects: Mr. Avarice, Ms Belcher and Ms Crafty. Inspector Hemlock deduces 
from footprints that exactly two people are involved in the theft.  Further investigations 
reveal the following facts: 

1. Mr. Avarice was involved only if Ms Crafty was not.  
2.  Ms Crafty and Ms Belcher are sworn enemies, and would never join each other 

in any venture. 

Translate conditions 1 and 2 into PL using the following dictionary: A = Mr. Avarice 
was involved in the theft;  B = Ms Belcher was involved in the theft;  C = Ms Crafty was 
involved in the theft. Then use a truth table t o  determine who the  thieves are. 

3. Exactly two out of Aaghatha, Boriss, Carveruppa and Draculena murdered Egor and 
silenced his baying hounds. In his investigations into the crime, Inspector I. D. Duce 
discovered the  following facts: 

1. Boriss was involved only if either Carveruppa or Aaghatha was. 
2. Carveruppa ivould not take part in the murder if his ghoul-friend Draculena 

(who has a dental problem) was inuolved. 
3 .  /iaghat!ia murders only on Sundays, and Bgor was killed en a Tuesday 

4.  A haitie between imlr exponents of the martial arts is under way. 

The following facts are knovrn. 

2 .  The good Lord Alpha will not survive if the  evil Count Gamma suwiues. 
2. Either the evil Count Delta will die o r  the  good Lord Beta will die. 
3. Lord Alpha is a master of Mung Fu, while none of  the other three are masters; 

and it is a fact that a master can be beaten only by  another master. 
4. Count Gamma will die only if either Lord Alpha dies o r  Count Delta dies. 

From the above, deduce 

( i j  who the certain survivors of the  battle are (if any), 
(ii) who the possible survivors of the battle are. 

5. In the year 3001, the first galactic beauty contest is held, and female entrants from 
various planets compete for the position of "Miss Galaxy". Preliminary tests are 
completed and four entrants are left for the finals: 

Eartha Ekberg from Earth; 
Marilyn Marvellous from Mars; 
Barbra Beautiful from Barnard 11; and 
Tina Terrific from Trantor. 
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These entrants may elect to  wear either a swimsuit o r  an evening gown (but not both) 
in the final contest. 
The following facts are known. 

(a) Eartha gets goose pimples when cold, and will wear a swimsuit only if all the 
others do. 

(b) Barbra has a fabulous figure, and is certain t o  wear a swimsuit. 
(c) Marilyn will wear a swimsuit if and only if both Tina and Barbra do. 
(d) Tina will not wear a swimsuit if Eartha does. 

To  minimize any chance of prejudice in the judges, the rules require that more than 
one person wears a swimsuit. 

Determine by means of a t ruth table who will wear a swimsuit and who will wear an 
' evening gown in the final contest. Provide a dictionary, using the following symbols: 

E, M, B, T. 

6. Of Ann, Bill, Cathy and Don one is a Hindu, one is a Christian, one is a Buddhist and 
one is a Moslem (not  necessarily respectively). The following facts are known: 

1. Interested in learning about another religion, both Ann and Bill attended a 
lecture given by  the Hindu. 

2. Either Cathy or Don is a Buddhist. 
3. The Moslem has a long beard. 
4. Don and Ann have never seen each other. 

With the aid of a recording grid, determine each person's religion. 

*7. Four men (Alan, Bill, Colin and Da.vid) were discussing their wives. They were not well 
acquainted and the statements they made, as given below, are not all correct. In fact. 
the only sure thing is that each statement in which a man mentions his own wife's 
name is correct. 

h ian :  Kare~;z is 9 e a ~ ' s  rr~othzr. 
I halie nevar met Ncrma. 

Biii: Colin's wife is eirher Karen o r  Norma 
Jean is the oldest. 

Colin: Norma is Alan's wife. 
Karen is Jean's older sister. 

David: Carmei is my daughter. 
Karen is older than my wife. 

With the aid of a recording grid, deduce the name of each man's wife. 

9.3 BOOLEAN ALGEBRA 

The system of  Boolean algebra was constructed by  the English mathematician George 
Boole (1815 - 18641, who is regarded b y  some as the father of pure niarhemarics. While 
there are many ways of defining a Boolean algebra, we have chosen to use the set of 
postulates first enunciated by  E .  V. Huntington in 1904. These postulates consist of' a 
few axioms (starting assumptions) from which the other theorems of Boolean algebra 
may be proved. In tllis section we outline a number of such formal proofs, and draw 
some contrasts between Boolean algebra and the "ordinary" algebra of school mathe- 
matics. The next two sections will consider interpretations and applications of Boolean 
algebra. 
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Although set theory will be treated in some detail later, we need to be familiar with a 
few set notations and concepts at this stage in order to  understand what the Boolean 
axioms actually say. As you probably know, capital letters are usually used to name sets, 
and when the elements or members of a set are listed, braces are used as delimiters. So if 
we wanted t o  use the name "A" for the set which contains just the numbers 1. 2 and 3 
we could indicate this by writing "A = { I  ,2,3)". The order in which the elements of a set 
are listed is irrelevant e.g.. {1.2,3}= {2,3,1). The symbol "E"  (epsilon) is used as an 
abbreviation for "is an element of" or "belongs to " e.g., 2 € {1,2,3}. We also use the 
symbol "6!"for "does not belong to" e.g., 4 & {1,2,3}. Just a s p ,  q etc. are used as 
propositional variables. we use x, y etc. as element variables when we want t o  speak 
generally about elements of sets. 

We now define closure for sets as follows. If * is a binary operator on  elements of a set 
S ,  we say that S is closed under * iff, given any elements x and y which belong t o  S, x * y 
will also belong t o  S i.e. 

S is closed under * iff x * y E S for all x, y € S 

Consider for example the set of natural numbers i.e. N = {1,2,3, ...}. This set is closed 
under addition since the result of adding any pair o f  natural numbers will also be a natural 
number i.e. N is closed under t since x t y E N for all x, y E N. The term "closure" 
indicates that if you begin inside the set you can't get outside the set by means of that  
operator alorle i.e. you are closed inside. The set of natural numbers is not closed under 
subtraction, because by  use of subtraction we are able to generate a number outside the  
set. For  instance, i E N and 3 E N, but 1 - 3 = -2 and -2 @ N; so N is not closed 
under -. 

We now introdrrce the notion of an identity element. Given any set S on which a binary 
operation * is defined, we say that e is an Iden&)* -;ielemeni',f()r + iff, given any eielnent x 
which beicngs to S,  x .* ' .  is defitical to x i , ~ .  

e i an identity for i f f  x - p = fie: a%" x E ,y 

For example, consider rhe set of whole numbers 1.e. W = { 0, 1, 2, 3,, . . ) . On this set, 
0 is ail identity element fo r  addition since x + 0 -- x for aSi x E W. 

To specily a Boolean system we  need, to  begin with, a set of elements on  which one 
unary and two binary operations are defined. In our formal definition the set of  elements 
will be denoted by  *'S", the unary operation by  "'"((read as "prime") and the two 
binary operations by  "t" (read as "cross") and ''en (read as "dot"). Such a system may 
be represented as <S,  +, 0 ,  '>where we have used angle-brackets instead of  the set-braces 
t o  indicate that the order of the items is important. While "t" " e n  and "'" have several 
uses as symbols in mathematics and logic we have chosen non-committal names for them 
t o  emphasize that for the moment n o  specific interpretation is t o  be attached t o  them. 

With those preliminaries out of the way, we may now define a Boolean system as 
follows. 



A system CS, +, 0 ,  ' > where S is a set of elements on  which the binary opera- 
tions + and . and the unary operation ' are defined, is Boolean iff it satisfies 
the following five axioms: 

A l .  S is closed under +, * and ' 
A2. + and are commutative 

A3. S contains two elements, O and 1, which are identity elements for 
+ and respectively 

A4. + and distribute over each other 

A5. Each element x of S possesses a complement x' such that x + x' = I 
and x e x !  = O  

The theory of Boolean systems is known as Boolean algebra. 

The symbols "0" and "I", used t o  denote identity elements in the formal definition, 
are for the moment uninterpreted. The five postulates may be summarized algebraically 
as follows, with their descriptive names on  the right. 

Given any elementsx, y, z E S, 

A l .  x + y , x * y , x '  E S  (Clos) 

A2. x + y  = y + x  (Comt 
X 0  y = y - X  

A3. x t O  = x (Id) 
X " 1  = x  

A4. x -'c ( y  * z )  = (x + y ) . (x + z )  (Dist) 
x . ( y  'r z )  = (x s y )  + (x e 2 )  

A5. x f x i  = 1 (iJorr,p) 
X " X ' - -  0 

-- . . 
e ri;m 'h-se f j i /-  ?;:iams ;i;c iFh@:)l-er;,$ 9: B,>c:rzil c?geh;.- ::,z.ji " ~eeiced '$12 iv;!! > - . . 
derive eigili ~Pltol-r;ins. T"i?s 3s e;?:~~-lgh f O T  p i :  get ti;. ge:r;elai idea c;' ha?<: 1':;~ 
aigebra rnay be built up proof-iheoreticaii:i, an6 to acquaini yoi; with some proof iech- 

l iques which have applicatiol-1s in cther  areas of logic and rnatlzemat~cs. The theorems 
llave been iabeiied T 1 - T8 for convenience only. 

T 1. Principle of Duality (Dual) 

The universal substitution oft, a, 0 ,  1 for e ,  t, 1, O respectively in any Boolean 
theorem will produce a Boolean theorem. 

Proof: Fkst  note that when this substitution is performed on the axioms the 
axiom set remains the same. Now, for any Boolean theorem there is a 
proof for which the only theorems quoted are axioms. A proof of the 
dual theorem is now established b y  performing the  substitution through- 
out  the original proof, using the dual axioms. 

For example, campare the parailei proofs below for the theorem .Y + ( j1 I ) = y  + x and 
thedua l theorem xe ( y  + O ) = y - x .  

x + ( y @ l ) = x + . Y  (Id*) 
= y + x  (Corn+) 

X E ( J ' + ~ )  = X e y  (Id+) 
- - j' a x  (Coma) 

i n  these two proofs we have indicated the specific versions of the Identity 2nd Commuta- 
tivity axioms used in the justification column by indicating ill€ specific operator involved. 
Tlle principle of Duality is a very useful labour-saving device: from now on, once we have 
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proved a theorem we may, by application of this principle, immediately Infer the dual 
theorem. 

T 2 .  Left-Identity 

0 and I are left-identities i.e. for  all x E S we have 0 + x = x 
1 s x = x  

Proof:  0 + .x = x + 0 (Corn) 
= x (Id) 

.'. 1 c x = x (Dual) 

Note that we have used the term "identity" t o  mean a right-identity. As the above proof 
reveals, so long as the operator is commutative any right-identity will also be a left- 
identity. 

T 3 .  Distribution from the right 

+ and distribute over each other from the  right i.e. for all x,y,z E S, 

Proof:  (x * y )  + z = z + (x  y )  (Corn+) 
= ( z  + x)  ( z  + y )  (Dist) 
= ( x + z )  . ( y + z )  (Corn+) 

And the second version follows by  duality. 

Note that we have used "distribution" t o  mean distribution from the left. As the above 
proof shows, if the operators are commuiative ieft-distributivity implies right-distributivity. 

(Right-) comp!erne~rs  are also left-co~~glej-nei.'isets i.e. giver- any ,t E S5  x E  i- x = 3 
' - 9 .  X-- 0 

Jb 

fiocf:  .r, + ;. = x + x (Jam) 
I 1 - (Comp) 

And The second version follows by duality. 

Since con-irnutativi~y e:isx_ires that ideniities, dis i~ibut ion and complenzents work on beth 
left and right sides; we often use the terms 'Td", ""Dist" and 'Tomp"  to jiistify an infer- 
ence from either side, with Com being assumed !.here required. 

T5. Unique Identities 

0 and 1 are unique identity elements in S for + and 

Proof:  Let A be an identity element in S for  + 
Then A = a+ 0 (using 0 as a right-identity for +) 

= 0 (using A as a left-identity for +) 
.'. 0 is a unique identity in S for + 
.'. 1 is a unique identity in S for (Dual) 

Note that the above theorem permits us for the  first time to speak of 0 as the identity 
in S for +, not just an identity. Similarly, 1 is the identity in S for *. 



T6. Idempotence 

Given any x E S ,  x + x = x 
X x = x  

Proof: x + x  = x 8 1 + x  * I (Id) 
= (x + x )  1 (Dist) 
= (X + x )  . (X +XI) (Camp) 
= x + ( x  c x') (Dist) 
= X + O  (Camp) 
= x (Id) 

. . x o x  = x (Dual) 

T7. Unique Complement 

Each element of S has only one complement. 

Proof: Let A be a complement of x .  
Then A = 1 A (Id) 

= (X +XI)  . a (XI  cornp) 
= (X s A)  + (x' * A) (Dist) 
= + ( X I .  a )  ( a c o m p )  
= (x' X) + (XI * a) (x' Comp) 
= (X + A) (Dist) 
= x!. 1 ( a  Camp) 
= x' 

.'. x' is unique 

We may now speak of x' as the complement o f x ,  rather thanjils: sr. cornplen~enc o f x  

.', x is the complement of x' jdf Comp, T7) 

Well that's enough theorems for now. ,4it,hough there is no p o i ~ t  in learning off any of 
the proofsjust considered, we hope you picked up a few ideas from them and appreciated 
some of their beauty. As you will be aware from your work on natural deduction, proof 
construction is not only a science but an art as well. Once you have sweated over the 
creation of some logical proofs yourself, you are able t o  appreciate the artistry behind a 
well constructed proof. For instance if you look back to the uniqueness proof for T5, the 
simplicity and efficiency of its reductio ad absurdum approach make the proof not "just 
a proof '  but an "elegant proof". 

To prove some system is Boolean, we can try to show either that is satisfies the axioms 
or that it is isomorphic to (i.e. has the same structure as) a known Boolean system. In the 
next two sections we will establish the Boolean nature of three particular systems. 

It is usually much easier to prove that a system is not Boolean. because all we need do 
is show that it fails to satisfy at least one Boolean axiom or theorem. Let's look at a few 
examples of this. Suppose we let R denote the set of real numbers and ask whether the 
system <R, +, x, - > is Boolean, where +, x and - here are the plus, rnultlply and unary 



minus of orclinaiy algebra. Aliliougll this system satisi'ics axioms A l :  A2. A3 and half of 
Ad (using the nu~nbers  0 anil 1 as identities), it I'aiis io satisfy distribution of + over x, 
and also Fails t o  satisfy axiorn A5 (you will be asked to  verify this in the Exercise). So it 
is not Roolea~i. We cotild also silow the systen~ is not Booieall by finding a derived 
theorem which it demonstrably fails io  satisfy e.g.. clearly the t and x of ordinary algebra 
are not idempotent (see theorem T6). 

In the above illustration, the set was transfinite (R has an infinite number of members) 
Sometimes we need to test whether o r  not a filzite system is Boolean. In such a case it is 
lielpful to  use Cayley tables for defining the operators (review 52.3 if necessary). Con- 
sider for instance the system < S,  @, o , '> where S = {a, b )  and @, @ ,  ' are defined on  S 
as follows: 

That this system is not Boolean can be demonstrated in many ways. Three of the easiest 
tests t o  conduct at a glance are for closure, commutativity and idempotence. S is closed 
under an operator iff every element in tlze operator's table belongs to S. In the system 
above, S is not closed under ' since b' = c and c @ S. A dyadic operator is commutative 
iff its table is symmetric about its m a i ~  diagonal (i.e. the diagonal from top-left t o  
bottom-right). By "symmetry" here we mean that  if you  think of the main diagonal as 
a mirror then each element in the table will match its corresponding "image" by  reflection 
in this mirror. In tlle table below, the elements joined by dots stand in this object-image 
relation and yet are not equal. So @ is not commutative. Once this diagonal test has located 

2 C(;~i:iie~e~ai;?pk !a cijInmura?ivit-y, ~~iis j;?ouid be specified in !ull e.g., here we :.would 

say: 

i i @ b = a  
h @ a  = b 

a + b  

.'. 8 does nor commute. 

A dyadic operator is idempofent ifS the main diagonal of  its table matches the table 
heading. io is idernpotent since both the main diagonal and the heading of its table consist 
of the sequence <a,b > . However @ is not idempotent, because the top-left element in 
the diagonal Fails t o  match the coordinate above it. 

This counterexample to idempotence would be specified as follows: 

.'. 3 is not idempotent 

We leave it as an easy exercise for you to show why these diagram inspection tests do 
provide adequate tests for closure, commutativity and idempotence within a finite 
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system. If a system passes these tests. it could still be non-Boolean: if you can't quickly 
find another theorem which it fails to satisfy then you should test the other three ax io~ns  
(A3 - A5); if it passes these as well. it is Boolean. 

NOTES 
By all accounts, George Boole was not only a brilliant logician but  (naturally enough?) a very decent 
person. For an interesting account of his life see E.T. Bell's Merz of &iuthemutics (Penguin, 1953) 
Ch. 23. 

Though we have given the operators + and o equal priority, many authors prefer to give m priority 
over + and allow concatenation as an abbreviation for *. With thoye conventions the expression 

x + 0, z )  may be abbreviated to x + y 0 z or x + yz. 

EXERCISE 9 -3 

1 .  Under what rational operations (+, -, x ,  +j are the following number sets closed? 

(a) N (Natural Numbers i.e. 1, 2,  3, ... j 
(b) W (Whole Numbers i.e. 0, 1, 2, 3, ... ) 
(c) Z (Integers i.e. 0, il, 5, 23, ... ) 

(d) Q (Rationals i.e. x/y where x and y are integers and y j: 0) 
(e) R (Real numbers) 

2. Answer the following with respect to  "ordinary algebra" on  the real numbers 

(a) What are the identity elements for  +, -, x :  % ?  
(b) -Which of +, , xi + are commutative? 
(-1 Does x distribute over +? If not ,  give a counterexampie. 
(d l  Does 4- distribute over xS If cot9 give a counterexample. 
(E)  1-Ias each e!a~s?sc~~ got a cc:cr.plpp-er._"j~~ defined i- exi-;;.: 85, yr,adine 'C-i.''. '5." 

ss  r, x)? If n3t, S ~ O P I  why 1102. 

(f) Is ordinary algebra Boolean i.e. is <R, i-, x, - > a Boolean system? 
( g )  Which of +, , x,+ have left-identities? 
(hf Does + distribute over i fro113 the right? 
(i) Does + distribute over i (from tlne left)? 

3. State the dual of the following Boolean theorems. 

(a) x + ( O + y ) = y + x  
(b) x' + (x . y) = x' + y 
(c) (1i-y)' = O e y '  

4. Construct Cayley tables for  the following operations on the sets indiciated, and use 
them t o  investigate properties of ordinary algebra. In each case test for closure, com- 
mutativity, idempotence and identities. In the cases of + and x, describe the pattern 
that emerges for the main diagonal. In the cases of - and + describe the pattern ihat 
emerges by considering reflection in the main diagonal. 

(a) + on the set {0, 1, 2 ] 
(b) - on the set {o, 1 , 2 )  
(c) x on the set { I ,  2. 3 )  
(d) + on the set { l ,  2, 33 



5 .  Prove the following Boolean theorems. 

(a) x  -(y + O ) = y  ( x + 0 )  
(b) x + x + x = x  
(c) x + b  c x ) = ( x + y )  e x  

(d) x"" = X 

(e) ( x  e x  - x ) ' + x =  l 
( f )  or = 1 

6.  The operations #, a and on  the set S = {a, b la re  defined by the Cayley tables 
below. Give three reasons why the system i s ,  #, PI, '> is not  Boolean. 

7. Give three reasons why the operators and B defined below on the set S = {0,1,2} 
are not Boolean. 

"8. The system cS, 63, 3~ ' > is defined as follows. S = (0 ,  1 )  

(2) What are the identity elements for each operator;.? 
(b) P C G V ~  that the system is Bazleai! b y  showing that it satisfies axioms. 

9.4 PC AND SET THEORY 

i n  tile previous section Boolean algebra was developed as an unintel-p-ieted caicuius. 
In this section we look at two different realizations of this calculus. Perhaps you can 
guess what these might be before reading on.  

Some of the results in the previous section inay have reminded you a bit about propo- 
sitional calculus. This is understandable because, as it turns out .  PC itself is Boolean. 
Given any non-empty dictionary of propositio~ls, let S be the set of propositions in this 
list together with all elements contructible from this list by means of disjunction, con- 
junction or negatiou (Note that S must therefore contain a tautology of the form p V - p  
and a contradiction of the form p & - p ) :  then <S, V ,  &, - > is a Boolean system. To 
prove this we need to show that the Boolean axioms are satisfied under this interpretation. 
The identity sign "=" used in our abstract development will need to be replaced, in the 
context of PC, with the tautological equivalence symbol "a". The abstract identity 
elements 1 and 0 will be interpreted as T and F respectively, where "T" denotes any 
tautology and "F- '  denotes any PC-contradiction. Thus wllell we speak of T and F as the 
identity elements. their "uniqueness" is qualified by  tautological equivalence. Note that 
the 1 and 0 of abstract Boolean algebra are not the truth values I and 0 of PC. 

Since V ,  & and -are proposition-forming operators the closure axiom is satisfied. The 
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PC-interpretation of the other four Boolean axioms, together with their PC names, are 
listed below: 

A2. p V q  a q V p  ( ComV) 

P & q  " 4 & P  (Corn&) 

A3. p V F  a p  ( IdV)  
p & T  0 P (Id&) 

A4. p V ( q & r )  * ( p V q ) & ( p V v )  (DistV&) 

~ & ( q V r )  " ( p & q ) V ( p & v )  (Dist&V) 

AS. p V  -p  T ( L E M )  

p & - p a  F (LNC) 
Except for Id, these have all been verified before. We leave it as an easy exercise to  
establish Id by means of a truth table, using the fact that F is always false and T is always 
true. 

Since PC is Boolean, any abstract Boolean theorem may be interpreted as a tautologi- 
cal equivalence in PC. For instance we now know that Duality holds for tautological 
equivalences (TI )  and that Distribution for &, V  works from the right. Idempotence (Th) 
has been met before in PC under the same name, and Involution (T8) is just Double 
Negatinr?. 

As well as PC, set theory is Boolean. Before establishing this we will deal briefly with a 
few inore basic ideas about sets. Sets, like numbers and propositions. are abstract entities? 
rather than cllunlts of concrete reality. For any given set there is always a unique answer 
to the questior! ' " B o ~ v  many e!enier?ts are in the set?". iissociated with ailY chunk of 
physical i-ea?i-r>i we rai- ir-i;agi;:e Inany different seis., depending on \>-.hat V , I ~  decide [a 

o ~ i i n t  as elemei;rs e.g.,  he ser s:.!'a!i amms i.:? ijlir: sheet o i  - papel- ~ has fewer :nembers Chap 
, :l;e se; of  ail tl-~e ej,s~~f-xl::;ry p;r:icies (ei'Y~i-:>rls, j 7 y 0 t . 0 1 3 ~  e;c.; I,, :his s!lepI si' :;a;;e; 

. - -  
* 1 

' v o ( ~  ' I  -. <. a,d,y . , .!LzL t.!!z[ !,,XI:; s?!: ;::5 ~ ~ ~ e - ? i v ~ , ~ ~ b ~  i!:' :L;:e-\/ -;-,$ 5 ; ~ : g ~  :~!efi  i,cr:,. :'; czjIc:> 
C>.,..,~' ~ " . , ;! L::grnii .:-, l,!;t\, :;t C ,-. ,tic. ;., L . ~  d L  L I - ~ ~ I ~ ~ L  - -(" .;c.. r> l i s c L L  L h e ~ , -  i:::~!njc.-s" :?r b>/ ~ l l ? ~ ; t ! ~ r i .  

icg 211 ;dexitl%ing properr!: o i  their rneiy'bers e,g,. "A = $32 : x is a positive integer less 
thac $1 '' is 1-ead -':A is h e  set of a!! jeiemer;is) x suci! that 7 is a positive inreger iess ~ h a n  
/-!"; here ihr colori "':" is yead "yuckL '&a(,". I" is d ~ f i r ~ e d  !jslir?e = {I ,~,j) !Ilel; 
we have A = B. The set of ail eiei-11ents in the universe under coi~side:-alion is called ;he 
universal set which we denote by G ; the set with no members is called the nuil set which 
we signify by {I. 

We now define four operations on sets. and represent these by means of Veniz 
diagrams: here the rectangle stands for the universal set and the shaded area indicates the 
set being defined. 

Operatiots Symbol Definition Diagram 

Union A U B  { X : X E A V X E B }  
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Complement A' $ - A  

Examples: Bf $ =  { l , 2 , 3  ,... 1 A = { 1 , 3 }  B = { 2 , 3 , 4 )  

then A U B  = {1 ,2 ,3 ,41  A n B  = {3}  A - B  = (11 

We read "A U B9', "A A BB", "A - BB" and '2"' respectively as "A union B", "A inter- 
sect B" '2 minus B" and "A complement ". We say that A is a subset of B iff A has no 
elements which are not  in B. For example, {I, {I): <2), {I. 3) are the subsets of (1, 2).  
We define the power-set of A to  be the set of all the subsets of A e.g.. the power-set of 

{ l %  2) is {{I. {I}. { 2 } ,  { I >  2)). 

i n  providirig a set-theoretic interpretation for the Boolean system < S ,  +, a~ '> we 
replace the forriial+. and ' respectively with the set-operators U, n and ' . It ~vill not do 
to  take S as the ""st of all sets" as this notion is logically absurd (see s u p p l e ~ e i l t  for a 
discussion of Kussel!'~ Paradox). S however will be a set of sets, and to ensure that S is 
claseci under U  n and ' i i  wii? he sufficieizt if -,ve M i n e  S r o  be :he power-set of 8: - - 
::,here 8 i:. :he siveil i,::ive-:a/ 29:. ilkecic i b i s  oli: for yourself for tile case 8 = (:, 2) .  
- ; : i IkAG ~. q ., , L !  ;.- dl.:,; .-*,i~: I.d2)/ T ; ? c ~ ~  :>!? >,,skC5;? c ~ s  '-I, r,, '> 3drj~f ie :  t>I . ciQ'J1l-e . p>;lcy< sefoIe 

- . .  . 
]i;o!;i;:ig a: .;:;?er d ~ l o i ~ ~  It:': _:'*:;i(!e; .irh,; e : - p  :~:fi::?;. 'Ji.l~en:: ;:?i&; $15. C:lc 

. -u . . . - ,L.,e - -  & ; ; - ! : ! ~ ~ ~ ~  . :in:. ,~ .,,,- , , t  ,r-r;vrL!<(L ?I. ; 2.::~:8 ,- :?-;:,:.-I .:c;,P-e:i. ;-:-: -;;:- , .> 0 , 7 #  .,A - 1  ,, € - i L f :  -- 
., #j ; : s  ',: " '  

. . 
0 .  

2::c;*-< :-,~,2:!~*-:? ,21, <:L :- -,$;<. :-:iL :,*e:< ,:;:;,: I,!-.(; ;i:;:i.$l-j~ 

, , ,  . 
$ $ , I l l  cc  :i> sr: '-p,:O;") 

Inforn~ally, ail of these axioms may be swiftly demonstrated by Venn diagrams: the Venn 
diagram for the !eft hand expression in each will be seen t o  match that of the right hand 
expression. More rigorously, the results may be proved by using the operation definitions 
given eariier and the corresponding PC results e.g., 

A U B  = { x . x E A V x E B }  (d f  U ) 
{ x : x E ~ V x E t l )  (ComV) 
B U A  (df U ) 
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We leave these demonstrations as an exercise for you. In tlle justification coluinn for the 
above example we have used "df" as an abbreviation for ""definition". 

Since 1 ~ 1 t h  PC and set theory are Boolean in nature, they exhibit the same f o m a l  
stritcture: we say they are isomorplzic to  each other (from the Greek isos = same, 
morphus = shape). The correspondence between the syrnbols used is summarized in tlie 
table below. 

Unin terpre ted Propositional Set  
Booleoiz system eJcllcul.dx Theory 

As an aid t o  memorizing the correspondence between the binary operators, note that 
boll, ui- GCV'. consist of two straight line segments, and that both "V" and "U" are . < 1 ,  1 
Z u : : ~ ~ t  sj?:+~alu... nc. r l ~ \ t .  S C ~ : ~  :!!at, w!le~l giije!i, [lie 2'L.ove in?erpre:aiion~, ';he Bcslea2 

axioms (and consequenily ail Booiean theorems) are theorems of PC and Set Theory. It 
can a!so be shown (we do not  prove this in this book) that the Boolean axioms constitute 
an adequate axiom set for PC and Set Theory (i.e. any theorem of PC or Set Theory is 
ded~lcibie from ttlese axioms and is consequently a Boolean theorem). Because of the 
total corresgonijence between the uninterpreted system <S, +- '> ~ the PC syaieni, 
< S .  \/ 6. -.>> ;nd se; tneo;y syge;p <S, J, n, '> I t  biiovls [hadi any 6z.;ore.z~ 9-j'" 

. . "vr"o--r: eiVp ; r h n t ~ e ; q $  i,;l -;-G - + i n y  q?;r/pj?-\. r ,-,"or, -r;li-,ciaied :-. q ,-,T -. - - , n+ ,G '  " ~ y ' > & ~ ,  L 3  :<&"v -, &~ "., > '  L#tL  > t , " b  b/ > " . , " L  , \n:,"~- L. L L  i l i ~ b  b,,!4eL?pbAL~~lnK 
. . \  

S:/rfl DO!:,! 

--. - .  
j ~ ~ ! ; ~ t > i ~ ~ l p j ~ j y .  ;-,bs ussf;-gl j:<p!i~?~:~t::j, ;-s2yz;i-' .; i52jcj?, !:. ~,;~~;;:';~j]>/~ bc<aL:;5 :21-os< 

+-$t~re:r: I~ I  cxie T-^;Le= crr.lir):: ~~1"' rs;. ;.tEler g.,siem!: q ~ ~ ~ ~ ~ d j ~ r  j i  is .jfjen ~;;isiei. 
LC ~"ee" a : ~ d  hence rem,erfibe- : ga;'.ic~~i!ar theoyeri; in  on: particulal- system. Thi~dly.  
altho~:gh - .  para l le l  t e c h n i a ~ e s  nirj7 be ~ 2 ' .  up in ail :he ;jrs?ems. pcrc:ic,: some of ifese 

. '- techfilqaes ~ / i l l  fee! clori. ;iatura; 0; [h;%iiiar in o,-~e pai-ticuiar system, Henr;e :I .J;e Lre 

stuck with a probien~ that is diificl~.l?l lo handle in ofie system we :nay translate 31 map 
the problem into an isoinorphic system, solve it there more easily, and then map tile 
result back into our original system. This general idea is diagrammed below, where system 
A is taken to be isomorphic to  system B. 

Sys tem A System B 

The first mapping is called a trarzsformation and the mapping back is called an anti- 
transformation. People use this technique very often in life, whether they realize it or not 
e.g., when they apply mathematics to  physical reality. As a first approximation. one 
might regard pure mathematics as the development of abstract systems. physics as the 
attempt t o  discover isomorphisms between various aspects of physical reality and abstract 
systems, and applied mathematics as the practical utilization of the isomoiphisms so 
discovered. M7e have already used an isomorphism between PC and certain aspects of 



"hglisli Calculus" when we mapped (translated) difficult argLtnlents iron1 Englisli into 
PC, tested their validiiy illere. and then mapped back the result illto E~lgiisil. Witllin 
rnathclnarics i.!iere are Inany iniportant exarnp!es. One you are probal~ly familiar wit11 is 
il:e logarithrr? trarisformatio~~: suppose you wish to calculate ( 1  7 x 2.3)': this prol2lern is 
mapped into the "hog system" by mapping f 7 onto log 17,23 onto log 23,x olito i-. alld 
expo~~entiat ion onto x ,  to yield (log 17 + log 23) x 8; this easier calculation is perforrned 
and the anti-log is consulted to  map hack the solution into our original systern. In more 
advanced mathematics. other types of transforn~ation je.g., tile Laplace transform) can 
drall~atiially simplify rile soliltion of difficult problelns. 

I t  can bt shown that any PC tlieorem may be represented as a tautological equiva- 
lence, rind vice versa (see tlie Notes to this section). Thus when working in PC we may 
use any of the standard PC techniqiles (~ables ,  trees, MAV. natural deduction) i o  establish 
a Boolean tlieorem. Because of this. and because of your greater familiarity with PC, we 
silggesz that f r o n ~  now on yoti use PC to work on any problem that has been formulated 
in tel-ms of the uninterpreted Boolean systern notation. Co~lsider for example. the 
Boolea11 theorems listed below as TO - T13. Their PC versions (and PC names) a]-e listed 
on the right. 

T9. 1 '  = o - T +  F (NT) 
0' = 1 - F  a T ( N F )  

T 10. x + !  = I  p V T  * T iDT) 
x m O = O  p & F a  F (CF)  

T11. x +bx y )  = 2: p V  ( p & c ; )  * p (Ahsj 
x e ( X  +,l) =. x a & (0 ?J q )  C? p (/&I 

"77 .: : y -i 1 : -,- 7 
- .-. \ "  - ,  A 

,#, >,,! < 9 ~,; ;>) e. : j] \,: [; ) 's~! :- 

.-, #ir (i) _/ I , .  R --\. ,=* (-i. ,& [: ' : 2. 
- -  - 

, , - 
L. 

-";<~, '<. , , : -- . . 
-~ / ' :$!, 1 1 ;: y,-~;l:,- :>: jjl-3~i,2f; S\?,!-'';i?; ;>7/ <!lC?;,$, ($ a ;:&:?Ir; 3.!$irLg Ll-,e .';>,t;: j-!::,. 2 ! : ~ ~ ( : , l ~ g > /  :j 

d " 

2i7,x;;a7,:s L ~ ; ; ~  Lli:-; : 2n~L;Ti5~2<:~u l - .  :: ;:;x::3!.rs 1,217,e, -ri7? t : , bc ;~ j  ~. *',,p3:~'. ~ . x ~ ~ ) 3  ' -r ' -3-q 5 ,  ~ "'-"- * - -  
. ,  . . . . -- 

? ' .' ' .- '- "~:b. .np~.{a - - - - '  -- , &<; !A?::;:-!, ;a! . - " \ : ' gcsL?  :I ! < ; : ; ~ ; ( : , ~ y ' . "  > L E  <i.b L: :d.c.(-'L>:~:L;;~::~;;,>:?~~ ; j i$;~);;~ 2 

Tg::iz;!g> " ;ii:t~: " ~ . , ~ I l ~ ~ ~ ~ ~ l  3 ? ~ ' - < , : ~ f i  ~ ~ : ~ ( , ~ ~ ; : b l ~ f i ' ~ ~  ,ass <sS,if.h '1:; iill{j -{ c. : h-n.-ot- 
--  

. -aG, . Ib . ,Q ; L 1 
. .  . . . (~i,~~l>!-~,~~~J;~) 1s ~ l ~ ~ ~ G ~ z ~ ~ ~ ~ ~ l ; ,  (;ld*.;lGi:q j~ :  j1-s 1':; < i , : ~ ~ ~ ~ i ~  Llld is ezsilij pyps~sd. vjit'!: ;; lL<ole. r[lz 

an?, T i 3  have been met before in PC: Ass~ciativity is most quickly established by  MAV? 
and DeMorgan's Laws ait. best handled with tables; llle natural deduction proofs for both 
T I 2  a ~ i d  T13 are quite l eng~hy .  Note that ;lie theorems have I?ceii arranged in dual pairs 
so t h t  tile secoiiil mernbel- of each pair wi!l Eollcm from rile :'irs~ by Cualiry. 

When required to  determine whether a proposed set theory equation is a theorem, an 
informtli test may be conducted wit11 Venn diagrams. The equaiion will he a theorem iff 
the Venn diagrams for b c ~ h  sides of the equation m a t c l ~  in their final shaded areas. Con- 
sider for instance [he f'oilowing set version of Absorption : A U (A f? W) = A .  licre each 
side of the equation yields :lie 
Ve~irl diagra::l opposite. Alter- 
iiativeiy, ycil could translate 

the tiicoi-el11 into its PC vers io !~~  j~ \/ (11 & qj  * p ,  :ii?d solve ii there. Ti~oilgli Vcnil 
diagra~iis aic  not ;oilsidered io provide rigorous proofs. lhejr are iisehii For i'ii?d.ing coun- 
teiexarnples i i> i -  non-tlleorcms; a n d  once a countere.;aniple !las been huriil  ii 111ay be  
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suhstiiuted in to provide a rigorous dispi-oof. ('onsidei- i'or instance the lion-theol-em: 
A i: (B n  CC) = (A U B) n C. The Venn diagrams for the left and  iight expressions are 
shown below. 

To generate a counterexample here. all we need d o  is put an element some\vhere in the 
region where the shaded areas differ. and set all the other regions to null. For instance, 
suppose we put the element 1 in the top region of A and maice all the other regions 
empry. Since the shaded regions represent the two expressions this M ~ L I I  ensure that the 
left expression is the set {I} and the right expression is the null set. We verify this counter- 
example formally by substitution as follows: 

~ e t ~  = {l) ,  B =  < I ,  C =  {! 
T h e n A  u(Bncj  = { I ~ U  ( { I n  {), = { I } U  { ) =  < I \  

( A u B ) r i C  = ( { l ) ~  {I )  n { I  = { l i n  { ) =  ( 1  

Though we have made little use of natural deduction in PC' for establish~rig Boolean 
theorems. this iechnique is especially useful for sinzplificatioiz of Boolean expressions, 
a matter to  be taken up in the next section. To keep you]- skills up to  scratch with this 
techniqiie we stipulated i r ~  rhe exercise below that mast of !he theorems there 
shou,lc!. be proved hy i~aturai ciediiction. To assist j/0:1 iil this iegard ; ;;_: v,ri!! firid a !is1 of 
~eleriai-t iheorerxs in !he chaorer  sun-rniar)l. 

311 set i~otaiionr, the ~. E " is t i ~ c  first ietter (in Greek) of tilt ivord '.elerr?en~", ,:nd '. bf " is tile first 
letter oi' -'Euier" : Leonilaid Euler lvas a Psmous Swiss matilematiciaa ii~??osc diagrams for sets will be 
di~cussed in $11. 13. The iliiil set is frequently represented a ?  4 or j? and the iiniversai sei as L' or V. 
The complement A '  is often written as 2 or -A, and ''P is often use6 in place of ":" in set defini- 
tions. 

For ease of application, we have taken Boolean sets for PC to  be sets of propos~tions. In more formal 
treatments the set of truth values is taken to  be the Boolean set for PC i.e. S = (1.0). The system 
defined in Exercise 9.3 Question 8 may then be used to establish the Boolean nature of PC (and later, 
Switching Calculus) with appropriate substitutions for the operators. 

For pragmatic reasons, the term "prooi" has been used rather liberally in this section. In the proof- 
theoretic sense of "proof" as a deduction sequence. truth tables for instance do not provide a proof 
technique. In practice however such methods do work. In later sections it will be seen that the 
Boolean operators -, &, V are more than adequate to define the other propositional operators e.g.. 
p 3 q = df - p  V q. Given this. and the use of T and F ,  it follows that all tautologies may bc eu- 
pressed as tautological equivale~~ces irlvolvi~lg no other operators than -, &, V e.,o., T: p 2 p  becomes 
- p  V p * T. The consistency and completeness of PC (which we do not prove in this book) can now 
be used to link the tautologies to the theorems of our Boolean PC system. 
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1. Gwen that & = {2 ,  4. 6,  8. 101, A = (21, B =  {2,4,6}. C =  14, 8) a n d D =  {6,8, 10) 
calculate the following. 

(a) B U D  
(b) A n C  
(c) C' 
(dl A u ( B  n C) 
ie) (6 - Cir 

2 .  The symmetric difference operator :is defined as follows: 

A - B =  {x : x E A  f x  E  B ] .  

Shade in the region A - B  on a Venn diagram, and b y  inspection of this diagram state 
whether the following equality is generally true: A  B  = ( A  U  B )  - ( A  n B ) .  

3. Write down the PC and set theory versions of the following Boolean theorems. 

(a) I - ( x  t O ) = x  
( b )  ( x  - 1) + ( x  + y)' = x + y' 

4. Draw Venn diagrams for bo th  the left and right hand expressions in the following 
equations and state whether o r  not the equation is a theorem. If it isn't provide a 
counterexample and verify it by  substitution. 

(a) A i U B = A n B '  
(b) ( A  u B'I' = A' n ( A  u B )  
(cj  A n ( B 0 C )  = ( A  U B ) n ( A  UC)  
(d) k i? B' = [B U (A f' $ ) ' I  ' 

5. Map the formulae of Question 4 onto the corresponding formu.lae of PC and test them 
ik-rr &-i 83-y :ffi.ezq&. 

ivlau the fol!o,,arjrig r'c;rma! Bcniean iilecremc s i ~ s o  PC: :lie-?ems ;~nc' prove them by  
mtiiral deduction in PC. You may use any of the  theorems in  he Chapter siimmaiq;i. 

( a )  x +(x s . x3]=X"  

i t ; )  (x 1) +(:: . y i  =-J, 

(c) x e ( y  l; z)' = (x " y f )  ." %' 

( d )  [ x  e ( y  + z ) j i  =x"+/j~' * z ! )  

(el x + ( x + y ) ' =  x + y P  
(f) ( x  + y )  ( x  + y l )  = x  
( g )  [ x + ( y  1 ) ' l r = y  - x7  
(h) i x + y ) +  [ x + ( y  e z ) ]  = x + y  
(i) (.x y )  +(y' x )  = x  
( j )  x r  + (x + y j i  + [ ( z  + w)' s O] = x f  

"(k) ( x  + z )  * ( x 1 + y )  * ( y  + z ) = ( x  * 1,) + ( x r  - zj 
[Hint for (k) :  Expand the RHE and try to  work your way back to the LHE] 

9.5 SWITCHING CIRQ:UIITS AND LOGIC GATES 

In this section we investigate some of  the  applications of PC to electrical and eleciroiiic 
circuits. We 1:egin by looking at Switching Calctiius, first developed as a Boolean systern 
by C. F. Shannon in 1938, and rnake Lise of PC rn simplify and design switching circuits. 
Tllzn we extend tlless ideas to  the analysis of  logic gates. 



SwitAing Circuits: 

Transmission Values 

A single switch. or an electrical network in general, is said to transmit or to have a 
transmission value of 1 iff a voltage applied across its ends would cause a current to  pass 
through it. If a circuit element will not transmit current it is said to have a transmission 
value of 0. Various terms are used to describe these two states, e.g., 

... 1 closed. on , conducting 
0 ... open . off, non-conducting 

If a battery and light are connected in series with a network having a transmission value 
of 1 ,  the light will go on. If the network has a value of 0,  the light will remain off. The 
simplest network we can consider is that of a single switch, as shown below. 

transmission value 
of closed switch = i 

lransmissio~l value 
of open switch = O 

Labels 

Marly types of switches exist e.g., relays. transistor switches, diode switches. We shail 
represen; all of these in the sar-ie way. by  capital letter labels A, M etc.  Switches may be 
connecteci non-e!ect:i!:ally (e.g.. mag;zetisaliyj so as ts always open and close togcl'her: 
su.1: switches are giver? t/23 lobel This idea is indicated in following diagram, 
iiibl"- ,.Gie /iF i-,- ,,iiii,ai -,: brakel, 1 i . l ~  .--->-o--.-. . . , J ~ L  IbI,IL1-5 G r~i: i~-r:ondilo-i i~ eaiz,~ei..lisr, !?e?\:,~cen :he Iwr: 
cw~i:ches 

Switches may also be connected so as t o  always have opposite A j j  A '  
transmission values. This inverse relation is denoted by  ' or - . Thus a 
switch A'  (or --A) is open whenever A is closed and closed whenever A I O is open. 4 s  the transmission table indicates, this corresponds t o  neguo'ofi. O 1 
The general idea is indicated in  the following diagram. 
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Series Connection 
Current can pass through two switches 

connected in series iff both switches are A 
closed i.e. the A,  B series combination has 
a transmission value of 1 iff both A and 

1 
1 

B have transmission values of 1. This 0 
combination may be symbolized as 0 
A & B or as A B. As the table indicates 
this corresponds to  conjunction. 

Parallel Connection 

Current can pass through a parallel 
combination of switches iff at least one 
of them is closed. This combination may ::;:I be symbolized as A V 3 or as A + B. 0 1 1  1 

As the table indicates, this corresponds to 0 0 1  0 
(inclusive) disjunction. 

Equivalence 
Two switching networks are said to be 

equivalent iff they have identical trans- 
mission values under all conditions i.e. 
for the same input, each gives the same - A - -----. A - A ---- 

output.  For example, the three networlts 
shown opposite are squivdeni: each L.-,, A -- transmits iff -A is closed. We use -'<-'' 5 o " .* 7- 
denote SIJG!' eq:r.;vaience, e.g., A .". A & 
_A, A +A '\I A. 

Identify EIemel~fs 

A network which can always transmit is equ~valent to an unbroken wire. Such a net- 
work constitutes an identity element in series. We will denote such an element by T. 

A network which can never transmit is equivalent to a broken wire. Such a network 
constitutes an identity element in parallel. We will denote such an element by F. 

In terms of switches, T corresponds to a permanently closed switch and F t o  a permanen- 
tly open switch. 



A Boolean System 

?kt us use the term "network" t o  describe any single switch (,including the special 
"switches" T and F) or combination of switches which can possibly be formed using 
the three operations already discussed (viz. opposition, series connection) parallel con- 
nection). If we take S as the set of all such networks then S is closed under these opera- 
tions. Moreover, the correspondence noted earlier between tlze SC (Switching Calculus) 
operations and the PC operations of negation, conjunction and disjunction implies that 
for any network x there corresponds a proposition "x transmits" whel-ein the SC opera- 
tions ', &, V may consistently be interpreted as the PC operations --, &, V.  For  instance, 
the network A V B' corresponds t o  tlze proposition "the network A V B' transmits", 
which is equivalent t o  the proposition "A transmits or B does not transmit". Clearly 
then, SC is isomorphic t o  PC. and since PC is Boolean so is SC. 

Note that I ,  0, +, T, F of SC correspond t o  1,  0. +, T, F of PC. 'The modal status of 
PL-forms may thus be tested by constructing the corresponding switching network. Such 
constructions can be illuminating (in more ways than one!). In the left circuit below, the 
light stays o n  ir. all cases (A closed, A open) thus exemplifying the Law of Excluded 
Middle. In the right circuit below, the light stays off in all cases, thus exemplifying the 
Law of Non-Contradiction. 

. ., 
Su@pog y . 9 ~  are  p !en  ;ne :2,1:;s--zy ,:!' 3 sn,i~(;::i:?g 3e':-jig[k -q;j?izL . L  3u!-..ru?sh?iy -.. - ceirr,,r,;i 

2 2 e i t a i i l  job.  " ~ O I J  Ere ;lc.is. !egi;!r-d {:? rhazDii'> shls neiG.ri,.;-k : 4 ~  mi1.i-1 35 p ~ j ~ i : l ] e  i . . ~ .  :;-ti 

hxve 1.j procluce s dizgraix 01 a;? equivalent nerl:;i?-ik i~ / i i ; c i~  pcr;!;rms rht same job b ~ i i  
does so with. the rninirnurri possible r_~r:nbx of switches, Thi; type  of pcobiern has cbvious 
pi.actica1 applications ir, the elecironics industpi \.;!ierc tile desigi: of cheaper :ncss- 
produced circuits can lead to  huge financiai savings. The problem rnay he split up  into the 
following three steps: 

1. Write the formula for the network 
2. Simplify this as much as possible 
3. Draw the diagram for the simpler formula 

Sometimes it is easier t o  see what to  d o  immediately from the diagram, but we shall 
adopt the following procedure. The formula for the circuit will be written in the notation 
of  PC, and then standard logical methods (especially natural deduction and truth tables) 
will be used to achieve the simplification. 

In most cases the quickest method will he natural deduction. Some of the most useful 
principles in this regard are Absorption. Idempotence, Distribution (in reverse). De Mor- 
gan's Laws, and Identity. Idem, Dist and DeM are sometimes used in their 11-ary form? 
as shown below. 
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P V ( q i  & ... &q,,)  * (I, ' J q l ) &  ... & ( P  Vq,) (nDist) 
! I &  (q: V ... Vq,) 0 ( p & q l )  V ... V ( P & ~ , )  (nDist) 

- (p l  V ... Vp,) * -p1 & ... & - p n  (nDeM) 

- (p l  & ... & p,,) "PI V ... 'J "Pn (nDeM) 

These n-ary f o r n ~ s  may be proved frorn tlze binary forms of the theorems by recursion: 
first note that the theorem holds for n=l and n=2; then show that given any natural 
number k ,  if the theorem holds for n=k it must also hold for n=k+l;  it then follows 
tliat the theorem holds for all natural n (Why?). The details of these proofs are left as an 
exercise for the interested reader. It  should be noted in passing that the method of 
recursive proof (someti~iies given the misnomer "mathematical induction") is one of tlie 
most powerful techniques of logical deduction. 

In setting out a natural deduction for network simplification, we shall begin by writing 
down the formula corresponding to the original network and write "ON" beside this. 
Besides being an abbreviation for "Original Network", the "ON" reminds us that from 
the PC point of view, the formula states the conditions necessary for the whole network 
t o  ti-a~ismii 01- be "on". Tlle deduction may be interpreted in terms of SC or PC: we 
suggest the latter. and that in either case "-" be used in preference t o  " ' ". Each deduc- 
tion line after tlie first will be equivalent t o  the previous line according to the theorem 
noted in the justification column. 

Example: Simplify tile following network. 

1.  I - - A & B ) \ / A  V ( - B & A >  ON 
? -. ( --,.A gc 3) V \il (A & -B?j coi5 &; lssac V 
3 ,  ( -A & B) \I A Abs 
4. A V ( , - A  &B) Corn V 
5. ( A  V -.A) & ( A  \/ .I31 Dist 
6. T & ( A  V B j  LEM 
7. A V B  Id  

In PC terms, the simplified formula "A V B" says 
that the network transmits iff switch A transmits 
or switch B transmits. The simplified network is 
shown opposite. 

Design of Switching Circuits 

With practice it is often possible to "see" a working design for a particular task in 
terms of a circuit diagram; we need then only look for an optimum simplification of the 
circuit. If solving directly in terms of a circuit diagram proves difficult however, the 
following "brute force" method may be used: 

1. List the alternatives for which the circuit will conduct 
and disjoin these; 

2.  Simplify this disjunction as much as possible; 
3. Draw the circuit for the simplified formula. 
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Example: Three peopie A,  B  and C are to  vote on  an issue. Each has a switch which may 
be closed or  opened (corresponding t o  a YES or NO vote). Design a switching 
circuit ( the simpler the better) such that a light will come on if and only if 
the issue is passed by a majority vote. 

For  a majority vote we need at least two t o  vote yes. So the alternative ways 
of having the light come on are: A  and B vote YES; 

A  and C vote YES; 
B  and C vole YES. 

(We read these as "At least A  and B vote YES" etc. Thus the case where 
A,  B and C all vote YES is included in each of these alternatives.) 

Using "A" as an abbreviation for '2 closes his switch", and likewise for "3" 
and "C", we can say that the light will come on  iff the following disjunction 
is satisfied: 

(4 & B )  V ( A  & C) V ( B  8r G )  

By Distribution this forrnuia simplifies to:  

[ A & ( B V C ) ]  V ( B & C )  

Letting "A", "B" and "C" now denote switches, the required voting circuit 
mav be drawn as shown: 

Before going on  to another example it will be useful to tie ir: the firct step of our 
method, wherein we disjoin conducting alternatives, with the notion of' disjunctive 
normal form. Recali that an elementary wff of  PL is either a propositiorlal letter or d 

negated propositional letter. 

Deffmition: A formula is in disjulictive rzomal! ,fornz (DNF) iff it is a di~juiic;ioi~ of 
conjunctions of  elementary ivffs. 

We allow elementary wffs t o  count as degenerate disjunctions and conjunctior,~. and  
permit iz-piace disjunctions and co~~junc t ions .  Thus each of the fo!iov:ing is in DNF: 
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A, A V B ,  A &  -B, - A V B V C ,  - A V ( A & B & C )  

Here are some examples of formulae not in DNF 

- ( A  & B ) ,  --(A V B )  V C ,  - - A  

Note that if a formula is in DNF, only propositional letters can be negated. 

Note that in the previous circuit design example, the original formula 
"(A & B )  V  (A  & &) V  (I3 & C)" is in DNF. For any design problem that we consider 
this will always be the case. In fact it is always possible in principle t o  convert any propo- 
sitional formula t o  an equivalent one in DNF. This is intuitively obvious if we reflect that  
a truth table can be constructed for any propositional formula, that each row of the 
matrix is a conjunction of elementary wffs, and that the fomzula is equivalent to a 
disjunction of the matrix rows for which the formula is true. 
For instance, in the case of the formula -- ( p  & q )  since it 
is true on just rows 2 t o  4 it  must be equivalent t o  the 
disjunction of  these rows i.e. 

4r?p. - 4 ) V ( - p & 4 ) V ( - - p &  -q )  

;1 0 0 

which is of course in DNF. The switching circuit analogue 
~f the t ruth table is the transmission table. In several types of design problems it is easiest 
t o  first draw up the transmission table for the circuit. A circuit formula in DNF can then 
be immediately read off from this table. This formula will then be simpiified as much as 
possible before the final circuit diagram is drawn. This procedure will be illustrated in the 
next worked example. 

- kxariple: _A hall fight is to be controlled b y  two switches at  opposixe ends of the hall. 
Under all condltioas, a r d  no m a t t e r  i~hick s i ~ i t c h  is ifivol\red> 3 challgt i;; the  
stete or' the switch is i o  change the state (on/-ff) of the jigfit. Desig-n a sx~!itch- 
~ .~ i;lg clrcrrrt for :his task. 

Let : is  <,all the 11:ic s*n,ircilcs 3, a.-,d ? L ; ! ~ ~ c s : .  (;l:ar "~3 hghps  o~,-$ .;:hei? 
. . .  
bc.;i- ./I er-.d D art cl3sed. This r l io .~s  13,; to fill k; t h e  Cjst row cT the il-ajzsl:lj.s- 
sion table far the desired circuit ?s iz~dicateed. Shce pas? history is kreleuani 
( the  s~rritches doil't remember what has gone on before they are p u t  i r  their 
current state) i/vi;er.:eve~ A and B ere closed the light wi!i he on, Sirnilark-, for 
any other given assignment of closure values to A and B there will be a unique 
transmission value for the light. 

We can now fill in the rest of the transmission table by  listing all the possi- 
ble permutations of values for A  and B in the matrix, and determining the  
values for the light by  the following principle: a change in the value of A will 
change the light value; a change in the value of B  will change the light's 
value. Beginning with row one, a change in B  will make the light go off (row 
two); starting with row two, a change in A will make the light come on (row 
4); starting with row 4, a change in B will make the light go off (row 3). We 
have now completed the transmission table. 

From this table we can now produce a formula in 
DNF for the circuit: 

1 ( A & B ) V ( - A &  - B )  
0 This formula does not simplify any further. 



The circuit diagram in basic form is shown below on the left. The diagram 
on the right indicates a primitive way of arranging this, where the broken 
lines joining opposing switches denote non-electrical connections. 

A B 

In practice, instead of four simple 
switches it would be more usual t o  
employ two single-pole double-throw 

A' -B1 

switches as shown opposite. 4 
It is worth noting that transmission tables have several uses. For  a start we know that 

two circuits will be equivalent iff they have identical transmission tables. Hence experi- 
mentally we could check that a simplified circuit was equivalent t o  the original by  throw- 
ing the switches through all the possible permutations in the table matrix and checking 
that the output (in terms of on/off states of the circuit light) was tile same in both cases. 
Again, suppose we are given a '"lack box" and asked to design a circuit to produce the 
same result: we co~uld begin by testing the output for each rcw of die ~i.ransmission table: 

..- 
once the table had ihiiri bee-, fc ieu ifi we wcuid i m ~ ~ e d i a t e l y  have a circuii in 3NF 
wiiich wc?r;io d 3  tho job:  ibis co;;!d [her [>r s rm~l ; f l ed  ljiik,el.t poss ixc  .:ansmisii.sr' 

- -  e 'cables ca-, ~ ~ m " j r ; 7 ~ ~  be - 9 ~ e j ~ :  ::)I the ~ i i r : p l j i ~ ~ t , ~ . ? .  ' j r s c e ~ ~ ,  2;11::~i~ja:.!y t r . 1 . e ~  
~. . p" . . 

. ) : L < 1 3  c.t cc;y.3i? :::i:;k-,! ;t:c ..> :c*:bce ' ; ? ~ [ I J . : ~ I  c!ed~:(;:i,;;j Ltc;i-lsti:~!:: : .j-? 
',,.. .,. , ,. 
, < y ~ : 3 . ~ > , ;  ci :fie :ie!~c;2:;~-, -,/il.i(,l: i ; iz)J :>( e z d  s~:zigil ;  i:3g,~ :;;c i:]s:f. - - ' v c 2 ; J  :,z e7:sA:: ~:7%:!j< 

wltil fa; a;mpiificat;ciB ::he~i :re  or:giila! foim~iia. 

Ollie1 applicaiic;ns o f  svtiickiii.;g circa:!; inc].ilde binary zadi;ers (\~!e sa:i [ lea l  1 2nd a3 as 
1 nrnziy :.;umberc), 2nd toner:,! r;i?ct!its f 9 1  i;ldusi;ial r;ioduction : in t s .  ; 'o_~alicaiyj qe- ies~  
paraiiel circuits can often be  simplified Further in terms .>f networks 7:jhich allow wye, 
delta a r d  bridge circuits. If as wel! as switches we hilow logic gates to feature as circuit 
elemenrs, a virtually unliniited range of electronic applications of' propositional logic 
opens up. 

Lo@c Gates: 

Integrated circuits used in computers contain large numbers of  logic gates t o  assist in 
both decision making and computation. Here we look briefly at five such gates and note 
that PC may be applied t o  the simplification and design of gate networks in a similar way 
t o  switching networks. It is not necessary in this regard for you to understand tlieir 
internal circuitry: we may treat the gates simply as "black boxes". "High" and "Low" 
are the only voltage states allowed. If we regard high and low voltages as co:-responding 
t o  "'true" and "false" the gates may be viewed as having the function of PC operators. 
The standard electronic symbols for the gates are shown below, with sample inputs on tlie 
left and the resultant output on the right. With the AND gate for instance the output 
voltage is high iff all its input voltages are high. 



N O T  Gate P " P  

AND Gate " P & "  

O R  Gate 

NAND Gate P 
" ( P  & 4 )  

4 

N O R  Gate 

Of particular interest are the "Nand" and "Nor" gates. The Nand (Not-and) operation 
is often symbolized in PC as " I "  (Sheffer Stroke) and is defined as follows: 

TI-ie Nor (Not-or.) operation is usually symbolized in PC as "C" (Pelrce arrow) and is 
defined thus: 

. -  . 
!I !ria,- i a s ~ i y  ':F: SIIO\SJ~? :hii! ; l j i  ~ l ~ ~ n ~ : j i L  3;ii: d ~ , ~ d i ~  . - j - o ~ : ~ s i ~ ~ u n a i  ap-;:ai~rs (scrrls 
,. . 

2 - -' r' 

07 iiiese j"iu stili have r o  ~ i e c :  in the next section) I1:a:; be ex~ressed  /n teims G )' 
I " 

Hence i t  is ~ o s s i b i e .  hi- m y  nei~:rol-i< of log:,; gates, ti: build an equivalent circuit ou: of 
Tq2ild gates alone. Thus a mic-ocilic cortaining several Nand gates can be made to serve 
man:! different logical fsrictions. Exactly the salr,e thing may be said for Nor gate 

Complicated networks may be built by connecting the output terminals of some 
gates to  the input terminals of others e.g.. 

Here the final output is at a high voltage level iff (p V q) & (p V v) is true. Notice the 
convention we are adopting to indicate electrical connection: 

colinection no connection 
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Hence in the network above, the input wire from p to  the lower "Or" gate has no elec- 
trical connection with the input wire from q .  

The final output above should have rung some logical bells in your mind. By Dist V& 
the formula is equivalent t o p  V (q & r). The circuit for this is: 

Since for the same input this circuit will give the same output  as the original, it may be 
used instead t o  d o  the same job. So the si~nplification procedure developed earlier for 
switching networks may also be applied t o  gate networks. 

NOTES 
In more formal treatments, Switching Calculus may be proved to  be Boolean by taking S to be the set 
of transmission states { 1, 0). The operators are then state-operators and 1 and 0 are identities, in 
agreement with the tables for Exercise 9.3 Question 8. 

We have taken a network to be simpler if it has fewer elements (switches or gates). Because of other 
technical reasons, a simpler circuit in this sense wlll not always be cheaper to  construct. 

The symbol names "Sheffer stroke" and "Peirce arrow" are in honour of two American logicians, 
Henry Maurice Sheffer (1883-1964) and Charles Sanders Peirce (pronounced "purse") (1839i914).  

1. F o i  eech crf the fo?iov~ing netvi.-orw_s vlrite the formula in PL; sirfigir$ ai: rnL:ch zs 
possible and draw the a i~~~p l i f i ed  ae~i\j=.rk. Y o u  may cse an57 0: the theor,zms in t h e  

chapter summary. 

(a) 

(i) 

I A - B - C  I 

(h) 

A -  A - C  7- 

B -  A- 0 

D - A -  13 
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A - B  

A-D 

A-C 

A -D' 

(Hint: Use DeM) 

I j l - l , g ~ .  q;. ... By inspection =f rh diagrain 
$4 ib~oin possible pathways from 

!eft to right) 

2. Design alid simplify a voting circuit for four people A,  B, C, D such that the light will 
come an iff the motion is carried (i.e. iff a majority vole in favour). 

3. As for Question 2, but A now has the power of veto (i.e. fo r  the motion t o  be carried 
it is necessary that A vote in favour of it). 

4. As for Question 3 but now there is a fifth person E o n  the voting panel. 

5. A black box has two switches A and B  and a light bulb on its surface. When the 
switches are thrown through all the permutations, the light behaves as shown in the 
transmission table below. 

A 1 B 11 light 
8 , 

Design a circuit w h c h  would produce the 1 1 I ! !  0 
same output  as the black box. 

Your circuit should be as simple as possible. 0 
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6. As for Question 5 ,  but there are three switches 
A ,  B and C and the transmission table is as 
shown opposite. 

light 

1 
0 
1 
0 
0 
0 
1 
0 

7. A large room has three doorways and one central light. Three switches A,  B and C 
(one near each door) control this light in the following way: when A, B and C are all 
in the "up" position the light is on :  thereafter any change in state of any of the three 
switches will change the state of the light. Each switch has just two possible states: 
"up" and "down". A fourth switch D is now added as a master control. Unless D is 
in the "up" position, the light cannot come on  at all. Design a ciruit to  d o  this job, 
and simplify it as much as possible. 

8. Use truth tables. trees or MAV t o  show that  1 and .1 are commutative but not associa- 
tive. 

9. Simplify the following networks by determining the output  formula, simplifying this 
as much as possible and drawing the network for the simpler forn~ula.  

* 10. This one is for electronics enthusiasts. ICs containing several logic gates are available 
for less than $1. 

(a) Construct a circuit with ICs, LEDs, torch cells and matrix board t o  illustrate the 
function of some logic gates. Let the "on" state of the LED correspond t o  
"true" and the "off" state t o  "false". 

(b) Use a group of nand gates or a group of nor gates t o  construct other gates 

(c) Construct appropriate circuits and demonstrate DeMorgan's Laws. 

(d) Investigate how logic gates may be used t o  construct circuits for doing arith- 
metic on binary numbers. Look up the function of "half-adders" and "full- 
adders" and see if you can design these adders yourself using logic gates. Then 
try subtraction, multiplication and division. 
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9.6 FURTHER PROPOSITIONAL OPERATORS 

In 52.3 truth-tabular semantics were giver1 for one monadic propositional operator 
( - ) and five dyadic propositional operators (&, V; 3, r , $ ). Two further dyadic 
operators ( 1 ;  4) were introduced in 59.5. But this does not exhaust the possibilities. 

If we let * denote a monadic propositional operator, 
its defining truth table is obtained by filling each of the 
2 rows with one of 2 truth values. Clearly there are 4 
(= 2 x 2) ways of doing this, so there are 4 monadic 
propositional operators. We sylnboiize these as shown. 

0 

The cenlnz operator V always yields the value irue, and the falsunz operator P always 
yielcls false. The icleurtitv operator I yields a value identical with its operand. 

If we let * denote a dyadic propositionai operator, 
its defining truth table has 4 rows each of which may 
be  filled in with one of 2 truth values. So there are 16 1 1  0 1 1  
(= 24]  dyadic propositional operators. We symbolize 
these as shown: in the table we assume t i ~ a t  p is t o  the 
left and q to tile right of the operator in each case. 

p \%,edge q 
p converse hook q 
I? left arrow q 
p hook q 
p right arrow q 
p tribar q 
p ampersand q 
p stroke q 
p slash tribar q 
p slash r. arrow q 
p slash hook q 
p slash 1. arrow q 
p slash c. hook q 
p Peirce arrow q 

7 ;n6 or q 
p r f q  
p ,  whether or not  q 
i f  p then q 
q ,  whether o r  not p 

P ~ f f  q 
P and q 
not both p and q 
p or q but not both 
not q ,  whether or not p 
p but not q 
riot p, whether or not q 
not p ,  and q 
neither p nor q 

It  has already been noted that PC can be set out  in terms of just one of / or A: each of 
these operators is said t o  be adequate for PC. Certain pairs are also adequate: - , &; 
- . v ;  -.3; -,c: - ,  3 ;  - %  a. 

Besides monadic and dyadic operators, there are triadic (3-adic), tetradic (4-adic), and 
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in general 12-adic propositional operators. One important triadic operator is Alollzo 
Church's collditioized disjurlctio~z: C[p,y,r] may be read as "p  01- I- according as y or not 
q" or "If y then p ,  else r": this has the value of 17 when q is true, and the value of r when 
q is false. 

Finally we consider one operator of n o  fixed adinity (it can operate on one or illore 
propositions). I t  is the just one o f  operator, which we syrnbolize as J( , ,... ). It  is useful 
when we want to  make clear that just one of several propositions is true. Note that 
f by itself cannot do this except for the case of two propositions. 

J ( P )  is equivalent t o  Hp 
J ( P ,  q )  is equivalent to p $ q 

J(p,q,r) is equivalent to ( p  f q $ r )  & -- ( p  & q & r )  

NOTES 
For details on  conditioned disjullction see Church's Introduction to Mathematical Logic Vol 1 524. 
We have written " C [ p , q , r j n  where Church writes "[p,q ,v]  to clarify the position of the operator's 
column in truth table work. This operator bears a resemblance to the conditional execution of 
computer programming: If p then i l  else i2 (however. while p denotes a propositiou, i l  and i2 typical- 
ly denote invtruction sequence?: i l  is executed iff p is true; i z  is executed iff p ic false). 

Polish notation for PC will be d i m m e d  in 59.8. Some other notations in use are given below. 

Our notation Some other notations 

P " (b, P A q. pq ' p + q  
I :."q,p=c] 

/ p + r q ,  7 - j q ,  = e 
j ?:,<: 

1. Test the following t o  show which are tautologies, which contradictions, and which are 
contingencies. 

2. Set out a defining truth-table for G [ p ,  q ,  r ] .  Place the main-column of values under 
the C. 



3 Test the following t o  show which are tautologies, which contradictions, and which are 
contingencies. 

"4. For each of the following write out two formulae which are tautologically equivalent 
t o  the formula listed, one in which the only operator is 1, and the other in which the  
only operator is 1. 

(a) p > q  
(b) P = q 
(c) P  $ 4  
(d) P 3 ( q  P I  
(el ( - - ~ 3 q ) > ( - q > ~ )  

*5. For each of the following formulae write down which of the 16 dyadic propositional 
operators will yield a tautology when substituted for *. 

(a) P * P 
( b )  p * q  .=. q  * p  
(c) p * ( q * r )  . f ~  ( p * q ) * r  

(dl  P * ( q  * r )  .> .  ( p  * q )  * ( P  * rl  
(el ( P  * 4 )  * ( P  * TI .I. P * ( q  * r )  

- 3 ' . , . ._.~_.^ 
' ' ,, - < L ~ L T  \,,, % !  .,,l' . ~ ~ , : ~ , 7 ~ . o ~ ~ : ; p ~  e>-;?L:l;;z ,-~>,-;:;.~~.~ -.;-2 :)t;?-,-l.,,c , Y V _  - , , r  .>, .-.~-.r>r. .>L- / j l  - t l U L t L 1  '-n,.e, .,. ' 

c,-.-~-(,.ll ~,1--*LA..& s: - - : P  j-;-i5 3ec~;31i .T{f I>?!< 2 ;  I::,:> 2JC,j.! ,.:,-)\)$-,l[iQ!;s, ~>)'stl T & < ~ 7 1 i  " b ',lL 5 " 2 " 2 -. :; - , 
. .  , , . 53 3) 3,;r pra-fr-t ;las >ee17 give ..- .- ....-..... t i i iui l . ,  i;ve; 1i;c s'rlier operatcrs, and to 

2i lo.~ i  par-ntilesg: [o 1 , ~  o:.;;iited ;?,./l:ep ri?ey tre oc;e:.:y,gst iA~ileri iiiey a:,: iedundafit 
-. 

becrr;se !?F i!s:oci,:"l:r:i<!r. Wc: i3ex.re usec] iT;cts ir: place of i>raci<:ets ti: iii&l!l:i@Lt ike  
~n:;in operato: of a -fol-rn~~La or sub-formuia, This doi noia.ion, which call Russell's 
dot ilotatl'on after Ber~rand IZussei! :?lay be extended to con-ipletely eliminate the need 
for brackets. The basic idea is thai  the formula's rnairl operator should have adjacent t o  
it (on either side) a group of dots greater in number than that for any other operator in 
the formula. For  example. ir, 

the main operator has a group of two dots on each side. The Iliain operator of the ante- 
cedent has a dot on its right side. and the main operator of the consequent has one dot  
on  each side. These dots may be replaced by parentheses as follows: 

The largest dot group adjscent t o  the main opeiator ~ndicates  by ~ t s  number of dots the 
depth of nesting of the operators. In the above example the nesting is two levels deep; 
;n the following example the nesting is four levels deep. 



Another way of reducing parentheses is t o  adopt a more detailed priority cor11)entioi7 
for evaluating the operators. Here is one such ranking: 

Operators of equal priority in the same nesting level are evaluated left t o  right. The 
following examples show how parentheses may be  inserted for forrnulae written according 
t o  this ordel- convention. 

The above convention is adopted by Alonzo Church, who uses it in combination with his 
own dot natation (different li-on? Russell's): he also uses "pq " in place of our ' p  & 4 '". 
While those authors whc opt for r; priority convention among dyadic operators typically 
place - , &, '\.; in the criie; sho-li-i above. the;: of-[eri differ in ordering the fisilc-r operators. 

- .~-,  -. . . . 
!')> ;?\>; aljt;~~;,;  (2.:~. ~:lft3t2::. ~ ~ 9 l ~ ; i ~ ~  t<A]?2:>e) - ~ j l j , :  c3 kl$)er .ct;]ol.i?ji :!i&l & i>;-;t this . - 
~ ; ~ j ; f i ; ( ; i ~  l:,ith 5.j) 5 ST,;=: :.: i:;, (,?iilll;fi!:: ;i , . ~ , , i z <  iz  ,;03.pul.:r n : . ~ g ~ a ! ~ n i ; ; g  langl;ager 
, . , T -  - .-, 

. d . .$ - 
,,'L,-\,,-L,i: +i7c..; ~>;~[;-; t .' ,c,. " "  ., -,\-: ' .;. 

v a e w r k e  ~ r.f rgs fctllcii~irrg aslng payi-,~tilesiis i f i s t e ~ d  of dots (FL:ssP,!~'s di3t notation 
.- is used). 

(a)  - p ' V q  .f. p 3 q  

(b) p 3 q  . 3 p : 3 : p . : r : ~ p V m p  
(c) - - : p > . q & r . : = : . p & q . > . r V q  
(d) p > q . > . q > p : - - : v V s  
(e) - : p > q . V .  q > p  

2. Rewrite each of the following, with parentheses inserted in accordance with the  prior- 
ity convention for dyadic operators mentioned in this section. 

(a) - - p & - - q > - - p V q  
(b) p & q  q & p  
(c) P V ~  $ r & 4 > s  
(dl - ( P  V  q i  =--p & --q 
(e) p > q  5 r  rs 

*3. Investigate Church's dot notation as set out in his I i l t roduct ion  to iMatlze~natical Logic 
Vol 1 pp 74-80, and rewrite the  following formulae (of his notation) into our usual 
notation with n o  dots. 



(a) - P >  . q > p  
(b) [ q  3 .P 3 P I  2 --q 
(c) P > [ ~ > P I  > . P > ~ . P > P  
( d )  p  - q  .-r 
(e) r p q  3 . p  3 .s 3 [ q  p-] 3 --s 

9 -8 POLISH NOTATION 

The Polish ATotution for PC is a conlpletely parentl'esis-free notation invented by Jan 
Lukasiewicz (1878-1956). While lower case ietters are used for propositional variables and 
co:rlstants, ail the operators are symbolized by  capital letters. So formulae in Polish nota- 
iion may be typed on an ordinary type-writer. 

1qega:iofi is symbolized as P.1. sn that -- a is rendered in Poiis11 as Na. Thus there Is - 
d;f.ferel:ce as recz:.fs this nioncdi(: o?sraloi.. big differ-nce is with the dyadic 

operators. Zn our notation l l c ~ o w n  ss Peano Kussellian notation) ihe dyadic operaicrs rre 
. .. 

written iixfix position (i.:. in :?si\veen !he operands). in Pclisl? rotatlcri the dyadic 
operators are wrirten in pre& position (i.e. they precede their iiperands). For example 
instead cjf (a & f i )  we have Kap, arid instead cf (a 3 0) we have Cab. Note that the ante- 
cedent of :he conditional is still T G  the left of the consequent. T h .  letters used for the 
seven iiros: ~rnpcjr tan~ dyadic operators are shonin below: 

if a is a WPN so is Na (RW) 
if a arid 0 are WPN so is *a0 (Re) 
where * is one or the letters V,PL,B,I,C,B,E,K~CCJjG,L,FIFF4~XX0 
If a is a WPN it is so because of the above rules 

The 46 dyadic operators V. ..., 0 correspond in arder t o  the '15 dyadic operators defined 
in the table of 59.6. The formation rules ensure that there is ilo ambiguity in Polish 
notation e.g., N C p q  is -- Cp 3 q )  while C N p q  is ( --p 3 q) .  In any Polish wff other than 
a simple lower case letter, the left-most symbol is tlze main operator. Truth tables may be 
filled in by  starting with the right-most symbol and working our way t o  the left e.g., 

E A N p q  C p q  

i l o l l l l l  
1 0 0 1 0 0 0 1  

8 7 6 5 4 3 2 1  
f 



C'ol:i~nr:s 1 ncd 2 arc ccpiei; fioiii l i l e  .i;aihi.x : 3 foii~:-~~:s frartl i ar;d 2 ; 4 a i ~ d  5 are copied : 
6 foilo-as 5i.cjnI 5 :  7 foi!;i\i.~ j r~q-!  6 (!I:!! 4 ; ;:'id 8 f:)!l<:\:i'~ f:.O!?i 3 2nd 7. One siilipjc ivay 

. . to  traitslate a Paiii',! noi:ir!<>ii i~ i . : i t~ la  i ~ t o  Pe:i;li:-K~~~~eili?i; noeation is t o  set ilp ail 

assellib!y ;!lie foi. :lie \7Pr)>..' b n d  ;::an ;:j:rotj;lce i!;ij with Pear~o-Russelliari r~lies. 

EXERCISE 9 8 

1 .  Convert each of the foilowing s Polish Notation. 

(2) r > ( i j > p )  
(b)  j p&q;> i ipVq)  
(c) ( -in 'v' q )  (p 3 q )  

(d) -<p  \ / q j  E ( - - p  & -q3 
(e) ( p  3 ( p  3 1.13 3 q 

2 .  Convert each of t h e  foliowing to  Peano-Russelhan notation 

A set S is cic;sed under a binary operation . iff x :> y E S for ail X, y E S. The ele~lient 
e is an identify for * iff x * e = x for d l  x E 5'. A systern <S. +, e, '> is Booleaiz Iff: 
S is closed under +. 0 and '; + and 0 c o ~ n m u t e  and distribute; S contains 0 and 1 which 
are iaenrities for + and 0 ;  and each eienter~i x has 2 coniplemenr x' such that x + x' = 1 
and x x' = 0. For each Boolean t h e ~ r e r i ~  there is a dual theorem in which +, 5 ,  0, 1 have 
been uniformly substituted for a ,  +, 1 ,  0. Cayley tables nlay be used i o  test for closure 
(no new element), co!a:nutativity (symmetry about the maiii diagonal), and idernpotence 
(main diagonal matches table lieadiagj. 

Though "ordinary" algebra is not Boolean. both PC and Set The0.37 are. T h e  isomor- 
phism between '[he systenis may he used to  tianslaie ~csu l t s  fronil one system t o  another 
according to tile syrr?bolic c3rrespondence below (here "UBS" asd "'ST" abbreviate 
"Uninterpreted Booiear~ Systel~:"'  and "Se t  Tlieory"): 



A formula in set theory notation may be tested fo; theoreinhood withis ST (e.g., by 
b7cntl iiiagr~znzs), or by using PC lilethods on  the corresponding PC formula. 

Switclzing Ciric~llus is also Boolear?. with transmission values corresponding t o  truth 
values, switch opposition to  - , series connection t o  &; parallel connection to V ,  an 
unbroken wire to  the identity T, arid a broken wire to the identity F. Switching net- 
wol-lts may be sii.r~plijii'ed by replacing the network. formula with a simpler, logically 
equivalent one, obtained by PC methods 4e.g. natural deduction or tables). Circuits 
for particular tasks may often be designed by  writing the network formula in disjunc- 
tive rzovnzal jiirnz ( a disjunction of conjunctions of elenlentary wffs) then simplifying 
this. 

Electronic devices known as logic gates may be constructed which perform the iogical 
operations indicated below. Gate networks may be simplified by PC methods applied t o  
the network for~nula.  E a c l ~  of the nand and nor operators, / and $, is adequate for 
deGrling the other propositional operators. p / q means - @ & q )  and p 3. q means 
- ( p  v q )  

The following PC thearems are of particular use in applying natural deduction t o  set 
theory, switching netvjorks arid l ~ g i c  gate networks. Those asterisked have a useful n-ary 
form. 

Corn 
Com 
Id 
Id 
Dist* 
Dist* 
LEM 
LNC 
DN 
Assoc* 
'4ssoc'- 

DeM* 
DeM* 
Idem* 
Idem* 
Abs 
Abs 
NT 
NF 
DT 
CF 
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(To celebrate the end of Part One, the following PC crossword is presented as the Chapter 
Puzzle.) 

PC CROSSWORD 

Glues: 
Across* 
j cb L:Y neaqii:gs ~6 

symbols 
1 lai3i n':l 

1- el 0 4  :< q - 2 ~ ~  

i c  3 -; 1 -25 
-.*~ 

s i 6 ,am$ "sins t3 find Irath 
0 Operatar %r P C ~ ~ U P S C Z I O P ,  - - 
3 5. S B R ~    re pea-s t ars 
16 Wegarding 
18. Valnd wnth true premises 
20. Study of symbols as minter- 

preeed objects 
22. Latin and French for 13 
23. Same as 24 
24. Same as 16 
25. Freudian concept 
28. ( p ~ g ) & p . = , . q  
30. This is it? 
32. I 
34. This type of procedure gives a 

finite mechanical solution 
36. A logical bark 
37. Part 2 of this book 
38. Truth tables or truth trees? 

Down: 
2 Fhese have "le@n~ pmrn4h.Ps 
3 This peI'SD7P s i ~ e ~ 1 5 1  >'&dr; ?Ck i 

'r ',GI'! Sld''?eX# 
* - - \ cg:!a Jl 

6 d_rn the 1g" "(f d r cq~k 

". FaCber 
8 ~ 7 ~ i ;  h-rdie ail ~ 1 1 1  0per;ior. 

5 )  -~se:f 
12. Era 
14. klke a bracket 
17. (g&q)= , r .= , . p= , (g= , r )  
19. Entitled to make the same boast 

as 8 
21. Prefix in syntactical name of 

mater~ai equivalence symbo! 
26. P & (q v 4 .  = . (P & q) v (P, Bb. 4 
27. These are horazontal 
29. Part 1 of this book 
3 1. A different type of tree 
3 3. Material equivalence 
35. Studying logic improves this 



ar Two 





10.1 INTRODUCTION 

We have already seen in 54.4, that many arguments and propositions are complex in 
ways that cannot be accounted for in propositional logic alone. 

Consider the argument: 

All space movies are fascinating 
Stay Wars is a space movie 

. Star Wars is fascinating 

This is obviorrsly valid, since giver? that the premises are true the conclusion must be true. 
However, if we translated it into PC we v~ould  get something like 

F = ALI space movies are fasci~at ing 
S = Star W a n  is a space movie 

i4/ = 5fo.r i s  fr,scil?atint;_ 
-. " .  . ~ i z i s  has, as its exp:icit PL-f2r;r;, :he f o ~ m  

This form is invalid in PC. It is only when we use a possible-truth table that we discover 
the argument t o  be valid. PC alone has not revealed a valid form. 

The validity of the argument flows from an argument form in which account is taken 
of the terms "all". "space movie" and "fantastic". Such a form would be something like 

All S are F 
a is S 

. a is F 

But PC has no way of taking into account the sub-propositional elements which appear as 
S, F, a and all. 

There are also logical relationships which cannot be explained in terms of propositional 
logic alone. It  is quite clear that if (1) is true, then so is (2). 

John is a farmer 
There is at least one farmer 
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( I )  riecessar~ly implies ( 2 ) ,  but not conversely. 

It is also clear that ( 3 )  and ( 3 )  are contradlcrory 

All roses are red. 
Some rose is not red 

These i-elationships of necessary implication and contradictoriliess cannor be detected 
in PC alone. To  handle such cases we introduced the additional intuitive method of 
possible-ti-uth tables. 

We will now begin to  sei out a logic which can deal with !he argument above, and the 
relationships between i 1 j and ( 2 ) ;  and (3) and (4)-  wholly within tile system. The logical 
system is known as Monadic Quant<ji'catinn Theory J51QT). 

MQT uses a lar~guage which is richer than PL. The language, !lot  unexpected!^. is 
called Monadic Qttan~'ificational La~lguage (MtlQi). hIQL is part of a 13roader language 
callecl Q~o~ztificah~oizal La~iguage (QL). MQT is part of :i wider logical systeni called 
& i r a i i i i '  73to.y (QT). Vhen we have f~nislied lociking a t  MQT we will go 01-1 to  
QT. 

MQT (and QI) is rezily an e x t e n s i x  of e he Proposiiiona! C2lculus studied in Part 
One, i.e. MQT ibrbsunzes PC. In this chapiei we loolt 51-st a t  some importantfeatures of 

. ~ 

Engliskr,. ano. t i x n  intrsduce tile new logical 1a:lguzge. I i l  subsequent chapters we consider 
translation, vaiidiijr, necessai-y t ruth,  and the use of truth-trees and natural deduction. 

18-2 SINGULAR REFERENCE, PROPERTIES AND QUANTITY 

Before we set out the formal language of MQL, we will look in some detail at proposi- 
tions expressed in English. We will delve into the internal structure of propositions such 
as 

Alan is a farmer 
and All cats are mammals. 

At first we focus our attention on  singular reference 1.e. reference to  a quite specific 
entity. For example, in: 

Alan is a farmer. 

there is reference to  one quite specific individual: Alan. in  some propositions there is 
more than one such singular reference. For example, in the conjunction: 

Bill and Carl are farmers. 

there is singular reference to both Biil and Carl. lil tile cases above. singular reference 
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has been expressed by proper names. But there are other ways of expressing singular 
reference. For: 

The Lord mayor is a butcher. 

singular reference has been expressed by  the phrase "the lord mayor". Such phrases, 
beginning with the word "the" are called definite descn'ptions. Definite descriptions 
express singular reference because they purport to refer to  a unique individual, entity 
or item. 

Yet another way of expressing singular reference is t o  use singular pronouns. Consider 
the followirlg two propositions: 

I am doing logic 
I t  is a square. 

Some singular pronouns are : 

I me you he she him her it that this 

So, proper names, dejfnite descriptiorzs and singular pronouns are all singular terms. Such 
terms can be used t o  make singular reference, not only t o  persons, but also to  places, 
times. animals, things, and all sorts of individual items, even items which d o  not exist. 
We will use the term item t o  cover all such specific persons, places, times, animals, things, 
etc. 

In propositions, when there is singular reference, something is asserted about the item 
to  which reference is made. In: 

Alan is a farmer 

there is reference tcl Alan, a i ~ d  the propersy of beinga&r?~er ispredtcm'ed of Alan. 

Whee-~ there is singiiiar reference in propositions shere will be logical subjec~s and 2 
* .  jog'cal pre:l:c~fes, Logicai subjects c-v- ,.pi,ssec; - -  3;i the ciag;lla; t e r r s  ar;d (;ale e 

. ,. 
:jredica:es cr:: the  U I - ' ~ @ ~ : ' L : ~ S  I -  A rela!ie;-i. ~ r e d i c a i r ; ~  ol dl.: items. In the proposition: 

Alan is a farmer. 

the iagical subject is Ai~41~ and the iogicai predicate is beiizgefamer. 111 the proposition: 

Sue loves Alan 

the logical subjects are Sue and Alan. and the logical predicate is the relation loves. Note 
here that the grammatical object "Alan" still counts as a logical subject. 

So far we have been considering singular reference, but  consider the proposition: 

Every one is happy. 

There is no singular reference here. A quantity of people is indicated - all. No specific 
person is nominated. Such a proposition is quantified. There are many quantity phrases 
in English, e.g.: most, many, a few, a couple, some, at least one. 

We are going to focus our attention on just two quantities: 

Every 
At least one 

The phrases are known as quantifiers. The first is a universal quantifier, and the second is 
a particular. or existe~ztial quantifier. 

Consider the following atomic propositions: 
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Everyone is happy 
Everybody loves somebody sometime 

The first is sii~gly-quantified. the second is multiply-q~iantified 

We look first at singl.y-cjuantified propositioils containing a uiziversal qua~ztificatiotz. 
Consider ( I ) .  

Every thing is green. ( 1 )  

(1) is a universally-quantified simple proposition. ( I )  says that each and every thing, 
taken one at a time, has a certain property, the property of being green. In what follows 
we will use the phrase "Every thing" to  rneari "'Each and every thing, taken one at a 
time." 
Consider (2) :  

Every thing is non-green. ( 2 )  

(2) is a uiziversally-quantified negation. Each and every thing lacks the property of being 
green. Consider (3): 

Every thing is both green and spherical. 13) 

(3) is a universally-quantified conjunction. I t  asserts that each and everything has bo th  
the property of being green and of being spherical. What a strange world it would be were 
( 3 )  true. Consider (4): 

Every thing is either green or spherical. (4) 

(4.) is a unii>ersnll~~-quaiziified dlsjunri~ioil. But there is a possibility that 44) could he read 
i n  either of :TVO ways: 

zasb z d  ee.je:y '.?tifig, if sptsrical, is green ( 5 )  

(5) is 2 un~ve ; . sa l~y -q~a ;~ f t t f i e~J  c o i ~ ~ i r ~ o ; ~ ~ i .  (5a) 1l:aKes ctesr wile: 2 universally-q:ianiiL'ied 

conditionla1 asserts: 

Each and every thing, taken one at  a time, if spherical, is green. ( 5 4  

It is important t o  note that the universal quantification in propositions (1) to  (5) 
indicates something about each individuai item. 

Of the universally quantified propositions it is of some interest, and importance, to  
consider universally-quantified negations and conditionals in more detail. Look carefully 
at (6) and (7). 

Every thing is non-green 
Nothing is green 

Clearly they both express the same proposition. "Nothing" is a term for universal negative 
quantification. 
Care must be taken with (8): 

Every thing is not green (8) 
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(8) can mean either that not everything is green or that nothing is green. It depends o n  
emphasis. 

The word "all" is very often used for universal quantification. (9) is the same proposi- 
tion as (6) and (7). 

All things are non-green (9) 

But (10) suffers from the same ambiguity as (8) 

All things are not green (10) 

It  is best to  avoid the sentences used in (8) and (10) in favour of either the sentences used 
in (61, (7) and (9) or (1 1) and (12). 

Not everything is green. (11) 
Not all things are green. (12) 

There is a wide range of sentences used t o  express universally-quantified conditionals. 
All of the following, (13) t o  (21), express the same as (5). 

All green things are spherical. (13) 
If anything is green then it's spherical. (14) 
If something is green then it's spherical. (1  5 )  
Every green thing is spherical. (1 6 )  
Any green thing is spherical. (17) 
Each and every thing, whatever else it is, if it's green 

then it's spherical. (181 
Green things are spherical. (19) 
Only spheres are green. ( 2 0 )  
Green things are ail spheres. (21) 

These are ail universa!Ej~-quantified co~-rditionais. They assert that ail those things with 
the prcperty aominaied aniececiecily (being g ~ e e n )  also have the property set out ir? the 
scjnsequeii~, (beia2g sp.her.ica2) 

, . 
ii Is important not io coxfuse uni-iersally-quaiitified col~ditiorlais v~it?? universally- 

q u a ~ t i f i e d  conjunctii;ns. lm a universaily-quantified conjunction it is asserted that every 
thing, literaiiy everjiihing. has boil? properties nominated in the conjuncts. 

Universally-quantified conditionals are usually divided into two sub-groups. There are 
those like (13) t o  (21). They can be expressed in English by  means of a sentence of the 
forms (22) or (23) 

Every A is B (22) 
All A s are Bs (23) 

The second group have negation as the main operator in the consequent. Examples are 
(24) t o  (2 6) 

Every green thing is non-spherical 
Green things are not spherical 
All green things are non-spherical 

The sanie proposition is expressed by  (27), (28) and (29): 

No green thing is spherical 
No green things are spherical 
Nothing green is spherical 

Tlzese universally-quantified conditionals with a negative consequent can be expressed in 
E11gIish by means of sentences of forms (30) or (3 1) 
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Every A is non-B ( 3 0 )  
N o A i s B  (3 1) 

Universally-quantified conditionals without a negative consequent, of forms (22) or (23), 
are called A propositions. Universally quantified conditionals with a negative consequent, 
of forms (30) or (31). are called Epropositiorzs. A propositions are also known as univer- 
sal affimzative propositions, and E propositions are known as universal negative proposi- 
tions. 

In ordinary language (23) and (31) are contrary, not contradictory. Use "rose" for 
A and "red" for B to see why. 

We now turn t o  particular, or existentially-quantified propositions. The quantifica- 
tional phrase which most accurately expresses this quantification is "at least one". 
Consider the following: 

At least one thing is spherical ( 3 2 )  

(32) is an existentially-quantified simple proposition. 

At least one thing is non-spherical 

(33) is an existentially-quantified negation. 

At least one thing is both spherical and green. (34) 

(34) is an existentially-quantified conjunction 

At least one thing is either spherical o r  green. ( 3 5 )  

At least one thing is such that if it's spherical then it's green (36) 

(36) is an exisf,enl"ieiiji-q~~afi,il'fied condtrionaL 
-- I c e  .;lgrd ' soi-fie'~ i s  2fi.e: ~2s.:': :c; eys-ress the iaine caan;ific;tior pg ''a: )er;st m-.". 

Sc we can hpve :  

Something is spherical 
Something is i~on-spherical 
Something is both spherical and green 
Something is either spherical or green 
Something is such that if it is spherical then i t i s  green 

These express the same propositions as (32) t o  (36) respectively. When "some" is used 
in the singular, as in (37) t o  (41) then it means the same as "at least one". But "some" 
is often used in the plural as in (42) t o  (46). 

Some things are spherical 
Some things are non spherical 
Some things are both spherical and green 
Some things are either spherical o r  green 
Some things if spherical are green 

These, (42) - (46), rzecessarily imply (37) t o  (41) respectively. In general we note that 
"some" in the plural sense necessarily implies "some" in the singular. Such plural uses 
of  "some" often indicate more than one. 

Our chief interest is in existentially-quantified negations, conjunctions, and simple 
propositions. 

Consider first an existentially-quantified simple proposition (47), and a universally- 
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quantified negation (48): 

At least one thing is spherical 
Every thing is non-spherical 

These constitute a pair of contradictories. Consider also an existentially-quantified 
negation (49), and a universally-quantified simple proposition (50): 

At least one thing is non-spherical 
Every thing is spherical 

Again we have a pair of contradictories. These contradictories can be set out in what 
is called a square of opposition. 

Every thing is spherical Everything is non-spherical 

At least one thing is At least one thing is 
spherical non-spherical 

The universally-quantified propositions are across the top,  the existentially-quantified 
across the bottom. The diagonal pairs are contradictory. From this we can also see 
some necessary equivalences. For  example (5 1) is equivalent t o  (52) 

Not every thing is spherical 
At least one thing is non spherical 

We now turn t o  the existentially-quantified conjunctions. 

At least one thing is both spherical and green 

(53) cail also be expressed b y  (59) to (56): 
s .  At least one spcere is gree:? 

$erne sshel-e is greem: 
-2 t:s z y  rp.5re q ~ h e 1 - e ~  zy g;eClFa 

Some sph-res are green 
Sonie splriericai things zre green 
Spheres are sometimes green 

Hi; some existentiaiiy-quantified co~ijc?nctions, one ef  the ccnjuncts is negative, as in (50) 
and (61) 

At least one sphere is not green 
Some spheres are not green 

histentially-quantified conjunctions are often separated into two groups. There are those 
which can be expressed by an English sentence of either form (62) or form (63): 

At least one A is B 
Some A is B 

Such are known as I propositions. Others are expressed by  English sentences of either 
form (64) or form (65): 

At least one A is not B 
Some A is not B 

These are known as 0 propositions. A, E, I and O propositions can be alranged in a 
square of opposition where the diagonally opposite pairs ale contradictory. For example: 
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A Every A is B N o A  is B E 

I SomeA i s B  Some A is not B 0 

Once again, as with the earlier square of opposition, we can set out necessary equivalences: 

Not every A is B + Some A is not B 

N o A  i s B  +) It's not  the case that some A is B 

We have adopted the term "item" in this text in order to make clear our adherence to an ontological 
neutrality. See Exploring Meinong's Jungle by R. Routley, especially pp. 5,  174-180. We do not 
adhere to the notion that singular terms have existential import. 

Our preference is also to call the "at least one" quantifier a particular quantifier, but we have used 
the standard terminology. In later sections we will not assume that "at least one S is P" means the 
same as "These exists an S which is P". To  that extent we are somewhat more optimistic about 
reforming the use of "(gx)" than is Routley. 

The use of "A" and "I" with affirmative propositions derives from the Latin "affirmo" = "I affirm". 
The use of "En and "'0" with negative propositions derives from the Latin "nego" = "I deny". 

1.  Write out the sinzgular terms in the following, and state what kind of singular term each 
is. 

(a)  James is kind. 
(b j  Susar! is scholariy 

- "  T (c) OTC is at school then d i i l  is  ;: h=!:rl- 
, .\ #<a)  "?pie l*r:3"n:.?n' ' 

. . 
.,A-AL b?v*t l  :x cr! LIS -iN;:?. 

(e)  ? lLe P ~ e m i e ~  :pi;de rp:~a,::h 
(f) K ~ ~ t y  received the prize. 
jg) She was kind to him. 
(h) Ucu promised me to  give hLrn the money. 
(i) The .Wizard of Id has a probiem. 
(j)  Tlze economy is in a bad way.  

2. Write out the properties predicated of Jack and Jill in the following. 

(a) Jack and Jill fell down. 
(b) Jack was unsteady. 
(c) Jill was solicitous. 
(d) Jack was reassured. 
(e) Jill was beautiful. 
(f) Jack had a splitting headache. 
(g) Jill was deft with bandages. 
(h) Jack went t o  bed. 
(i) Jack and Jill were happy. 
(j) Jack slept. 
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3. Each of the following propositions pairs-off with one other with which it is necessarily 
equivalent. What are the five pairs? 

(a) Every rose is a non-black object. 
(b) At least one rose is a black object. 
(c) Every thing is non-black. 
(d) Not even one thing is non-black. 
(e) Not even one thing is black. 
(f) No rose is a black object.  
(g) At least one rose is not a black object. 
(h) At least one black object is a rose. 
(i) Every thing is black. 
(j) Not all roses are black objects.  

4. Each of the following propositions pairs-off with one other of which it is contra- 
dictory. What are the five pairs? 

At least one radical is a student. 
Every non-radical is a non-student. 
All students are students. 
Not every non-radical is a non-student. 
Every student is a radical 
No student is a radical. 
Some radical is not a radical. 
At least one student is not a radical. 
Not even one radical is a studeilt. 
Some student is a radical. 

7 r, ; 7 -3 L>-,~..- . , L _ L )  :.xa:.L ~ ~ ! ~ ~ : ~  :;>. / j ~ : p  :>: : ; j r i : ; ~ <  y-i-le~-e ,J;E ~ ( 2 1  r,i!! ~ x ! ~ s  
for f9i.inEd "-.-.-- liiiiliL. , l p i ~  , illis e C.-< ,i,oli - ;pl fQ~ \ , r r  - ;s . giv"cr: . s l rn~isr  , . Iridt:meni. 'if ijnd the 

golrng i-alr,er se:ai!ge, dei?'? give l~lp. ii is i n i ~ c i - i a n i  to gel a': least a rough idea ofwhat  a 
f ~ ~ r i ~ u i : ;  of PJQL is. l a  Ihe next GWC sectioi~s you will jind out wl?a",h.,e sym5ois mean, 
and how to iise them, 

Frorn now on: uniess otherwise stated, "wff" will be taken to mean '"wff of  MQL?'. 
Before proceeding with the syntax of  MQL, it would help if you revised the basic ideas 
covered in 52.2. 

Primitive Symbols: 

from PL 

Any number of small letters from the start of 
the alphabet. 

Any number of capital letters 

Any number of  small letters from the end of 
the alphabet. 
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V ,  3 Inverted A,  reversed E, often read as "A" and 
"E". 

In the discussion be lov~ the following terminology will be employed: 

S denotes any primitive drawn from F, 6, ... 

s denotes any primitive drawn from either a, b, ... or x, y, ... 

v denotes any primitive drawn from x, y ,  ... 

A wff of MQL is a formula which obeys the following formation rules. 

Formatiolz Rules: 

Basis Clauses: p,  q ,  r ,  s, t ,  ... taken individually, are wffs 
Anything of the form Ss is a wff 

Recursive Clauses: If a is a wff, so is -a 
If a is a wff, so is jVv)a 
If a is a wff, so is (3v)a 

If a and 0 are wffs, so is (a & p) 
If a and p are wffs, so is (a V p) 
If a and /3 are wffs, so is (a 3 p) 
If a and 0 are wffs, so is (a -0) 
If and P are wffs, so is (a f 0 )  

- 
1 ermi:~al Clause: If a is a wff,  it is so because of the above clauses. 1 TI 

- 3  

i ne  SE$J Ziew i.cles ar-, B a d ,  R\I' ; a:ld 33 , E::anip!es of cr;l-!-eci: o f  s?),$ zre: 

Fa, "5 Ge, Hu, Nd. 

Note caref~dly with RV and R3 that only primitives f~c.om the list x7 y, ... may be 
substituted for 2. So, whereas wffs of  the type: 

(Vx)a; (3 x)a, (Vy)a, ( 3 z ) a ,  ... 

are well-formed, expressions like: 

('dn)a, (3 b)a  are not wffs. 

These rules may be used t o  construct wffs (as in the assembly line below) or t o  test 
whether an expression is a wff. 

Example: 1. p  

2. Fx 
3. (3 x) Fx 
4. ( p  3 (3 x) Fx) 
5. C y  
6. (Gy  - ( p  3 (3 x) Fx)) 
7. ( v , v ) ( ~ y  r ( p  3 (3 x) FX)) 



V and 3 are known as quantifiers. They always occur in quantificarions: 

Quantifications are somewhat like tildes. They are placed t o  the left of  a wff t o  get a wff. 
The formula t o  which a quantification is added is known as the scope of that quantifica- 
tion: 

The scope of (3 x) in (3 x) F x  is F x  
The scope of (Vy) in (Vy)(F,v 3 Gy) is (Fy 3 Gy) 
The scope of (3 x) in (p 3 (3 x) Gx) is G x  
The scope of (Vx) in ((Vx) G x  3 (3 x) Fx) is G x  

In every quantification therc is one of the letters: x, y ,  z ,  w, ... . A quantification is a 
quantification with respect t o  (or wrt) that letter: 

(3 z) is a quantification wrt z 
(Vx) is a quantification wrt x 

1 .  Generate the following wffs from the formation rules, showing the justification for 
each step. 

(a) ( F  x 3 G a) 
(b) ( -Fa = G a)  
(c) -(Fa - C b )  
(d) ((3 x] F .z ?/ /';I:.) & -v) 
(-) {(y x)(3 y )  I; x -3 ('gY> ( G a > 3 3:)  - 
( 3 -  ! ,-*, (1 :*>lT l,\{b.,,/z\, :-2 -/ 3 { V x ) { j  z) -..(>r;; &I :[.4)) i-/ . \ , - --  

(ij \ 'c/;:)&.)~ * c;;.: 
- ,..\ :ii,t {'V>~)(~F;; 'i/' ?" g l >  K ) , '  

(k2) (xdx)4:*F>: 3 <;;:; 
(iv) iy > ('dx) F>: 
(T,) j " x ) (p  & G;:) 

'. /2 (b) li%li;*te down the scope or iiy) in each of the fo!?owing: 
(i) (3y)Fy 
(ii) i3y) p 
(iii) -( (3 y ) Fy 3 Cx) 
(i.1 (3 Y 1 - (FY V GY 
(v) (VxI(3 y)(& 3 Gx) 

3. Which of the  following are SP atomic wffs? 

(a) F a  
(b)  P 
(c) F x  
(d) Gd 
(e) (Yx)Fa 
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10.4 SEMANTICS FOR INDIVIDUAL CONSTANTS AND PREDICATES 

We must now set out a system for assigning truth-values t o  the wffs of MQL. \Ve will 
do t h ~ s  by first giving the syrilbols of  MQL a standard interpietation. and then showing 
how t r ~ t l ~ ~ - v a l u e s  are calculated. The system is called Monadic Quantification Theory or  
MQT. 

In order to  set out MQT we first extend the notion of a possible world. We stipulate 
that each possible world contains at least one item. So, some possible worlds will have 
one item, some two items, some three, etc. Some will have infinitely many items and 
some finitely many items. For MQT we only ever need finitely many items, but we 
don't rule out infinitely many. 

We will have one item worlds, two item worlds, three item worlds, and so on. The 
set of items in a world is usually called the domain of that world. Clearly, domains are 
non-empty sets of items. 

The items in a world might be persons, creatures, plants, material objects, numbers, 
or any thing whatsoever. Such items can have or lack properties. It is tlzis feature of items 
in possible worlds which we will use in MQT t o  determine whether or not SP atomic wffs 
are true or false in that possible world. We now turn to  the symbols of MQL, give them an 
interpretation and show how this determines truth-value. 

Looking back to our set of primitive symbols we note that those contained on the first 
three lines are fami1iar:apart from one extra use for parentheses these have exactly the 
same function in MQT as they had in PC. 

Next we consider the symbols 017. the r'oiirtli line. These are the sn-la11 letters a t  the 
beginning of l?!e aiphabe~: 

* r e , C , c , a , ? , - ' g  ,... 
1 7 , -  , . i i e s e  216 caiied fi?divzdUr~{l C O ) ? S I ~ J " ; S ,  L!?c:i 1~]2-:y ~td;?(i fcr ~ic:gie 1te;- i ; iar:o. ii?divid- 
I " -  u.ai cons ian~s  are :he iogical version 31 Draper names and other such singular terms. 
Note that each item in a world may have several individsal constants referring to i t3  but  
an indi~icluzi constant may I-efer to  crdy one item. 

In practice we may use any letter, except p, q, x, y, z ,  as an individual constant. In a 
dictionary we specify the names, or other singular terms, which are t o  be symbolized by  
various individual constants. Usually we pick the first letter of the name unless that 
letter has already been used, e.g. 

a = Alan e = Europe 
b = Betty f = Friday 
c = the Chancellor g = Anne 
d = you 

The capital letters on the fifth line of primitive symbols: 

F, 6, H, ... 

are known as predicate letters. These are used t o  stand for properties which items have or  
d o  not have. The wff 

Fa (1) 

means that the item a has the property F. So, if F means being a farmer, and a is as in the 
dictionary, (1) means 



Alan is a farmer. 

When we set out a dictionary for predicate letters, instead of using 

I; = being a farmer 

we use 
Fx = x is a farmer 

( 2 )  
NOTE CAREFULLY, the "x" in this dictionary is just a blank space marker. It  is not a 
symbol of MQL. We could have used (3) instead of (2) 

F ... = ... is a farmer ( 3 )  

The "x" in the dictionary indicates that some symbol can be put  in that  spot, such as 
a o r b  or c etc, or,  as it turns out  below, evenx,  y, or z, etc. 

We now set out a dictionary for predicate letters. As with individual constants, we may 
use any capital letter, and we usually pick the letter which is the first letter of the 
property word unless that letter has already been used. e.g. 

Fx = x is a farmer Jx  = x jumps 
Gx = x is a grocer K x  = x is kind 
Hx = x i s  happy M x  = x is a miser 
Ix = x is an insect Nx = x is a number 

From this dictionary and the dictionary for individual constants we see that each of 
the following sentences of English translates into the formula beside it .  

Alan is a farmer Fa 
Betty is happy Nb 
Anne is kind ICg 
The C!-lance!:or is not a miser. --, Tvfc 
If Alan is kind then Anne is happy. iqf. 2 &- 

93: .(.113;i3rLa.:~  ye I \ i ~ i j e  let i st;.& 'ci befizg a:; !.?;.;cl. Lei vs  jlew k2.e 5 ','23k at 
~3:ne tws.':n;?? 57&7:: f4rfll ie: tie Z - J J ~  !em; be s 5116 b .  We ---' use biegrz~~n_s $6 

represent ilze two-irerri worlds. In xhe diagrams, set out below, we use IJ' to mean ~~OYI-if. 
Inside the circle are all the insects, cutside the circle are a11 the aon-insects. 

Diagram (A) represents a world in which everything is an insect. Notice how I not  only 
stands for being an insect, but  also for the set o f  insects. In (A) everything is a member of 
the set of insects. I' not only stands for being a non-insect but  also for the set of non- 
insects. I' is an empty set. Together I and I' divide the domain of items. 

What is even more interesting is that  in (A) it is clear that  

Ia is true 
Ib is true 
-la is false 
-- Ib is false 
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la is true just because a  is a member of the set I (insects), and so on. 

In Diagram (B) we have a world in which at least one thing is an insect and at least 
one thing is not. Again we see that I and I' are sets, and together they divide the world. 

In (B) we see that: 

Ia is false Ib is true 

Ia is false because a  is not a member of the set I (insects). Furthermore, since a  is not a 
hember of the set I it must be a member of the set I'. 

In Diagram (C) we can see that 

Ia is false Ib is false 

There are no Is (insects) in (C). I is an empty set, even though the world is non-empty. 

Of course, there is a fourth world. Can you work out a Diagram (D)? 

Predicate letters can be seen as standing for sub-sets of items in a world, including, of 
course, either the empty sub-set or the whole world. 

A world may always be divided into two sub-sets for each predicate letter. One of the 
sub-sets goes with the letter, say I ,  and the other subset goes with the cornplernerzt of the 
letter, non-I or I ' .  Any given item in a world will have to  be in either the I or I' subset of 
that world. 

All of this can now be drawn together: 

Individual constants are used to stand for items in h world. Each individual 
consta?rt stands for one a r d  only ci?e iteim~ 

De5&+:io'a.s : 
.Y 

- ,  
,"a): aany pPcdic&c  let?:^^?.: F: and any india~iaud caastani., 3;  fa 2s :Pue kA 2 

w7orl.d iff r E F in that world 

A detailed description can be given of any finite wor?d by setting out a table. The proper- 
ties are listed across the top, the items down the side. 

Properties 

Say we have a two item world, the items being Alan and Betty. And we are also 
interested in four properties: 

Fx = x is a farmer a = Alan 
Gx = x is a grocer b = Betty 



Hx = x i s  happy 
Mx = x is a miser 

We can describe one two-itern world by the table: 

In this world it is true of Alan that he is a farmer, and is happy. It is false of him that he 
is a grocer or a miser. So in our world 

Fa is true Ga is false 
Ha is true Ma is false 

It is true of Betty that she is a grocer and is happy. It is false of her that she is a farmer or 
a miser. So 

Gb is true F b  is false 
Hb is true Mb is false 

It must follow from the false propositions that, in our two item world 

" Ga is  true - F b  is true 
-Ma is true -- Mb is true 

Furthermore: 

Fa & G b  is true, 
-Ma & --Mb is true 

Fa \I Ga is true, and so on 

Since tilere are 8 spaces in the cable, sach oE which may be filled In 12 2 differect ways 
^ R :Iwl:h a ; I;!- 0): riier.: ,:- Q T  '56 dif,cf.rerl>Hiays of ta"e -,f ti:is size 

::/; i!z.;..I. . ; - I <  , &, l t L > , ~  ' . g d L  2;ou: oi-,$czte :riters. Predi:at- I e i C z r ~  !.;a: .;t.;pC 
r, . ,- . 

i ,. )- ?. il:-; ;..,>. - "c 0" ,,--- 
~ - ," 

,,i.-v.a,l L I _ I : j G k : ~  we -,-e-,j:;- ii:_ 7: "j,;t;cpa:-y. 6: f i  .irip cc.;l:.><i :,; g ~ i ; j ]  fi ~;]eci:l/3r~ . - -  
. ~~i.-. 'n i:i Z i i : , . .  , . s t p  . bFiro---. zri , e:,r?..,,,.ro c,,)-P i , i i ~ l i l ~ l ~ .  SU;. once WF; hail~; syj:~boijz%il a p r o ~ ~ . .  

- .  

siii3;-., tising ;he dictloaar;~, the  sylnbols ca.; be seen as displaying the Form of that 
. ~ 

propc.sitli3n. Fcr g , x ~ i ~ ~ ! . ~  we ~xight use $17e d.ic:ionaries shove lo syr*?%o?ize 

Aian is not a farmer (4) 

as - Fa 
We can now see from 45) that (4) has a certain form. 

The form would be the same were the dictionary to  be 

Fx = x is a frog 

a = Albert 

and the proposition sy~~lbolized was 

Albert is not a frog (6) 

(5) shows us that the form of (6) and (4) is the same. Since we can vary the dictionary 
for 1;. and any predicate letter, predicate letters are sometimes called predicate variables. 
So, MQL is unlike PL. In PL we distinguished propositional variables and constants by 
using different symbols. In hlQL we use the same symbols for both. This does not 
create any real problems in practice. 
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EXERCISE 10.4 

1. Translate the following into English, using the dictionary supplied, and work out their 
t ruth value in the world described by the table set out.  

a = Alan Fx = x is a farmer 
b  = Bert Gx = x is a grocer 
c  = Carol Sx  = x  is a student 
d = Dana T x  = x  tries hard 

Bx = x is a brilliant student 

(a) Fa & Sc 
(b) - G b & T b  
(c) Bd 3 Sd 
(d) - Bc & Sc & Tc 
(e) (Fd  V Gd)  3 Td 
(f) G d  - Sb  

c  0 

(g) Fa $ Gc 
(h) (Bb & Bd)  & ( T b  & - T d )  
(i) (Ba 3 Sa) & (Bb  3 S b )  & (Bc  3 Sc)  & (Bd 3 S d )  

(j) F a  V Fb V Fc V Fd 

2. Fill in the table set out below, using the dictionary in Question 1 ,  so as t o  make the  
following true. 

(a) Alan is neither a farmer nor a student 
(b) Bert is a brilliant student, and does 

not t ry hard. 
(c) Carol is not a student, but Dana is a farmer 
jd) Dana is either a grocer o r  a farmer but not both. 
je) If Dana is a farmer then she rs n ~ t  a stcdent.  
(f> A13 brilliant srudents hre stucencs, 
1 ~ 1  i.---...- ,vul; - li3n-stiidezt wies h a r d .  
ih'! \ .~ , 1.7 'eroi is a f ~ m e : .  the" Dz:?~ is 2 grsce:- 

(i) scud en.;^ are ~:eitl?&r f a - r n a s  nor grocers 
(j> Everyone o t h r  than students is either a farmer c?r a gyezer, 

10.5 QUANTIFIERS AND FINITE WORLDS 

Let us look again at  the two item world described by the table: 

F x  = x  is a farmer 
Gx = x  is a grocer 
Hx = x is happy 
M x  = x is a miser 

It is clear that both a and b are happy. So (1) is true 

Ha & Hb 

So, in this world every thing is happy. 

It is also clear that neither a nor b are misers. So (2) is true 

-Ma & -Mb 

So, in this world nothing is a miser, every thing is a izotl-miser. 



Now look at the fonnula 

(Vx) Hx (3) 

The V is a universal quantifier, and ( V x )  is read as Every item, x, is such that. (3 )  is read 
as: 

Evecy item, x, is such that it, x, is happy. 

This clearly means: 

Every thing is happy. 

So (3)  is read as (4). 

In any two item world, where the items are a and b ,  (3 )  will be equivalent to  (1). 

( V x ) H x  r Ha&Hb ( 5 )  

If everyone is happy then both a and b are happy, and if both a and b are happy then 
everyone is happy. The right hand expression in (5) is known as the expansiotz of (Vx)Hx 
for a, b. 

In our particular world, E, we see that (3) is true, because ( I )  is true. 

Now consider 

(VX) - Mx 

This is read as 

Every item, x ,  is such that it, x, is non-M 

This is the s m e  as 

If everyone is a nor~-~niser then both o. and b are non-misers, and if ho jh  a and b are aon- 
misers then everyone is a i~o~?-~niser .  Once again, --Ma & - M b  is knawn as the zxpajt- 
s i m  of (Vx) -hfx fir o, b. You will see that both expansions of universally quantified 
formulae are conjunctions. Fro111 now on we will shorten "in a world, where the items 
are a ,  ..., b" to "in a world a, ..., b". In our particular world, E, since (2) is true so is (6). 

Consider (81, (9)  and (1 0 )  

Ga & Gb 
(VX) Gx 
Everyone is a grocer 

(9) is read as (lo), and (9) is equivalent to  (8)  in any two-item world a, b:  (8) is the 
expansion of  (9)  for a, b.  Once again the expansion is a conjunction. 

In E (8) is false, so, in E (9) will be false 

We now look at some more complex cases. 

(Vx)(Gx V Fx) 

(1 1) is read as: 

Every itenz, x, is such that it, x,  is either F or 6. 
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This means 

Every one is either a farmer or a grocer 

(12) is clearly a universally quantified disjunction, as is (1 1). 

The expansion of (1 1) for a, b will be: 

(Fa V Ga)  & ( F b  V G b )  (1  3) 

In any two item world a, b both (1 1) and (12) will be equivalent t o  (14): 

a is either a farmer or a grocer and 
b is either a farmer or a grocer (14) 

Look carefully at (14) and compare it with (12). Of course, (13) is the symbolization of 

(14). 

In world E (13) is true, so (1 1) is true in E. 

Note once again how the expansion of a universally quantified formula is a conjunc- 
tion. 

Consider (1 5): 

( V x ) ( F x  3 H x )  

This is read as 

Every item, x, is such that if it, x, is F then it is N 

This means 

Every item which is F is 83. 
GP' 

F.ii&_~y farms:- happy - ,  (16) 

(16') ji, 2 2i.li:;e:seiiy ;iar,ti!+d .~q~?&i,g?-$ ~ a s  :s xpafisiu-: of i ; _i, j C;; 0, 2 
wS.1 be 

<Fa 3 Ha) & (Fb  1 Hb)  (17: 

Once again the expansion is a conjunction. By this time you shouid have i~oticed the foi- 
lowing way thai expansion works: 

Universally quantified formuia Conjunction 

negation 
disjunction 
conditional 

Conjunction of negations 
Conjunction of disjunctions 
Conjunction of conditionals 

Go back and check this for yourself. Consider now the formula (16): 

( V x )  ( F x  & H x )  (16) 

This reads as: 

Everything is both a farmer and happy. 
or Every thing is a happy farmer. 

(16) is a universally-quantified conjunction. So. if our pattern is followed for expansion 
we should get a conjunction of conjunctions. The expansion of (16) for a, b is (17). 

(Fa & Ha) & ( F b  & H b )  (17) 

In any two item world, where the items are a and b ,  universally quantified formulae are 
equivalent to  their expansions for a, b. 
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The equivalences we have set out above are now reproduced for careful scrutiny: 

( V x )  Hx  - - - Ha & Hb 

( H x )  -- Hx - - - -Ha & --Hb 

( V x ) ( F x  V G x )  =: (Fa V Ga) & ( F b  V G b )  
( V x ) ( F x  3 H x )  (Fa 3 Ha) & ( F b  3 Hb)  
( V x ) ( F x  & H x )  (Fa & Ha) & ( F b  & Hb)  

If you look carefully at each right hand expression you will see that each conjunct is 
closely related to the scope of the universal quantification in the left hand expression. 

In each case the universal quantification is with respect to x. A conjunct is formed 
by taking the scope and then replacing each x with one individual constant, then we get 
another conjunct by replacing each x with another individual constant, and so on. 

If we had a three item world to  consider, we would need to  work out the expansions 
of the universally-quantified formulae for three items - say they were a, b, c. Try it out 
for yourself before looking at the list below: 

( 'dx )Hx  - - - Ha & Hb & Hc 
( V X )  - HX - - - --Ha & -Hb & --Hc 
( Y x ) ( F x  V G x )  ? (Fa V Ga) & ( F b  V G b )  & (Fc  V Gc)  
( V X ) ( F X > H X )  r (Fa 3 Ha) & ( F b  3 Hb ) & ( F c  3 Hc)  
( 'dx ) (Fx  & H x )  E (Fa & Ha) & ( F b  & H b )  & ( F c  & Hc)  

If the formula has a universal quantification with respec.t to y then we do the same 
except that it's y that gets replaced. For example, we expand for a, b, c. 

(Vy)(Fy3-Hy) (Fa 3 --Ma) & ( F b  3 --Hb) & ( F c  3 - E c )  
? Bhe same applies to whate;ier '[he letter in the quar~tificatior, 

P tach of the conjuncts in such 2% expansi>,-, is knc\i/r: as an lfemizatioa ofrhe ;cope 2-f 
~ ~ 

;,b6e qiia;?ti2cat~n, parlic~,!a;, 3)- l ia re  ;lelil?izefI~.z9 10 ~2; orte 3-0 2 s  an6 ope i-c r.. 

EXERCISE 10.5A 

4 .  Given the foilowing dictionary symbolize the propositions beelow. 

iWx = x is mental Tx = x is a thought 
Px = x is physical S x  = x is in space 

Every thing is physical. 
Every thing is mental. 
Every thing is either mental or physical. 
Every thought is mental. 
Every thing physical is in space. 
Every thing is non-physical. 
Every thing mental is non-physical. 
Every thing is both physical and in space. 
Thoughts are not physical. 
Every thing in space is physical. 
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2.  What is the expansion of each of the following for a, b? Also, work out the truth value 
for each formula in world (i) and in world (ii) (by working out the values of the expan- 
sions). 

(a) (Vx)Fx 
(b) (b'x) -- Gx 
(c) (Vx)(Fx 3 Gx) 
(d) (Vx)(Fx 3 - Gx) 
(e) (Vx)(Fx V Gx) 
( f )  (Vx) -- (Fx V Gx) 
(g) (Vx)(Fx & -- Gx) 

3. What is the expansion of each of the following for the items listed beside it? 

(a? (Vx? Sx a, b 
(b) (Vx) -SX a, b ,  c 
(c) (VX)(FX 3 GX) a, b,  c 
(dl (VY)(FY 3 GY) a, b ,  c 
(el (VY? TY a, 6, c ,  d 

4. What (expansion) are each of the following equivalent to in world (i) and in world 
(ii)? What is their truth-value in (i) and in (ii)? 

(a) (Vx)(Fx V Gx) 
(b) (Vx)(Fx 3 Gx) 
(c) (Vx)(Fx 3 - Gx) 
(d) (Vx) -- Fx 
(el (Vx)(Fx = Gx) 

1 ~ ,ees ! ;i ' 
d L A T ~ . ~ ~  a 

b 

In the world a, & set out in table E we see that (1 8) is true. 

FU v ~b (1  8) 

Now look at (19). 

( 3 ~ )  FX (19) 

The 3 is the existential quantifier. (3x1 is read as A t  least one item, x, is such that. So 
we read (19) as: 

A t  least one item, x, is such that it, x, is F. 

or At least one thing is a farmer. (20) 

Now (20) is true in table E precisely because (18) is true. (18) is the expansion of (19) 
for a, b. 

In the same world it is clear that (21) is true 

(Fa & Ha) V (Fb & Hb) 

Now consider (22) 

(3 x)  (Fx & Hx) 



which reads as: 

At least one item is both a farmer and happy 
or  At least one farmer is happy. 

(23) is true in table E precisely because (21) is true. In world E (23) means 

either a  is a happy farmer o r  b  is a happy farmer. 

(21) is the expansion of (22) for a, 6. 

Existentially quantified formulae expand t o  disjunctions. (19) expanded t o  a disjunc- 
tion of SP atonlic wffs. (22) expanded t o  a disjunction of  conjunctions. Each disjunct, in  
each case, is an itemization of t h e  scope o f  t h e  existential quantift'cation. 

We now list expansions for (19) and (22) with others. 

( 3 x )  F x  - - - Fa V Fb 

( 3 x )  -- G x  - - - -Ga V -Gb 

( 3 x ) ( F x  & H x )  (Fa & Ha) V ( F b  & H b )  
( 3 x ) ( F x  3 H x )  E (Fa 3 Ha) V ( F b  3 H b )  
( 3 x ) ( F x  V G x )  -- (Fa V Ga) V ( F b  V G b )  

Here also we have a clear pattern: 
Existentially quantified formula Disjunction 

negation disjunction of negations 
conjunction disjunction of conjunctions 
conditional disjunction of conditionals 
disjunction disjunction of disjunctions 

We ilow set out one example of an expansioil, but  for a four item world, a, 6, c, d. 

Existentially @antified fonnulae exparad to disjunctions 

Whai liappens, ther;, for ooe item worlds? The answer is of stunning simplicity, and is 
best set out at first by exampies. Assume that the one item world has a as its one item. 

( ' d x )  F x  - - - Fa 

(3x1 Fx - - - Fa 

i V x ) ( F x  & Hx) Fa & Ha 
( 3 x ) ( F x  & I f x )  EE Fa & Ha 
( 'dx ) (Fx  3 G x )  r Fa 3 Ga 
( 3 x ) ( F x  3 Gx) = Fa 3 Ga 
( 'dx )  - H x  - - - -Ha 
( 3 x )  --Hx - - - --Ha 

The expansion. in each case: is simply the one and only possible itemization of the scope 
of the quantification. 

We can now set out the truth conditions for quantifications in finite worlds: 

( V x )  cu is true in an n membered world iff the conjunction of all n itemizations 
of a is true. 
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( 3 x 1  a is true in an Y Z  membered world iff the disjunction of all n itemizations 

of a: is true. 

We have : 

World 

a 
a b  
a b c  
a b ... 

wltere @x is the scope of the quantification. (We will see later, 5 1 1.2, that x  nus st occur 
"free" in ax). 

I .  Given the following dictionary symbolize the propositions below. 

&/x = x is mental 
P x  = x is physical 

Tx = x is a thought 
Sx = x is in space 

(a) Some thing is a thought. 
ib)  Something is not in space 
(c) Something is either mental o r  physical 
(d) Sometliing in space is physical 
be) Somethilig in space is not physical 

?! 7-7. -  ,. - -  
i. %,;a; is the ex~ans io r ,  i 3acn 31 the i'?il2wing for :l, S? Also :r~o;J< out rhr: truib.-irak~..e 

af eeck f n l m ~ ~ l a  ;r_ (i) and in (i"!. 

;?.) (3;:xb ,- , . , I  7;: , - 
I 2 I , 9 - 

(iJ; (3x';ci75: & 2 ~ :  
(r.: -'/ (3x)(Fx '\! c;x) 

- 
(d) ( j x ) ( F x  3 C-x) 
( e )  (3x)lF'n' & - Cx] (ii) 
( f ~  (jX) -,(Fx \/ cx) 
(9) ( 3 x 1  -(Fx 3 - C X )  

3 .  What is the expansion of each of the  following for the  items listed beside it? 

(a1 O Y )  -0 a, b ,  c  
(b) (3z) ( sz  & TZ) a, 6 ,  c 
(c) ( ~ Y ) ( S Y  & - TY) a, b  
(dl  ( 3 ~ )  -(SY 2 -TY) a, b ,  c  
(e) (3x)(Sx & Fx)  a, b ,  c, d 

4. What are each of the following equivalent t o  in world (i) and in world (ii)? What truth- 
value do they have in (i) and (ii)? 

(a) (3x1  F x  
(b) ( 3 x )  - Gx 
(c) ( ~ Y ) ( F Y  v GY) 
(dl (3z)(Fz $ Gz) 
(e) (3 x)(Fx & - Gx) 
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We now turn t o  some Inore complicated cases. So far we have considered only those 
cases where there is one quantifier and it is the main operator in the formula. Consider 
formula (25): 

- ( V X ) F X  (25)  

This formula can be expanded for a, b by  replacing the quantified sub-formula with its 
expansion. This gives (261, with the tilde unaltered: 

-(Fa & F b )  (261 

Similarly, we expand (27) for a, b t o  get (28) 

( ' d x )  S x  V ( V x )  Mx  
(Sa & S b )  V (Ma & M b )  

The expansion of (29) for a, b, c gives (30) 

- ( 3 x )  - F x  
-( -Fa V -Fb  V -Fc)  

Finally. for this section, we consider (311, which contains an individual constant, a 
within the scope of the quantification. 

( 'dx ) (Fx  3 Ga) ( 3  1) 

Two things are t o  be noted about such formulae. First, the individual constant does not  
change in any itemization. Second, one of the items for which this formula is expanded 
must be a. The expansion of (31) for a, h, c is (32). 

(Fa 3 Ga) & (FF 3 Ga) & ( F c  3 Ca) ( 3 2 )  

Only the 3: is replaced. 

- C 
1 1  i v e  were asked tc expand (3 1) for bp  c, then one or other o f t h e  i:,e:l?: 5 2nd i- . . 

ajsc. be pam-fi '.13') :"ell. The exj;a!qs-oq 96'31) S J ~  b. is (331; i I 

("3 > Gc/ & {;Tc > taxi (33) 
- "  . ,  
i r  are fioi Lt.id ii.lie';hei- G b 0:. a ,s c t i en  -ge i i i~gil t  not be abie ts Geieri~?ine ihe 
value of (3:5), arrd nor i.f ( 3  1). Consider che lhicild: 

If e is b then ( 3 3 )  is true. 
If a is c then ( 3 3 )  is false. 

So. t o  avoid confusion, we generally make clear what is what when individual constants 
appear as in (3 1). 

So far we have always spoken about expanding a fornzula for some constantfs). In 
some cases we will use eliminating the quantifiers in a  fornzula for some constantls) t o  
mean the same thing. 

One final corninent: In this section we have not considered any form~lla where one 
quantification is in the scope of another. We will leave such formulae until later. We will 
not consider them in the next section either. Nor have we considered formulae containing 
propositional vaiiables or propositional constants. These we also leave to  a later section. 
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EXERCISE 10.5@ 

1. Given the following dictionary symbolize the propositions below: 

a = Antares b = the number two 
Px = x is physical Px = x is an idea 
Mx = x is mental Sx = x is in space 

Antares is in  space. 
The number two is not in space. 
If Antares is in space then something is in space. 
If the number two is not  in space then not every thing is in space. 
Every idea is mental. 
Something is mental and something is not.  
If Antares is physical then Antares is not  an idea. 
Not every idea is mental. 
Not  every idea is non-physical. 
Either the number two is in space or  not  every thing is in space. 

2. Eliminate quantifiers in the following for the listed items 

(a) --(3x1 -Fx a, b 
(b) -(Vx) -Fx a, b 
(c) - (3x)  -Fx a 
(d )  --(Vx) --Fx a 
(el (3x1  Gx 3 (Vx) Gx b 
(f)  (3x1  Gx 3 (Vx) Gx b, c 
(g) (Vx) - Gx 3 (3x1  - Gx a, 6 
(h) (Vx)i@x 3 Fx)  3 jVy)( -0 3 -Gy) a, b 
(i) (Vx)(Gx 3 Fx)  3 ( 3 y ) ( G y  & F y )  a, 5 
i j )  (3x)(Fn B Gab c, b ,  c 

(k) (3x1 Fd: & Ge a, E ,  c 
(i> ( 'p rx ] ( ,F~ :  3 Gc; a, b 

( f i ~ )  (b;c) Fx 3 Ga a, b 
(n) - ( ( V x ) l " s c 3 ( 3 x ) G x )  a, b 
(0). - (  <3x)(Fx  & Gxj & (Vx) --.Fx) b, c 

* 3 .  Eliminate quafitifiers in the foliowing for the  two items: b, c 

(a) ( j x ) ( ~ x  V Ga) 
(b) (Vx)(Fx V Ga) 
(c) (3x) (Fx  V Gc) 
(d) Gb & ( j x ) ( F x  V Fa)  
(e) (VX)( --FX 3 Fa) 

Some of the formulae above will be true in  the  world set out below, even in the  absence 
of complete information, and some will be false. Some will be left undetermined. Which 
are which? Explain your answers. 
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Puzzle 10 A villain known as "The Puzzler" has captured three students, 
a, b and c ,  who are well known for  their brilliance at  logic. 
Although a has normal vision, b has only one eye and c is 
blind in both eyes. The Puzzler tells his captives that he has 
five headbands, three blue and two green, and he then places 
one of these on each of their heads in a way such that  none of 
the students can see the  colour of their own headband. He 
then tells them that if any of them can correctly guess their 
own colour he will set them all free; but if any guess the wrong 
colour they will stay imprisoned for good. a looks at his fellow 
captives and admits: "I don't know my colour". Then b also 
looks about him and confesses: "I don't know my colour 
either". At this point c smiles and correctly gives his own 
colour. Somewhat impressed, the Puzzler releases them and 
remarks t o  c :  "Your logical eyes see very well". 

What was the colour of c's headband, and how did he deduce it? 

I 

a b c 

10.6 SUMMARY 

Monadic Quantificarion Tlzeory (b1QT) silbsulnes PC, a i ~ d  also provides a means of 
dealirlg with simple notions of qciatztitj~ (ril. some; none) as well 2s pr.opc?ties of ind~iiid- 
uai I~ : J~ ' .Es .  11s iacguagc is MQL. 

". bmg-,iar Lef-rtfice <i.i:. :&[:ie3~e :r i: ;,;lgie ite?;?: is ;i;ade t;y mczti: o f  ; ! j - g l &  ;3:."lL 
. - 

-~f.!l:;ci; ;l:î :ay ne . pr1,3cj L', :ia,r?:es {e.g., .-A?i^:an"), si:2gliii~i p!(:i;ol.:,.zs je.g., c"ie") o; deizfiiLe 
descripitons (e.g.. " the Pope"). : L ~ ~ I I S  may be real or fictions!. With singiliar reference, the 
i t e i~ l s  are said to be logical subjects: 31id the properties or reii.tions ascribed tc them are 
Io~Jcai pi~-.d;.=ales. Phrases i,\ihlch e:>:Di-ess q~ant.-~y aie ~aJe,d q ~ ~ ; f i ~ t $ ~ i ~ ,  ')Jim as.2 "evtqi" 
are u ~ i ~ ~ e r s n l  quantifiers, while ""some" a d  '"at ieast one" are particaiar, 02-  exisfen:lni, 

quailtifieis. When quantifying over discrete items we will read "'some" as "'at least one" 
unless it is obvious that further information is intended (e.g., "more than one", "not all"). 

In the folIowi11g Engiisl-i language square of opposition, four types of proposition are 
represented: A (universal affirmative); E (universal negative); I (particular affirmative); 
O (particular negative). Each proposition is contradictory to  (and hence equivalent to the 
negation o f )  its diagonally opposite partner. 

Every A is 3 Ax E N o A  i s 3  

SomeA i s 3  I 0 Some A is not B 

MQL adds the followillg t o  PL: 

individual constants (ICs) a, b ,  c,  ... 
individual variables (IVs) X, Y ,  Z ,  ... 
predicate constants A ,  3 ,  C, ... 
predicate variables F,  G ,  H, ... 
quantifievs b, 3 
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ICs and IVs are collectively called individual letters, and predicate constants and predicate 
variables are predicate lettevs. The term "individua!" should be read as "item", and within 
the context of MQT the term "predicate" should be read as "property". Let v denote 
any IY2 s denote any individual letter, and S denote any predicate letter. Then the fornia- 
tion rules of MQL are as for PL with the following additions: 

B2M: Anything of the form Ss is a wff e.g., Fa 
V :  If a is a wff so is (Vv)a e.g., (Vx) Fx 
3 :  I f c r i s a w f f s o i s ( 3 v ) o c  e.g., ( 3 y )  (Fy & -/Vx) Fx) 

In (Vvja, a is said t o  be the scope of the quantificatiorz (Vvj. Similarly far (3 v)a. So, 
like - , quantifications have ~ilininlum scope. 

We stipulate that each world costains at least one item: the set of items in a world is the 
domain of that world. Set diag~ams may be constructed for any given world: on such 
diagrams MIe use F to deilote the set of items with property F,  and F'  t o  denote the 
complement of F (i.e. the set of items which d o  not have the property f l .  Worlds may 
also be described by  tables: here 1 or 0 is entered in a cell t o  indicate that the item on  
that row has or hasn't the property on that column. 

V is a universal quantifier. The quantification (Vx) may be read as "'For all x", or more 
strictly as "'For each and every item x, taken one at  a time". For  instAnce, if '%k" 
denotes " x  is a f:og" then (VxbFx means "Every thing is a frog". Here "thing" means an 
item in the world. 

3 js az existential quantifier. The qcrantification (3x)Fx  may be read as "Some item x 
is s u c h  fj-pt" where b6~w-f i r9  '--;. liar the minimal reading "at ieasnone". For instance, if 
6 '  7 Fx " "  c!er?ores "x i s  a frog" tker; (3x)Fx 1-ciear.s ''SOEF: thing j .~  a frog9'. 

P - -  a s . ~ -  

ie?-slce: 2 ':?ril?r;;z pe w;;ere fit; c?,:ccrr.;rc- 3: ;; i:: i i?e scope 3: 2 qi~afiiificet;=:;. 
T-,p.; , , 

" ' .  
a l,,.,. qc, ';,-#c: YJSUII 3. r ; ; ' ; ~ ~ i ; ~ ~ : i ~ : ~  ~i f ~ : r  ,; . :: :;"I" 2-21 j?e~?j~!:i jcg sf 6~ VI~:;: :~":ge~; ;I.> 

. n a- 

Q. exafi?y;;e, 1: @ = ,-*) -3 c;;, t k ~ . r  (:)o : .Ail 1: & :? ~ ~ ; y  .fjrite ;i~s;yic, r; q_ial;iifJe< 
. . foDnuiz equbraie-i ts ; t i  p - p ~ ~ ( i 3 t L 1 ~ ~  --*-,-- ir; :;:;_at ~vcrld. Ufiix~rsally q:laa;lified fc>rrfii~lae 

e x p n d  to .:o~,kmcfio~~s of their itemizatior-ns, and existential!ji quantifiecl for%.ulae 
expsnd to  ~ I i s j z i ~ c t s  of skerr iteinizations. 

- uomain ('.'XI bx (3x1 ox 

For example, in any world of two items a and b we have: 

(Vx) (Fx 3 Cx) (Fa 3 Ga) & (Fb 3 Gb) 
(3~)jFy = G y )  a (Fa - Ga) V (Fb Gb) 



1 1.1 TRANSLATION 

It shou:d. by  ROW, be fairly clear how the syrnbols of MQL are t o  be used for transla- 
tion. This section will add a few hints and some cautionary notes. 

Care must be taken when symbolizing the logical predicates in propositions. For 
exampie (1) is equivalent ( 2 ) >  si; (:) can !7e 'ira~zs!eted a s  (3) .  

Namu is e small whale, 
Xamu is a whale and Namu is smali. 

(4) should be translated as (6). not as  (7). 

Let 12 = Namu 
Sx = x is a small whale 
Wx = x is a whale 
Ax = x is small 

If we also have formula (8). the relationsllips are that (4)  is ey~:.ivalent to  (69, and (4) 
implies 48). (4) does not imply (7). 
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We have already seen that '-some" in~plies the existential quantification in MQT. A 
similar procedure applies t o  the following: 

a couple (a couple of things are F) 
a few (a  few things are F) + ( 3 x )  Fx  
many (many things are F )  
most (most things are F )  

But note that the converse implication fails. 

I t  is often useful t o  regiment ordinary language before symbolizing. Many quantified 
propositions can be re-expressed in sentences of A, E, I or 0 form. 

A Every ... is ... (VV)(  ... 3 ... 1 
I Some ... is ... ( 3 ~ ) (  ... & . ~ .  1 
E Not even one ... is ... - ( 3 ~ ) (  ... & ... ) 
0 Some ... is not ... (3 v ) (  ... & -... 1 

The A and I forms are very useful. It 1s then a simple matte1 t o  symbolize. For example, 
when asked t o  symbolize (9) we first put ~t into A folm (10). 

Hollow spheres are all green. ( 9 )  
Every sphere which is hollow is green. (10) 

The phrases "which is", "'who is", 2nd "&at is" often indica:~ conjunction. So, the ante- 
cedent of this universally-quantified conditional, (101, is a conjunction. With the dic- 
tionary below we get (1 I )  

Let Sx = x is a sphere 
hix = x is hollow 
Cx = x IS green. 

A ~ ~ j , > n e  :\ihr, i 2 s  fu;? is ,!:i-!-~ a bi,2r?le s; a red-he;.d, (. ,; --\ LJ 

F v ~ T ~  person 7.i~i;o Lras fnc  i~ eirf.,er a ilofide or a red-head, (131, 
?"- 

J h e  aniteceaent of this universally q a n t i f i e d  co~lditionai is a cornjui~ciion and the conse- 
quent is a disjan;;iiou. With the  diciicnary below we get (14). 

Let Px = x is a person .Fx = x has fun 
Bx = x is a blonde Xx = x is a red-head 

( V X )  [(Px & Fx) 3 ( Bx V R x ) ]  

In like fashion, we regiment (15) t o  I form t o  get (16). Using the dictionary above we 
translate t o  (17). 

Some hollow spheres are green (1  5) 
Some sphere which is hollow is green ( 1  6) 

( 3 x ) [ ( S x  & Hx) & G x ]  ( 1  7) 

It  is often best t o  regiment the E propositions into the form of  a negated I. So (18) 
becomes (19), which then translates as (20). 

No hollow sphere is green 
Not even one sphere which is hollow is green 

- ( 3 x ) [ ( S x  & Hx ) & Gxl 

Many quantification phrases of English contain within them some property. This is 
clear with "everybody" "somebody", "everyone" and "sorneone". The property of 
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being a person is built into the quantification. Thus we see that (21) and (22) are equiva- 
lent t o  (23): 

Somebody is tall 
Someone is tall 
Some person is tall 

Similarly (24) and (25) are equivalent t o  (26) 

Everybody is tall 
Everyone is tall 
Every person is tall 

The same can be said of "thing", "time" and "place" in "something", "sometime", and 
"somwhere". 

Such properties need t o  be taken into account when translating into MQL. We mostly 
ignore the term "thing". But the  others are usually taken into account in  one way or 
another. 

EXERCISE B 1.1 

In questions 1 3  translate into MQL using only the dictionary provided. 

1.  Ox = x is over two metres tall Mx = x is a machine 
Px = x is a person Bx = x has blue eyes 
Zx = x is iatelligent 

(a) Some things are over two metres tall. 
(b) Some things are not  over two metres iali. 
( 2 )  pdoi euerybo&y is over i.i~c. metres "ali;. 

(d )  Some 3-.e is eyer t , 7 ~ ~  ixetre5 fail. 
( e )  Solme cpe  ;with blue is Gver PJJS metres -;all. 
( f )  Everyme has blue eyes. 
(g) Everyone has blue eyes and is over two metres tall. 
jh) Everyone X A ~ F ? ~  has blue eyes is over 'rwc n~e t res  tail. 
(i) N o  one who has blue eyes is over t-a10 metres tail. 
(j) No one who is over "ro metres tall is intelligent. 
(k) Some one who is intelligent is either blue eyed or over two metres tall. 
(1) Some machine is intelligent. 
(m) Some machine which is over two metres tall is not  intelligent. 
(n) At  least one intelligent machine is a person. 
(0) Machines d o  not have blue eyes. 

2 .  Fx = x is fruit 
Dx = x is delicious 
Ax = x is an apple 
Vx = x is a vegetable 

Nx = x is nutritious 
Ox = x is an orange 
Cx = x is good t o  eat 
Jx = x is juicy 

(a) Some fruit is delicious 
(b) Apples are all delicious 
(c) Some vegetables are not delicious 
(d) Some vegetables which are not delicious are, nevertheless, nutritious. 
(e) Apples are not vegetables. 
(f)  Oranges are delicious and nutritious 
(g) Some vegetables are not nutritious. 
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(h) Not everything which is good t o  eat is nutritious. 
(i) If an apple is delicious then it is good t o  eat. 
( j )  If fruit is juicy then it is not a vegetable. 
(k) Apples and oranges are delicious and nutritious. 
(1) All vegetables which are not good t o  eat are nutritious. 
(m) All fruits other than apples and oranges are juicy, delicious, and nutritious 
(n) If something is delicious then it's good t o  eat. 
(0) Some fruit is juicy and some is not .  

3 .  Px = x is a proposition Cx = x is contingently true 
Tx = x is true Wx = x tells us about the  world. 
Fx = x is false Nx = x is necessarily true. 

(a) Propositions are either true or false. 
(b) A thing is true if and only if it's not false. 
(c) No proposition is both true and false. 
(d) Some propositions are neither true nor false. 
(e) Some propositions are true. but not necessarily true. 
( f )  Propositions which are true, but not necessarily so, are contingently true. 
(g) Only true propositions tell us about the world. 
(h) None but the true propositions tell us about the world. 
(i) Necessarily true propositions are not  contingently true. 
(j) If a proposition is not necessarily true then it is either contingently true or false. 

" " 3  

I J !bs l , .  2:lr.;d L t d i  ..-.-:- , a ,  %~f , i eS  ;L*.l -2CC;LiY 1:: x- .L,.: - pi f f s  ?li,?i.- 3Ui~i?t :  ;1:9 >:,'ne - .. 
'_re;;. Lr? "e <&<y~jiifiig e.<ampie:; l$4c ba ;~e  ~ a & ~ l i n e d  s::cir case:: 

A q ~ 9  .F;: .- .% (3x1 CX> ; \ 'd:) J Y  1 Gy 3 (;y - 

Each underiiiled individrral a~ariable oitcur; free where unclerlined. ,%I  he others occur 
bound. But furthermore, if an individual variable is within the scope of a quantiiication, 

but not a quantification wit11 respect t o  it; it still occurs free. 411 the following examples 
we have underlined the free occurrences. 

(?x)Fy (VY )(FY 3 Guf !3y)(?z)(i;;v $(. Cz & H x )  

The individual variables inside the quantifications occur bound. 

Definition: Any occumence of a n  individual variable v either in, or within the scope of, 
a quantification witla respect to v is said to be bound. An occurrence which 
is not  bound is said to be fee .  

If an individual variable occurs bound then it will be bciiifzd by a yurrrzfificu. Being bozlizu' 
by can be displayed with binding lines. F ~ I  example: 

(Vx)Fx 
U 

( ~ x ) ( F x  Pr. Gx) (Vy)(Fy 3 Cx) 
L - - - u  'Ci 

If we take the scope of a quantification w.r.t. v as a separate wff, then all free occurrences 



299 Section 11.2 

of v in the separate wff will be bound by the quantifier. We have set out four examples 
below. On the left is the formula, next is the scope as a separate wff with free occurrences 
underlined, next is the binding for the left most quantifier and on the right are all the 
binding lines. 

( V x )  Fx FX ( v x x x  (=  (V=Y 

(Vx) ( (Vx)Fx  & Fx) ( ( V x )  Fx & Fz)  ( V x z v x )  Fx & k x )  ( V x ) ( ( V x )  Fx & Fx) 

( V ~ ) ( F X > ( V Y ) F Y )  ( F x > ( V Y ) F Y )  (VX_)(FX~(VY)FY)(VX~X>(VY)FYI - 
(VY)(CY 2 Fx)  (Gy 3 Fx) (\JY)(GY - 3 Fx) (VY)(GY - 3 Fx) 

As a formula is constructed in an assembly line the binding which first occurs is the one 
which persists. Eater additions or reduplications of quantifications have no effect. For 
example: 

2.  (Vx)Fx I >  R V 

3 .  (3x ) (Vx)Fx  - 2 , R 3  

4.  x x ) (  3 ,  R V 

When a quantifier binds nothing in its scope it is a vacuous quantijier. The quantifiers 
added in the last two steps of the assembly line above are vacuous. 

If a formula has in it any free occurrences of individual variables it is an open formula. 
An open formula can be closed by the placing of quantifications to  the left, one for each 
i/:lj-lab!e i V h i ~ h  O C C U ~ S  fx-ee, If' ail the quantificatio-.~ so placed are universals -then we get 
i-I u ~ l a e p r ~ ;  c'lofure. I f  ail are existentials we get the existezrial closure For exr_mi?ple, n7e 
s.t Q U ~  (?pi:.{ f D - ~ ! i i 1 ~ i :  ' r )  ?he i5f.l and b ~ r h  cicscres Is "o~e r igj~t :  

4 : ~  & Gx (Vxj(.Fi: & Gx) 
( j x ) ( F x  & Gx) 

When the quantifiers are all of one kind it does not matter in what order they are added 
for closure. So we can universally close (Fx 3 Gy)  by either (Vx)(Vy)(Fx 3 Gy) 

or (Vy)('dx)(Fx 3 GY) 

Be careful - when closing a formula be sure to add any missing outer parentheses before 
adding quantifications. 

We also introduce a useful piece of notation: 

(F) is used to  denote any wff with an uninterrupted string of quantifications to  the left. 
There can be one or more quantifications and Q stands for either 'd or 3 . The following 
all have the form of (F). 



(3x)Fx  (Vx?(Fx 3 Gx) , ( V X ) ( ~ Y ) ( ~ ~  & GY) , (3x1  P , 
( ~ x ) ( V x ) ( ~ v ) ( V z ? ( 3  w )(P 3 (Gx 3 FYI? 

Note also that in (F), if a is well-formed strictly in accordance with the formation rules 
it  must be the scope of (Q a). 

1. Write down the scope of (VX) in the following expressions. 

(a) (VX)FX - GX 
(b) iVx?(Fx V ( ~ Y ? G Y )  
(c) (3y)(Vx)(Fx 3 ~ ~ Y ) F Y )  

2. Write down the scope of ( 3 x )  in the following expressions. 

(a) (3x)(Hx PI 
(b) - ( 3 x )  Hx 3 p 

(c) ( V Y ) ( ~ Z ) [ ( ~ X ) ( L X  & Lz) 3 (PY & Pz)l 

3. Indicate the bound occurrences of all individual variables in the following formulae 
by linking those occurrences which must refer t o  the same object. 

(a) ( j x ) ( F x  r Gx) 
(b) ( 3 x ) F x  = Gx 
(c) (3x)O"j) FY 
(d)  F x  & ( 3 x 1 6 ~  

( V ~ l I f b y  3 (VY) GY 1 
I S )  (3z)[ -- Gz V ( %)Fz] 
"(g) -,(Vy)[(3x) iirx & Gyj  3 (Vx)(Vy) Gy *(I+ ,I-, 63x):5 ,- , ~(1-7 -# 2 Gx) ( ~jx>.F>:j 

" P 

4. V/?:rl.-te o>"i;r_e fojjo;.,ip.; '.,:lrs 2nd ;;gdsjfille evsrr/ e= c,c~,:;.~eice ;;f ar:y ;rd>jiaG-al 
:iariahla. 

(a) 1% 

(;3) -Fx & (tdx)(fx 
(e) (Vx)Gx & Fx 
(dl  (Vz)((a;x & Fy)  3 Gz) 
( 2 )  (p & Fx)  3 (3x)Fx  
(f) F x  3 Gy 
(g) (~x) ( (VY)GY & (Gx & FYI) 

5. Write out both universal and existential closures of all the wffs in 4 

6. Write out the following wffs with the vacuous quantifications underlined. 
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1 1.3 NECESSARY TRUTH AND EQUIVALENCES IN MQT. 

We begin by distinguishing those formulae of MQL which are MQL-forms. When there 
is no dictionary, the formula is an MQL-form. In any MQL-form the predicate letters are 
predicate variables and the individual constants are pseudo-constants. Some formulae of 
MQL are sentences of MQL, i.e. they express propositions. Any sentence of MQL must 
have a dictionary for all its predicate letters, individual constants and propositional 
constants, and cannot contain any propositional variables (See 52.5.) 

The relationship between forms and propositions in MQL is similar to that in PL. (See 
84.3.) Some MQL-forms are true in every world. They are MQT-Necessities. Some are 
false in every world. These are MQT-Contradictions. The remaining MQL-forms are 
MQT-Contingent, Any proposition which has an MQT-Necessity for one of its forms will 
be necessarily true and is itself called an MQT-Necessity. Any proposition which has an 
MQT-Contradiction for one of its forms will be necessarily false and is itself called an 
MQT-Contradiction. Any proposition whose explicit form in MQL is an MQT-Contin- 
gency will be MQT-Indeterminate. We now set out the definition ofMQT-Necessity for 
forms. 

Definition: A form is an MQTNecessity iff it is true in every world. 

For example: consider (1) 

(b'x)(Fx 3 Fx) 

In order to find out if (1) is an MQT-Necessity we could: 

First find out if it is true in every one-itern world. This is done by testing its expansion 
fo: every one-item world. We cari do this by simply nanztng the one itern "a". So, all we 
have to tesr is (2). 

_Va 3 ;Fa /* \  / :  

.-.I 

i~ (,.\ (L) 1s . a tautology then (1) must be true in every one-itern world. And so it is. 

Second. we Grid out if ( I )  is true in every two-item world. This 3s done by testing its 
expansioc for every two-i'rem world. We can do this by naming the two items in anjr two- 
item world: "a'' and -'b". So, all we have to test is ( 3 ) :  

(Fa 3 Fa ) gL (Fb  3 Fb)  (3) 

Since (3) is a tautology (1) must be true in every two-item world. 

Third, fourth, fifth, etc, we could go on. But, it is not possible to expand a formula for an 
infinite world. So, what happens when we want to find out whether (1) is true in any 
infinite world? 

Fortunately, there are three vital facts about MQT which we will use to simplify 
things. We now set out fact (A). 

A. An MQT-form is true in every finite world iff it is true in every infinite world. 

So, we only have to check finite worlds. This gives us the following result: 

A form is an MQT-Necessity iff all its expansions (for finite worlds) are 
tautologies. 
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Sad to  say, this still leaves us with the prospect of checking infinitely many finite worlds. 
But the other two vital facts limit the amount of checking even more dramatically. 

Let the number of predicate letters in a wff, a,  be n.  In (Vx)(Fx 3 Fx) n is one, since 
there is only one predicate letter: F. Now we set out the second vital fact (B) :  

B If every expansion of an MQT-form up to 2n items is a tautology, then every 
finite expansion will be a tautology. 

Since 2n is two for ( I ) ,  and both the one item and two-item expansions of (1 )  are tauto- 
logies, we may conclude that every expansion of (1) will be a tautology. So (1) is an 
MQT-Necessity. 

Fact B gives us a finite upper limit on the size of expansions we need to  investigate. This 
is a completely general feature of MQT. So we can reword our definition of MQT-Necessity 
to  build in this limit. 

If a is an MQL-form and it contains n predicate letters, then cu is an MQT- 
Necessity iff every expansion of cu up to 2" items is a tautology. 

So, to  test (4) for MQT-Necessity we need check only the one and two item expansions. 

- ( V X ) - F X  -- ( 3 x ) F x  (4) 

They are set out in (5) and (6). 

---Fa -- Fa (5) 
- a  - ( F a V F b )  (61 

Since both (5) and (6) are tautologies, (4) is an MQT-Necessity. 

To l e s t  (7) \lie need lock oaly at (8) ri;d (9). 
' , - -- ,/n.jp; = i3x) Fx 1 7 \  

1 / ;  

(9) is not a tautology; and is false when: 

So we have a counterexample, and (7) is not an MQT-Necessity. Tile counterexanlple is a 
two-item world in which one item is F, so sonlething is F, but one itern is not F,  so not 
every thing is F. (7) reads as (1 O), and ( 1  0 )  is clearly not a necessary truth. 

Every item is F iff at least one item is F (10) 

Fact B gives us a general upper limit on expansions, but look at (1 1). 

( V x ) [ F x  3 (Gx 3 Fx)] ( 1  1) 

Because there are two letters we have the prospect of checking the one, two. three and 
four item expansions. Things could get worse. There is a third fact which pulls the upper 
limit down even more dramatically for some wffs. We set out fact (C). 



C If a form is closed and o f  the form 
(e v )  ... ( Q  ~1 
where cu is quantifier free, 

there are no vacuous quantifiers, 
and there are n universal quantifiers, 

then the form is an MQT-Necessity iff every expansion up to n items or one 
item, whichever is larger, is a tautology. 

The following formulae match the description set out in the antecedent of fact C;  

('dx)(Fx 3 Fx) , (3x)(Fx & Gx) , (Vx)(3y)(Fx & Gy) 
(Vx)(Fx 3 (Gx 3 Fx)), ('dx)(3y)(jz)(~x 3 (Gy 3 F z ) )  

The fact is applied in the following way: 

Method: 1. Check that the form matches the description. 

2. Count the universal quantifiers. 

3. (a) If there are no u.niversa1 quantifiers we check the one-item expansion 
only. 

(b) If there are one or more we check out the one to n-item expansions. 

Example: Is (Vx) [Fx 3 (Cx > Fxj] an MQT-Necessity? 

1 .  It does match. 
2. There is one universal quantifier. 
3 .  Since (Fa 3 (Ga > Fa)) is a tautology, (Yx)[Fx 3 (Gx 3 Fx)] is an MQT- 

Necessity. 

Th r is an MQL,dom and contahs ii~: predicate letters, then o is an 
MQTContradicdon iff every expansion of o, up to 2" items is a PC- 
Contradiction, 

The expansions of (12) for one and two items are set out in (131 and (14). 

('dx)Fx E (3x) -Fx (1  2) 

Fa -Fa 4 13) 
(Fa&Fb) - (--FaV-Fb) (14) 

Since both (13) and (14) are contradictions, (12) is an MQT-Contradiction. 

Forms which are neither MQT-Necessities nor MQT-Contradictions are MQT-Contingent. 
For example, (1 5) expands for one and two items to (1 6) and (17). 

(Vx)Fx -- (3x)Fx ( 1 5 1  

Fa Fa (16) 
(Fa & Fb) = (Fa V Fb) (1 7 )  

Since (17) is contingent, (15) is MQT-Contingent. We need only one contingent expan- 
sion. 

But pause a moment. A proposition may have the form of an MQT-Contingency and 
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still be necessarily true. For example, with the appropriate dictionary (18) has the form 
of (19). 

All bachelors are unmarried 
( V x ) ( B x  3 - M x )  

In the world set out as follows (19) is false. 

But when B is the property of being a bachelor, and M the property of being married then 
such a world is impossible. It is a counter-model but not a counterexample. See 5 7.2. 

We now turn to a few of the simpler necessary equivalences of MQT. We have already 
seen that (20) is an MQT-Necessity. 

The following, (21) to (23) are all MQT-Necessities. Proof is left to the reader. Note that 
fact C cannot be used. 

All of (20) to (23) are known as Quantifier Negation or QN. 

A useful device for relating and contrasting formulae is the Square of  Opposition 
which we first met in 5 10.2 for ordinary language. 

It  is easy to show tha t the  diagonally opposite formulae are contradictories becaidse each 
is eyulvaient to the negsrion of the opposite: 

The other relationships can be shown to hold. But, at the moment we will defer the 
proof to the section on formal modal relations, 5 12.3. 

We also set out another form of the Square which is derived from Aristotle's system of 
syllogistic. 

2 .  ( V x ) ( F x  3 G x )  (Vx)(E;x 3 - G x )  

( 3 x ) ( F x  & G x )  ( 3 x ) ( F x  & -- G x )  

Once again we can use equivalences and replacement to show how each formula is 
equivalent to the negation of its diagonal opposite. 



A : All F  s are G  s  
( V x ) ( F x  3 G x )  
( V X )  - ( F x  & - G x )  p  3 q  . -- . " ( p  & - 4 )  
- ( j x ) ( F . x  & - G x )  QN 

Here the first translation is the one we are familiar with. The second comes from the first 
by  using the propositional equivalence shown, where we put  "Fx" for "p" and "Gx" for 
"q". The third comes from the second by QN. If you work through and understand the 
E, I, O cases below you will have the idea. 

E :  N o F s a r e G s  
( V x ) ( F x  3 - G x )  
( V X )  - ( F x  & G x )  p 3 - 4 .  - .  - ( p & q )  
- ( 3 x ) ( F x  & G x )  QN 

I : Some F s  are G  s  
( j x ) ( F x  & G x )  
( 3 x 1  - ( F x  3 - G x )  p & q  . G .  " ( ~ 3 - 4 )  - ( V x ) ( F x  3 - G x )  QN 

0 : Some F  s are not G  s 
( 3 x ) ( F x  & - G x )  
( 3 x )  - ( F x  3 G x )  p & - q  . = .  " ( P  3 4 )  - ( V  x ) (Fx  3 G x )  QN 

Note that only one of the formal modal relations from the first square of opposition sur- 
vives in the second square. MQT-Contrariety, MQT-Implication, blQT-Sub-co~?trariety 
have all vanished. 

- .  
i t  has gfte:: beer? argttsd that in arui i~ary language tile A IE 1 and 0 ssqlrare of ogjposi- 

., : $- nas 211 th: yeiatisgs set oiJt in 3 z b o ~ e .  'These a;-e 1 ~ s ~  3fi i:rtnslatic.n i::te jb4QL. 
Hi;deed. i c ; ~ a  tha;: 

Evelpy P; is G + b ' d x ) ( F ~  3 Gx) 
]]To F is (; + (VX)(F>: 3 mL2.x) 

then it is clear that  tire failure of the MQL A and E I'=rn;ulae tc be MQT-Contrary does 
not show that the English A and E are not contrary. Mso the failure of  the MQL A and 
E t o  MQT-imply the MQL I and 0; respectively, does not  show that the ordinary lang- 
uage implications fail. 

Why is it so? Work it out  for yourself by  looking back t o  Chapter 7. 

Sub-contrariety is more difficult. because most would agree that: 

Some F is G  fi ( ~ x ) ( F x  & G x )  
Some F  is not G +* (?x ) (Fx  & - C x )  

In this case. failure of sub-contrariety in MQT should show failure in English. 

Aristotle. in his logic (See Appendix I ) ,  assumed the contrariety of A and IE and the 
necessary i~nplication of I by A; and of 8 by  E. He seems also t o  have assumed the sub- 
contrariety of I and 0. Aristotle's assumptions have been accounted for by what is called 
the Existetztial Viewpoil~t. If such assulnptio~ls are abandoned in favour of what holds in 
MQT, in square 2, then we have what is called the  t1j)pothetical Vie~vpoilzt. 
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NOTES 

The three vital facts, A to C. follo~v froni theorems in 54.6 of Alonzo Churcli's Int~oductio~z to 
.Rlatlzematical Logic 1701. 1 .  We have set these facts out in such a way that students will look not only 
at the upper limit expansion of a Corm, because it may be possible to find a counterexample in an 
expansion for a smaller world. If the expansion at the upper limit is a tautology, then, of course, the 
formula is an MQT-Necessity. 

EXERCISE 11.3 

1 .  Test each of the following wffs of  h4QL for  MQT-Necessity 

(a) ( g x ) ( ~ x  V -- Fx)  
(b) (Vx)Fx 3 (3x)Fx  
(c) - ( 3 x )  - F x  r (Vx)Fx 
(d) (3x) (Fx  & Fu) = ((3x)F.x & Fa) 
(e) (Vx)(Fx V Fa) E ((Vx)Fx V Fa) 

2. Show, by eliminating quantifiers, which of the following is a counterexample to the  
formula beside it. 

(Vx)Fx E (3x)Fx  

( ( 3 x ) ~ x  & (3x)Gx) > (3x) (Fx  & Gx) 

3. Let: a = Anne 
b = Bruce 
c = Chris 

R x  = x ran 
Sx = x ran swiftly 
Dx = x i s a  dog 

Cx = x cheered Ax = x is an animal 
L x  = x cheered loudly 

Given the dictionary above, which of  the  following tables describe possible worlds, and 
which do not? You will have t o  use your logical intuitions. 



*4. Write out the version of fact B which would apply to MQT-Contradictions. 

1 1.4 VALIDITY IN MQT 

The definitions of validity given in 54.3 are colnpletely general. Our main interest in 
this section is with the validity and invalidity of argument forms, in particular MQL- 
a~gun~ent-fivms. In any finite world every MQL-argument-form has an equivalent argu- 
ment-form which is found by expanding the premises and the conclusion. We will call 
this the expansion of the argument-form. In MQT we need take account of finite worlds 
only, because of fact A .  

DeGnition. An MQL-argsameant-fom is valid iff all its expansions are valid. 

Expansions of MQL-argument-forms can be tested for validity in PC. Consider argument- 
form (1). 

- (VX) Fx Not every item is F 

. ~ ( g x )  -dp';; . . At least m e  item is non-F. (:) 

( 3 )  is valid in PC. 

The second ofthe facts about MQT. fact B, set out in 5 11.3. transfers across to argument- 
forrns to give a finite upper limit on testing for validity. 

If an MQE-argument-fom contains as predicate letters, then the argu- 
ment-fom is wlid iff every expansion of the argument-form up to 
2n items is PC-valid. 

Since argumer~t ( I )  ?lac one predicate letter and is PC-valid for one and two item expan- 
sions. it follows that i 1) is MQT-Valid. 

Example (4) is invalid because its expansior~ f ~ r  iwc  items is invalid. 
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So we can generate the following counterexarnple: 

Fact C,  as set out in 5 1 1.3, provides a further upper limit on expansions for argument 
testing. To apply fact C here we stipulate that the argunle~it-form meets the Short C ~ i t  
Condition (SCC). 

SCC: Each premise and the covzclusion nzust have no more than one quaizttfier, 
and if there is a quantification it must be The main operator. 

If the argument-fonn passes the SCC, we then count the number of existentially quanti- 
fied premises, and add 1 if the conclusion is universally quantified. Tlle resulting number, 
or 1 if the nuniber is zero- gives the upper limit on the expansions needed to show 
validity. 

Method: 
1. Check that the argument meets SCC. 

2. Count the existentialiy quantified premises; if the conclusion is universal- 
iy quantified, add 1 .  

3 .  l a )  i f  the tsta! f ~ o m  s t e p  2 is one 31. zero, c!:eck z;gurnefit its 9 ~ :  

!ten: expanslo!:. 
. * fi'~ !f t i ~ ~ a i  "ram 5i.c 2 is greater  rhzr-, ore ,  ci.eck expansroi?s _;;or- 

, > ' ,P  J L - ; ;  j-[; : f < $ { f  ,-~,--+ - 
,,.i., , u.,.... - l L l L ! u L > "  

* - y(: :*j .i~si ti:,: fc:;>17J:.>g ~ : ~ ~ - ; ~ ) ? $ ~ t ~ ; < ~ : * : - .  ,,A;:, iL,$l>I< L;>:7, 

s.2: a:>;r: l?f&e c L :  

-. 
(VX)(P,~>: 3 GI< j 1-3 3 C:/i 
!Vx)(C;x 3 j?x) Gg 3 A$Ta 

..~ (Vx)(J'x 3 :2rx; .~~ Fa 3 Ha 

The argument-form is MQT-Valid. because our count gives I .  and the one-item expansion 
is PC-valid. 

Apart from this short cut, and in some cases with i t ,  the search through expansions can 
be very inefficient. More generally efficient methods are available, especially in the form 
of trutb-trees. Diagrams can also be used. We will look at both in later chapters. 

Finally, we must take note of the difference between the invalidity of an argument- 
form and the invalidity of an argument. 

When we test an argument, not an argument-form, we cannot be sure we have a coun- 
terexa~nple until a countermodel is seen to be a possible world. Consider the followilig 
example : 

All bachelors are male. All unmarried men are male. So, all bachelors 
are unmarried. 

This synibolizes as: 



(Vx)(Bx 3 Mx )  
(Vx)(- W x  3 Mx )  

. (Vx)(~x 3 - Wx) 
To test this we need only test:  

Ba 3 Ma - Wa 3 Ma 

Bx = x is a bachelor 
Afx = x is male 

W x  = x is married 

In MQT we can set out the following purported counterexample, or countermodel. 

Since this does not describe a possible world, it does no t  demonstrate the invalidity of the 
argument. It is a countennodel but not  a counterexample. 

EXERCISE 11.4 

1. Test the following argument-forms for validity. If any is invalid set out a counter- 
example. 

(a) (Vx)(Fx 3 Gx) (f) (Vx)(Fx 3 Gx) 
(Vx)(Hx 3 Gx) (Vx)(Hx 3 - CX) 
(Vx)(Fx 3 hrx j .'. (Vx)(Fx 3 -Mx) 

(b) (Vx)(,% 3 Gx) ( 8 )  (3x)(Fx &: Cx> 
< ~ x ) ( G x  & iYx) (v-c)(G:L 2 H3[> 

,~ (3x;{jvx & *:;>;) , " ~ , ,x 2 ;: y2r>t &, ;<;cj 

2.  Translate the following arguments into MQL using only the dictionary provided. Test 
each for validity, and where necessary distinguish between MQT-Validity and validity. 

(a) Some sound arguments have been used in public debate. Sound arguments are all 
worthwhile. So, some arguments used in public debate are worthwhile. 
(Sx = x is a sound; U x  = x has been used in public debate; W x  = x is worthwhile; 
A x  = x is an argument.) 

(b) Some policies rend t o  centralise authority. All policies require carefui planning. 
Sc,  some things which require careful planning tend t o  centralise authority. 
(Px = x is a policy; Cx = x tends to centralise authority; Rx = x requirer careful 
planning.) 



ic)  Since iril the crates from the terminal are stored in the shed, and some hexagonal 
crates are stored in the shed, it follosvs that some of the crates from the terminal 
are hexagonal. 
(Cx = x is a crate from the terminal; Sx = x is stored in the shed; Hx = x is a hexa- 
gonal crate.) 

(d) Some average students will be almost certain t o  pass. Why? Because any student 
who works very hard will he almost certain t o  pass, and some average students 
work very hard. 
(Ax = x is an average student; Px = x will he almost certain t o  pass; Hx = x works 
very hard; Sx = x is a student.) 

* 4e) Every person whose vehicle is registered in either April or May, and only such 
persons, will be issued with petrol rationing coupons on Wednesdays. Jane has a 
vehicle which is registered in Apri:, but Susan's vehicle is registered in July. So, 
Jane will be issued with petrol rationing coupons on Wednesdays but Susan will 
11ot. 
(a = Jane; b = Susan; Ax = x has a vehicle registered in April; Mx = x has a vel~icle 
registered in May; Jx = x has a vehicle registered in July;  Rx = x will be issued 
with petrol rationing coupons on Wednesdays; Px = x is a person.) 

1 B .5 RESTRICTED UNIVERSES OF DISCOURSE 

It is sometiriles useful. when analysing argurrients or propositions, to assume that 
everything in all ~ i o r i d s  has a CQillI7_lGr: property. We might assume that every ite:~! is a 
I - c -  i , ; r ~ u i A .  ,,- In this sway - i x j i i  ~stricII 1'J~e w~ziverse of discn~rrsc to i?$?SGZs. Sv,cb a res ; r ic t i3~ 
:ho&d 12- c;/chT j3j' 8,: emti-y i~ the di::tl(;nary: 

k 1 leas1 olle person 
o r Someone 
51 Sornehody 

In general. if we have: 

Universe = Fs 

then: 

( V x )  means every F 
i?x)  means a t  least one F 

Before restricting the universe of discourse make sure that all quantifiers in an argunient 
will be able to bear the restriction. For example, there is nc worry with: 

A!1 propositions are either True or false. 
Xo proposition is both true and false. 
So, every propositioi: is either true o r  false hu t  not both. 
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Notice how every quantity is a quantity of propositions. So we could set up the diction- 
ary and symbolize the argument as follows: 

Universe = propositions ( V x ) ( T x  V F x )  
Tx  = x is true - ( j x ) ( T x  & Fx)  

- 
Fx = x is false .'. ( V x ) ( T x  $ F x )  

on the other hand, consider the argument: 

All cats are mammals, but no crabs are mammals. So, no cats are crabs. 

We cannot restrict the universe of discourse here to cats, or t o  crabs. 

Restricting a universe of discourse t o  some property, P, is not without logical effect. 
It is not simply a matter of convenience. 

Remember, in 310.4, we said that our worlds in MQT were norz-empty. Each domain 
contains at least one item. So if we restrict our universe of discourse to property P we 
are automatically assuming that there is at least one P in every world. If we do not 
restrict the universe it is an open question as t o  whether or not there are any items with 
the property P in any world. 

Restricting the universe of discourse can have a definite effect on the validity of 
arguments. Consider the argument: 

Since everyone is mortal, someone is mortal. 

We set out two dictionaries and the two symbolizations 

Univzvse = persons 
MX = x is xiz;,ortal 

- 

~ ' 

(3) is invalid. It 's ir~valid simply because there are no persons in the counterexample. 
If we added as a premise, the proposition (3x1 Px the11 the resulting argument would be 
valid. 

One way of summarizing this is to say that although our worlds are non-empty, our 
properties can be empty (unless there is a restricted universe of discourse). 

NOTES 
One way of giving individual constants existential import, and of making (3x) a tiuly existential 
quantifier, would be to restrict the ?iniverse of discourse to existing items. 

EXERCISE B 1.5 

1. Translate the following into MQL using only the dictionary provided. 
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Urziverse = Persons 
Px = x is perfect Sx = x is sensible 
Kx = x is kind hlx = x makes mistakes 
Tx = x is thoughtful A x  = x is altruistic 

Nobody is perfect 
Someone is kind. 
Everyone who is thoughtful is kind. 
Some people are thoughtful and some are not.  
If someone is perfect then he or she is kind. 
Everyone makes mistakes. 
Some people make mistakes even though they are sensible and kind. 
Everyone who is unkind makes mistakes. 
Altruistic people are always kind. 
People who are not thoughtful are not sensible. 

2. Translate a!! the propositions in 11.3 (1 )  into MQL but change the first entry in  the 
dictionary t o  : Universe = Propositions. 

3. Translate and test argument 1 1.4 (2(e)) but let Universe = Persons 

11.6 MORE COMPLEX CASES IN MQT 

Propositional variables can occur in formulae of  MQT. ( I ) ?  (2) and (3) are formulae 
of MQT. 

The expansion of ( I )  for world (A) is 44): 

(Fa V  F b )  3 p 

We simply eliminate the existential quantifier. (4) is false 

( 1 V O ) 3 O  = 0  

The expansion of (2) is (5). The elimination of the quantifier is more tricky here. Com- 
pare it with (4). Look at  the diffkring scopes of (3x1 

(Fa 3 P )  V  (Fh  3 p )  (5) 

(5) is true: 

( ! 3 O ) V ( O 3 0 )  = O V 1  = 1 

The expansion of 43) is (61, and (6) is true. 

P 3 ((Fa 3 >) & ( F b  3 q ) )  

The same applies for propositional constants. 



Let R  = It's raining. 
Fx = x  is a frog 

We would read (7) as (8) 

( 3 x )  Fx  3 R  
If there is a frog then it's raining 

To  test (9 )  for MQT-Necessity we check the expansions of (9 )  for one and two item 
worlds. Both expansions, (10)  and (1 1) are tautologies. 

( ? x ) ( ~ x  3 R )  3 ( ( V x )  Fx  3 R )  (9) 

( F a 3 R )  3 ( F a 3 R )  (10) 

((Fa 3 R )  V ( F b  3 R ) )  3 ( (Fa  & F b )  3 R )  (1 1) 

The formation rules for MQL allow for formulae like (12) and (13). 

( 3 x ) ( F x  & ( V Y )  G Y )  ( 1  2 )  
( ~ x ) ( ~ Y ) ( F Y  & G x )  (13) 

Our main concern is how t o  eliminate quantifiers inside the scope of  another quantifier. 
We begin by eliminating those quantifiers which have n o  quantifier in their scope. We d o  
this repeatedly until all quantifiers have been eliminated. For  example, we expand (12) 
for a, b. step by step. We eliminate ( V y )  t o  get (14) 

( 3 x ) ( F x  & (Ga & G b ) )  (14) 

Then we eliminate (3x1 t o  get (15). 

(Fa & (Ga & G b ) )  \/ ( F b  & (Ga & G b ) )  (15) 

We begin with tire inneii;30st u,-i;an?ifie~-s. With (13) we begin with (3y) to  get (161, 

(3 X ) ( ( ~ F ~  & Gx) \/ (Fb  & Cx)) I) 
.- Take cays. only ;i ~ ~ a s  repiaced in the scope. ":en vie gel- (1 7' , . 

('fi &: Ga) \/ ( F b  & Go)? 'J ( (Fa & C j j  V ($75 & G b ) )  ( 17) 

Compare (133. (16) an3 (17) again. When we itemize the scope of a qreantification only 
the vavliblcs boulrd by the qitai~rijier arz? .gepiace~f. 

\Ve have seen that some formulae of MQL contain vacuous quantifiers. When such 
formulae are expanded for any universe the vacuous quantifiers are simply dropped. For  
example, (19)  is the expansion of (1 8) for a, b. 

( V . X ) ( ~ Y  )Fx (1 8) 

Fa & Fb ( 1  9) 

We have also seen that some formulae are open. In order t o  deal with open formulae 
in MQT they must first be universally closed. So t o  expand (20)  for a, b we first close it  
t o  get (211, and then expand t o  get (22). 

F x  3 G x  ( 2 0 )  

( V x ) ( F x  3 G x )  ( 2 1 )  

(Fa 3 Ga) & ( F b  3 G b )  ( 2 2 )  

The principle behind treating free occurrences of  variables as though they were univer- 
sally quantified is that this is what happens in  arithmetic. We treat (23)  as though it  were 

(14) 
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when the universe of discourse is restricted to numbers 

1. Expand the  following formulae for a, b. 

(a) P 3 (3x)(Fx & Gx) 
(b) (3x)(P 3 (Gx & Fx)) 
(c) (Vx)(Gx 3 Fx) 3 Q 
(dl  (Vx)((Gx 3 Fx) 3 Q )  
(e) Ga 3 Cx 
(f)  (VX)(~Y)(P 3 (Gx & FYI) 
(g> (3y)(P 3 (Ga V (3x1) 3 Fx 
(h) ((3x) Fx 3 p) - (Vx)(Fx 3 p) 
(i) ((Vx) Fx 3 p) = (3x)(Fx 3 p) 
(j) (P 3 (Vx) Fx) (V~)(P 3 Fx) 

2. Translate the  following into QL using only the  dictionary provided. 

T = the train comes 1 = the  line 
Sx = x is sick Dx = x is destroyed 
Gx = x will go Px = x is a person 

(a) If the train comes then the sick will all go. 
It) Sf the train does not come then some of the sick will not go. 
( c )  If the irairri comes then the line is not destroyed, 
Id) S0m.i people are sat sick and they will gr.. 

(e: If everythiag which ~ i j j l  g c  i q  . deS*-~-'-': . L ~ - ? J , , . , -  +Lev L I ~ . ~  ti-,- - ~ - d  t:.--** - a ~ A - A  '.V;:I -- Can?;? 

(a]  cdy,) Fx .2 lFy  

{ b )  rx 3 ( V x j  .Fx 
( c )  ( ( V x ) F x  3 p) I- (?ij:)(Fx 3 p )  
* - {c.) Gx 3 Gx 
( e )  Gse 3 ( 3 x )  Gx 
(f)  (3x1 Gx 3 Gx 

4. Show, by quantifier elimination, which of the following are counterexamples t o  the 
associated formulae. 
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5 ,  Provide a counterexample lor each of the following formulae, verifying your counter- 
exampie in each case. 

(a) (3x) F x  3 j3x) G x  
(b) (Vx)(Fx V G x )  .>. (Vx) Fx V (Vx) G x  
(c) (vx)( FX V GX) r (Hx) FX 
(d) (Vx) Fx 3 (3x) -Fx 
(e) (jx)(Fx 3 Gx)  3 ( 3 ~ ) ( ~ x  & Gx) 

Puzzle 1 1 On arriving at a hotel in Japan a tourist heads straight for the rest 
rooms. We finds his way there but is unable t o  decide which of 
two doors t o  choose because the 'Wen" and "Women" signs 
are written in Japanese. Fortunately, a Japanese gentleman is 
standing nearby, and the visitor recognizes him as being one of 
two identical twins. Although he  doesn't know which twin it is, 
he does know that one of the twins always tells the t ruth and the 
other twin always lies. 

Given that the twin will answer one question only, 
and that with only a "Yes" or "No", what question 
would you ask if you were the tourist? 

> - ,- . 
1% :"dl?; 1- :bx) jicx > Gx) 
- - b N a F i s  {Vx) (:vx > -- 63.:) --. :3-) (:Fk & Gx) < ,  

f I ; ~ r r i e F i s  af (3r; (Fx 8 G x )  

O Som.2 S; is not G (3x1 (Fx & - G x j  

In English t he  exisreniial viewpoint is often adopted for these propositions e.g., in the 
above cases it is assumed that an itel11 with the property F exists: from this viewpoint 
various other relations may be added t o  the contradictoriness relation on the square of 
opposiliori (see 5 10.6) e.g., A and E are contraries, A implies I, E implies 0. In MQF 
however, the hypothetical viewpoint is taken which does not adopt such existential 
presuppositions: while the contradictoriness relation holds for the MQT square of opposi- 
tion, the other relations d o  not.  

Any occurrence of an IV either in, or within the scope of, a quantification with respect 
t o  it. is hound. An occurrence which is not bound is f ~ e c .  Binding lines may be used t o  
joiii variables hound by tile same quantifier, and free variables may be underlined, e.g., 

IVs car? be bound by only olze quantifier (the first that binds it in an assembly line). 
A quantifier that  binds r~otliing is vuczrous e.g.. H in (Hx) (3x3 Fx. A formula is open iff 
ic has ai least one free PV. Prefiving an open forjnuia with universal/exisiential quantifi- 
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cations to bind all the free IVs gives universal/existential closure e.g., E~Y & Gx is univer- 
sally closed to  (Vx) (Fx & Gx). 

MQL-formulae are either forms (these have no dictionary) or seizterzces (these have a 
full dictionary, and express propositions). A forrn is an MQT-Necessity, MQT-Contra- 
diction or MQT-Contingency according as it is true in all, none or just some worlds. 
A proposition is an MQT-Necessity, MQT-Contradiction or MQT-Indeterminacy accord- 
ing as its explicit MQL-form is an MQT-Necessity, MQT-Contradiction or MQT-Contin- 

gency. 

If a is an MQL-form with n different predicate letters then a is an MQT-Necessity/ 
MQT-Contradiction iff every expansion of a up to 2'" items is a tautology/PC-contra- 
diction. Consider any form ( Q v )  ... (Qw)a where the Qs are non-vacuous quantifiers, 
of which n are universal/existential, and a, the scope of (Qw), is quantifier-free: then 
the form is an MQT-NecessitylMQT-Contradiction iff every expansion up to  12 items 
(or one item if n = 0 )  is a tautologyIPC-contradiction. 

The following equivalences are examples of Quantifier Negation (QN): 

- ( j x )  Fx o (Vx) -Fx - (VX) FX -S (3x1 - FX 

An MQL- argument-form is valid iff there is no world with its premises true and conclu- 
sion false; otherwise it is invalid. If an MQE-argument-form contains n different predicate 
letters then it is valid iff every expansion up to 2'" items is PC-valid. I f  an MQL-argument- 
form meets the Short Cut Condition (SCC': each premise and the conclusion has at most 
one quantifier, and if there is a quantification it must be the main operator) then cou~le 
tl:e 3 s  in the premises and add I if there is e ' ~ j  in the carclusion to give a total o f t :  if 
-; = O or 1 then on"; the one-item ej,:parsioi: _2eed i;e tested: othemise test up to jilst rile 
!-item expacslon. 

. " 

_iL _-,?u~;s;ncdzj 22 3;gujne:jf is 5 ij;n;';d i ~F~e r t ;  i-P ~ T ~ M ~ S S S  F~IE :i.rre 2.riii Llle ~3:;?i;?c~l0ii 
p. " e .  & > -  to be a cou:;te:cxci.~p~ :k:e ivor.la nrust ;e ; poscfbL'e aiorld. As C::r FC: en LS ~ a ~ s  . - d ~  <-: ~ : &  

a rg~~men t  is va?id i 4  If has nc co~n te~exampie .  
- ,~ 
87 1, .L.- 

- ~ 

ii, eiansiation we resirmrf !he stnme;.se aj u1ccsw.w :I r ccr'iain iype of item (e.g., 
people), this should be noted at the ;op of the d i c t i c ~ a q ~ ~  A"ihou@i worlds are i1o11- 
empty, properties may be empty. 

In expanding complex formulae the following bottom-up procedure is recommended: 
at each step eliminate just those quantifiers with no quantifiers in their scope. Note that 
when itemizing the scope of a quantification, only the variables bound by the q~lantifier 
are ~eplaced. Vacuous quantifiers may simply be dropped. Open formulae must be univer- 
sally closed before expanding. 



mQT Trees 

12. P TRUTH TREES FOR MQT 

The truth-tree method of testing formulae and arguments can easily be extended from 
PC to MQT. Truth-trees provide us with a way of searching for a counterexample. 
If there is no counterexample, the tree closes. 

In order to extend the truth-trees to MQT we need four new rules, two for each new 
operator. We need rules for universal quantification and its negation, and ides  for exis- 
tential quantification and its negation. Otherwise, everything is the same as for PC. We 
retain ali the PC rules, the same general rule fo r  the closure of a path, and the same 
general zpproaches to  testing hgical r:ecessilies. contradictions, modal relations and srgu- 
roents. 

7 .  ?Ye szw in 5 : 1.3 :hat <') a:ld (2) a ~ r ;  necessarj/ tizr-iihs cTM@T 

-ox) F:c ('dx) -2Fx 
- 

(1) 
-[\;/xj,% r (Ax) -1% ( 2: 

Our rules are similar. Both are called Quavr.t<fiev Negation, and both are used to  eliminate 
a " -" from the front of a quantified formula. 

Quantifier Negatioaa QQN) : 

J "(3~101 J -(Vv)a 
(Vv) -a! (3v) --a 

Examples: 

I/ 1. -(3x)Fx v' 1. - (Vx)(Fx 3 Gx) 
2.(Vx)-Fx 1 , Q N  2. (13x1 - (Fx 3 Gx) 1,  QN 

In these rules it should be noted that a is the scope of the quantifier. Sometimes we say 
"Slide the tilde through tlze quantification and it changes the quantifier". 

The rule for the Universal Quantification is called Universul Instantiation. For 
example: 

Let: F x  = x is a f ~ o g  



Clearly we read (3) as (4) 

(Vx) Fx 
Everything is a frog 

Now, if everything is a frog. then a is a frog, b is a frog, etc. Every item in the domain of 
quantification is a frog: 

So, all of these follow from (3). Each is an itemization of the scope of (Vx). Since every 
itemization of the scope of (Vx) follows from (3) we may apply UniversaZInstarztiation 
t o  (3) in a tree any number o f  times. So, in applying this rule we d o  not tick the formula 
in the usual way (because we might want t o  use it  again). 

The general form of Universal Instantiation (UI) is as follows: 

Universal Instantiation (Bn) 

(VV)  Q )  v 

Q) IC where 4 K: is any itemization of 4 v 

When $ K  is the itemization of +v t o  K by  UI we say that (Vv) @v has been Universally 
Insfmi-iated, >with respect in K, lo r b ~ .  We use a special ~narlzing for Ul. For exan,gle: 

s" '  1 ,  ( \ ' ~ ] > T X  

-2. 1, UZ 

:$?-  , ?  ~ iV4 L . S ~  2 IjackSi;lFh 7'73 ~ p r ; ~ ; i y  i l?e i-d;vid;jei cc;ista>i u;lih :"sa.:ci :I: w:l.& r.5 fs;,:;,i; 
. : --  . 
13 , . j~ r ivs~ga lb  ir!~~.afii~a:e,:.. Ldt.1-e ,; ;.#il>r:ii.j. exai:!pi: : 

c6 \. 1. jVx)(F.x V Gx) 
2.  Fb 'i/ Gb 77.. 

1 ,  0 1  

3 .  >Cc '/ Cc 3 .  ;TO 

So, each time Ui is applied, we add an individuai constan! to the left of tile list. Tlie 
fol!owing are all cases of UB. 

The rule for the Existential Quantification is called ITxisterztia2 I~z.~tu~z~iatior~ (El).  
This is slightly Inore tricky than UI. We read (5) as (6) 

(3x1 Fx 
At least one thing is a frog 

Provided "a" does not already occur anywhere in tlzis pat11 we may cail thls ltelli "a". 
In other words, we may nume the item '"a". So from (5) it foliows that  (7), provided a 
is new to the path. 



The genel-a1 rule is as follows 

Existential Instantiation (EI): 

@ where @ K  is an itemization of $V t o  an individual con- 
stant,  K ,  new t o  this path of the tree. 

When $ K  is the itemization of $v t o  K by  EI we say that (3v)Gv has been existentially 
instantiated, with respect to K ,  to @K.  

Each application of EI requires a fresh individual constant, since we must not assume 
that an already mentioned item satisfies the existential expression. For example: 

J 1. - ((3x) Fx 3 Fa) N F  

b I/ 2. ( 3 x ) F x  1 ,  PC 
3 .  -Fa 
4. Fb 2 ,  EI 

First note that the ticking off of 2 has the individual constant b beside the tick. Second- 
ly. we cannot instantiate 2. with a because that would mean that we had assumed that the 
F was a ,  but we must leave the question open. We use "b". Note that in using "b" we d o  
not assume that "b" and "a" must refer t o  different items: it is possible for one item t o  
have several names. 

Rel l le~~lber  that PC rules may be used only when a PC operator IS the n u i n  operator 
The same p r ~ n c ~ p l e  operates In MQT The mles UI and EP can be used o d y  when the 
quas~tificatioaa being resolved is ".he main operator. v o u  must oot ~nstant la te  thrcu@ a 
:rldc 

-. 
par exailipie. :hi: Rules UI .i;ld 5: rfiay 'je appiled lo / P '  ,-;> ($2 and (IQ), h~iii  i-<!us: l l o l  

b ;;pp!i-d . A (i :): (12) or j i3) .  
- A x )  ... i x * - i c) 

('VX)(FX 3 PI (91 
( jx)( jFx & Gx) 3 Fa) ( 1  0 )  

-13%) F x  ( I  1) 
i3x)  FX 3 p (12) 
~a > (Vx) FX 113) 

In (1 1) the main operator is -- : and Q W  must be used. In (12) and (13) the main opera- 
tor is >, and the PC rule for 3 must be used. 

We now rewrite both U1 and EI with the marking and ticking displayed. 

UI K . . .  \ (vv) $v 

O K  where @ t i  is an itemization of @V t o  any individual 
constant K .  

EI K V '  ( 3 ~ 1 4 ~  

O K  where $K, is an itemization of $V t o  an individual con- 
stant, K ,  new t o  the path of the  tree. 

Look carefully at the following applications of the rules t o  relatively complex 
formulae. Rerneillbel that in an itemization of  the scope of  a quantification with respect 
to  v ordy free occurrences of v in the scope are replaced. 



a  J I .  ( ~ X ) ( ( ~ Y ) ( G Y  & FYI V H x )  
2 .  ( 3 y ) ( G y  & F y )  V Ha 1,  EI 

EXERCISE 12.1 

1 .  Does the second o f  each o f  the following pairs o f  formulae follow from the first b y  the 
rule for trees as annotated? I f  no t ,  w h y  not? 

( a )  ( V x ) ( S x  3 F x )  ( b )  ( 3 x )  -Mx 
(Sa 3 Fa) UI --Ma EI 

( c )  ( V X X S X  3 ( F x  & G x ) )  ( d )  - - ( ( 3 ~ )  Fx  & G x )  
(Sa 3 (Fa & Ga))  EI ( V X )  - ( F x  & G x )  QN 

( e )  ( V x ) ( S x  3 ( V x )  F x )  ( f )  ( 3 x ) ( S a  & ( G x  V F x ) )  
(Sa 3 ( V x )  F x )  UI (Sa & (Ga V Fa))  EI 

(g) (b'x)(Sa 2 ( G x  V F x ) )  ( h )  - ( V X ) ( F X  3 P I  
(Sa 3 (Ga V Fa))  UI ( 3 x 1  -- ( F x  3 P )  QN 

(k) ( V x ) ( ( V x ] F x  3 G x )  (I) ( 3 x 1  -(Vy](-Fx 3 Gy] 
(Fa 3 >;a? UI - <Vy)(Fu 3 G y )  6 1  -- 

2. Apply the appropriate tree rule to  each of the foiPowing formulae 

(a) ( V x ) F x  
(c) ( 3 x ) ( F x  & G x )  
be) W x )  Fx  3 P 
( g )  ( 3 x )  Fx  V ( 3 x )  G x  
(i) - ( V x ) ( F x  3 G x )  

( b )  - ( ( 3 x )  Fx  & Ga) 
( d )  ( j x ) ( F x  V Ga) 
( f )  ( V x )  - ( P  3 G x )  
(h) ( j x ) ( F x  V ( V X )  G x )  
(j) ( 3 x ) ( ( F x  V G x )  & Fa) 

12.2 TESTING PROPOSITIONS AND ARGUMENTS 

MQT-trees may be used t o  test formulae for MQT-Necessity and MQT-Contradiction. 
T h e  same general method is used as was used in  PC. W e  set out  three simple exaruples. 



Example 1 .  To see if' (Vx)(Fx 3 Fx) is an MQT-Necessity. 

d 1. - (Vx)(Fx Fx) NF 
a J 2. (3x) - (Fu  3 Fx) 1,  QN 

3 .  -(Fa 3 Fa) 2 ,  EI 
4. Fa I PC 5. - Fa 

X 

So, (Vx)(Fx 3 f i )  is an MQT-Necessity. 

Example 2: To see if jVx)(Fx 3 GK) is an MQT-Necessity 

Sine? tile tree will never dose (V;c.)(Fx > Gr) Is nor ari AYQT-Necessi",y. W e  cap read off 
a cormierexzmpi,e : 

The tree is: 

a = ' - -  ,ill*& 

Sx = x is 5 student 
Px = x xis a protester 
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Since the tree closes, the argument is valid. 

Example 5 :  All students are protesters. All radicals are protesters. So, all students 
are radicals. 

With the dictionary for Example 4 and one addition we get: 

(Vx)(Sx 3 Px) R x  = x is a radical 
(b'x)(Rx 3 Px) 

.'. (b'x)(Sx 3 Rx) 
The tree is: 

a \ I .  (b'x)(Sx 3 Px) 
a \ 2. (Vx)(Rx 3 Px) 

/ 3. -(Vx)(Sx 3 Rx) 
a / 4. (3x) -(Sx 3 R x )  

5. -(Sa3Ra) 
6. Sa 
7. -Ra 

4 8 .  S a 3 P a  
d 9 .  R a 3 P a  

The iree will not  close. A countermadel ;nay be read off: 

-* i ne  e p a n s i ~ n  of !lie argu,?eiil: h r  a si;o.;;is ;he premises true ar;d :he conclusion false: 

d! of these exampies are quite snrnple and sira~gnt forward. But there are more difficult 
cases. Before considering these we specify Efficiency Ruies and a revised Completion 
Rule. 

Efficiency Rule 1: Don't branch until you have to. 

Efficiency Rule 2 :  In general, follow the order 

PC 
QN 
EI 
LJI + 

The first rule is familiar from PC. The second rule advises us that we will usually save 
some work if we do things in the following order: first of all do any necessary PC resolv- 
ing; then use QK to eliminate tiides froin the front of formulae of the form -- 43 V )  cc or 
-- (Vv) a ;  then apply EI; then UI. 
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In Example 6 we follow Rule 2 t o  test the following argument-form for validity: in 
7 we d o  not h l l o w  the rule. 

(Vx ) (Fx  3 G x )  

. ( V x )  Fx 3 ( V x )  C x  

Example 6: 
a  \ I .  (Vx ) (Fx  3 G x )  P 

J 2. - i j v x )  FX 3 ( V X )  Gxl wc 
a  \ 3 .  ( V x )  Fx 

J 4. - ( V x )  GX 
1 "1"'": 

a J 5 .  ( 3 x ) - ~ x  4 ,  @N 
6 .  - G a  5 ,  EI 
7 .  Fa 3 ,  UI 
8 .  Fa 3 C a  1,  UI 

Example 7:  
ba  \ 1 (Vx ) (Fx  3 Gx)  

J 2 - [ (Vx )  Fx 3 ( Y x )  G x ]  
3 .  F a 3 G a  

ba \ 4 ( V x j F x  
J 5 ,- ( V x )  Gx i. 
6 Fa 
7 qj* - cx 

0 ./ 8 ,- 1 
J LI 

- - 
/ * 

L C '  , i 3ii - 

-, . . l r ie  co_mp;e:!ofi 71:le for pj_-rj.ees ilas tc !>o rr,c;dified in one way 13 make ir sui.iabie for 

MQT. You wi!i remember that iviien l2I is applied to a form:rla the  formula is not there- 
by finished .;i!i';:i. U1 1::a.j be  applied repeatedly. 

If a formula ~ V V )  a has been universally lntant iated at least once, and e3re1-y 
formcla of the form (? ~sj P in rile same path has been existentially instaritia- 
ted. and !Vv )a  has been ui?irrersally instaritiated -with respect to  every indi~ri- 
ddal constant occurring in the same path; then (VV)CY  has  been Totally 
Universal ly  Irzstaiztiated, TUI'd, En that path.  

Once a formula has b e e l  TU3'd in every ooperi path .whose end stems from it, we can 
s i ~ o w  this by cvossirzg the backslash as set otit below in line 4.: 
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a I /  1. (3x)Fx 
b J 2. (3x1 Gx 

I /  3. -igx)(Fs V Gx) 
bai 4. (Vx) -iFx V Gx) 

5. Fa 
6. Gb 
7. -(Fa V Ga) 
8. -(Fb V G b )  

We leave it  t o  the reader t o  complete the tree. 

Completion Rule: Keep going until either 
(i) A11 paths close; or 
(ii) There is at least one open path in which every formula with a universal quantifier 

main operator is crossed, TU:. and in wilich every other unticked fo:.mula is free 
of quantifiers. dyadic propositions! operators and double negations. 

If (ii) occurs, the tree ivill never close. and a countermodel may be read off Ccm one 
open path. 

The i~ziportance of TUI can be seen in Exanlpie 8. 

Example 8 :  To see i f  (%)(FX 3 (Hx) is 2n MQT-Necess~ty. 

We could go only to 1iir.e 7 

But the expansion of the formula being tested is: 

(Fa 3 (Fa & Fb)) V (Fb 3 (Fa & F b ) )  

which is true in our world: 

So we d o ~ z o t  have a counterexainple. But. we have not Totally Ul'd the formula In l;ne 2.  
If we d o  so, the tree continues as: 

So, (3x)(Fx 3 (VX] Fx) 1s an MQT-Necessity. 



EXERCISE 12.2 

1. Complete the justifications in the followjng (correct) truth-trees. 

(a) J I. - ( (3 .u)  17x .>. :zx)(Fx Cx)) NF 
j 2. (3~) FX 
-4 3 .  - ( ~ x ) ( F x  V Gx) 
\ 4. (V.x)-(FxVGx) 

5. Fa 
J 6. -- (Fu  V Ga)  

7 .  -Fa 
8. - Ga 

X 

(b) / I .  - ( ( b l x )  Fx .3 (b'x)(Fx & Gx)) 
' 2. ( Vx)Fx 
J 3. --(Vx)(Fx & Gx) 
J 4 (3x) - (Fx & &x) 



(Vx)(,Wx 3 I'x) 
(Vx)(Sx 3 Mx-) - (Vx)(Sx 3 _Fx) 

13x; - (Sx 3 Px) 
- iSa 3 Po) 

Sa - 1'0 



2 .  The tree beiovr ;- tthz ~ ~ g ; ~ ~ t ~ i : - f . ~ ~ { ~ , !  

~ i p i ~ ; ~ ' )  2;& :-,-T"PP ,.,-A-b 5 ,  lFoi ezc:;. :jib,: ;i~.[s I ; ~ ~ ~ , ~ ~ ~ ~ ~ , .  , :?? 4 :-.+<c;,..: .... - .,.. ,:..- . - J .,-As - - - % L  1,- , h  Lib %A:- , s  c:;,Ll.e:.;: .>; ,-:L'~ 
71 :?i?~ich lines 1-eq:ilie :i :k:s! 
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3. Use MQT-Trees t o  show that the following are MQT-Necessities. 

(a) (Vx) Fx 3 (3x) Fx 
(b) (3x) Fx 3 (jx)(Fx V Gx) 
(c) (3x1 Fx r ( 3 ~ )  Fy 
(d) (Vx) 3 (Vy) Fy 
(el (3x)bVy)(Fx 3 GY) - (YY)(~X)(FX 3 GY) 
(f) (Vx)(Fx & Gx) 3 ((Vx) Fx & (Vx) Cx) 
(g) (3x)(Fx V Gx ) 3 ((3x1 Fx V (3x1 Gx) 
(h) (Vx)(Fx 3 Gx) 3 - (3x)(Fx & - Gx) 
(i) (Vx) [(Vx) Fx 3 F x ]  
(jj (3x1 [(3x) Fx 3 Fx] 
(k)  ((3x)Fx&p)3(3x)(Fx&p) 
(1) (3x1 -Gx 3 -(Yx)jFx & Gxj 
(m) ((VX) i:-i V (VX) Gxj 3 (Vx)(Fx V Gx) 
(n) (Vx)(Fx - p) ((3.x) Fx 3 ppj & ( p  3 (Vx) Fx)) 
(0) Gx 3 Gx 

- 
( a )  (3x)?k ,' " . <d"x:(F.x \I c.x;, 
(I-' u )  (?/x](F.>: & G:c) i ~ ' ,  (Yx)F.x 

(c) (Vx)(Fx 3 Gx), (3x1 F x  / .'. 13x1 Gx 
(d) (Vx)(Fx 3 Gx), (3x) ,rx / .'. (gx)(Gx & Fx) 
(e) (VX)(FX 3 -Cx); (3x1 Fx i .I. (3x)(Fx & - Gx) 
(f) (Vx) [Fx 3 (Gx V Hx) , (Vx)(Gx 3 - Nx), (Yx)(Hx 3 - Gx), (3x) Fx / .'. 

( 3 ~ x 6 ~  f Hx) 
(g) (jx)(Fx = Gx) / .'. (3x)(3y)(Fx = Gy) 
(h) (Yx) [Fx 3 (Sx V PxH, - (3x1 [Gx & (Px V Sx)] / .'. (Yx)(Gx 3 -Fx) 

6 .  Symbolize the following arguments, using the dictionary provided, and test them for  
validity. If any is invalid provide a counterexample and show that the counterexample 
is indeed a counterexampie. 
(a) Not all members of parliament are elected. This is because some Senators are 

appointed by State Governments. Of course, Senators are members of parliament, 
and if a Senator is appointed then he is not  elected. 
(hfx = x is a member of parliament; Ex = x is eiected; Sx = x is a Senator; A x  = 
x is appointed by a State Government.) 
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Aristotle was a philosopher, and Aristotle was a logician. So some logicians have 
been philosophers. 
(Px = x was a philosopher; Lx = x was a logician; a = Aristotle.) 

Any number is either odd or even if it is a natural number. If a number is half a 
prime number, then it is neither odd nor even. Thus, if it is a number, half a prime 
is not a natural number. 
(Arx = x is a number; Ex = x is even; Ox = x is odd;  Tx = x is a natural (number); 
H x  = x is half a prime number.) 

Anyone with any public spiritedness will join in either giving money or time t o  
flood relief. Since Jack has not given any time t o  flood relief, because he is not 
able to ,  and since he is public spirited we can conclude that he will give money to 
flood relief. 
(Px = x is public spirited; Gx = x will join in giving money t o  flood relief; Tx = 
x will join in giving time t o  flood relief; Ax = x is able t o  give time t o  flood relief; 
j = Jack.) 

Some of the present increases in the minimum wage will cause prices t o  rise. 
Excessive increases in wages cause prices t o  rise. So it  follows that some increases 
in the minimutm wage at present are excessive. 
(1x = x is a present increase in the minimum wage; Rx = x will cause prices t o  
rise; Ex = x is an excessive increase in wages.) 

Moderates are never protesters, but reformers are never moderates, hence reform- 
ers are protesters. 
(&lx = x is a moderate; Px = x is a protester; Rx = x is a reformer.) 

Stcdents  xlio rre good scholars are hard workers. Anyone who works hard learns 
LO pel-severe. Since tbzre are soma students who do not learn to pe~severe, it 
f o l : ~ ~ l ~ ~ s  ej-;ar '&ere a:c S~TJ-~ s;udel-)ts ci~hc are not good ~ c h o i a ~ ~ .  
(::: = 2 is a s b d e n t ;  5:; - ;< is 5 gir:#c. s c b ~ l a ? :  i/Qx = ,; is ;i hare - J J ~  . .key; . Lsx -.1 x 
je2r;s ~?c-rse~/ei--.) 

. . , ~ 3_?1-/ ;:,a*. :,zc gci< :-: :tls x .&c5,  _c,:ic7Guf, . . .-~- lzo:x8 :C_. -,-'P II. ..- 1 " : -  L ~ ~ ~ -  placri 
rS in L. i: .a3 .,;. C - L I Y L _  c-c  --.-?.-- bGl_li l i .  aqlice -. i l q i / ~ t  LIZ  I.OO:E i~ tile gjorid, it folisy,rs that 

. <. . some ef the112 'r~jiii engage lr; a ;rurtlzss sea;c:h. 
c:;;~ = x is a foal; 1.x = x iooks for gold in this place; Ex = x is engaged i~ a fruit- 

less scarciy lx - :( Is in rhe world.) 
- teenagers over fifteen are able t o  leave school and work. Anyone 1,%7h3 can leave 
school and work can earn large sums of money nowadays. So some of the people 
able to earn large sums of money these days are teenagers over fifteen. 
(Fx = x is a teenager over fifteen; Lx = x is able t o  leave school; W x  = x is able t o  
work; fix = x is able t o  earn large sums of money.) 

None but the brave deserve the fair, and none but  the  willing are brave. So, none 
but the willing deserve the fair. 
(Bx  = x is brave; D x  = x deserves the  fair; Wx = x is willing.) 



Section 12.3 330 

12.3 TESTING MODAL WELATlONS 

We may use MQT-trees t o  test for formal MQT reiations betweer, iomuiae .  We use rhe 
tests as set out  below: 

Relation Test for MQT-Necessity 

In fzct the first two can be mdgarna ted  into one best in trees, and the last three can also 
be amalgamated into one test. When we test a is iW&T-Equiv~levil to 0 the tree begins as 
follows: 

01 -a 
-0 p 

if the left path abno closes then a MQT-Implies p. If the right path rzic;l?e closes then 
MQT-Implies a. If both dose  'then a is TdQT-Equivalent fo 0. 

VTh-ef w: test cv is i I4~T-Cont~ad ic for~~  l o  0 the tree begins as follc.ws: 

i ,  'j,, YyIQT-Trees 1:t verify rhal the forme? :elstions set ou; ki _he ~ w o  ~~~~~~~s ef cppa- 
sitiin in 5 1 1.2 do  hold. 
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12.4 FURTHER EQUIVALENCES AND MINIMUM SCOPE 

We have already met the four cpantifier negation equivalences. We are now going t o  
consider a graup of equiva!ences, of  which tlze quantifier negation equivalences are part, 
which are usefill far putting formulae into hfininzum Scope Form (MSF), or into Prenex 
iVo,wial Form (PNF). 

We begin by listing the four QN equivalences. Where a is a wff of MQT: 
- -('dx) a - - (3x1 --a 
- - 

(1) 
-13x1 a - (Vx) -a 

- - 
(21 

-(3x) -a - ('dx) a 
- 

( 3 )  
-(Vx) --a - - (3x1 a (4) 

Our next equivalence is called the change of Boutzd Variable principle (CBV). Exam- 
pies of lt are (5) and (6) 

(3x1 F x  - - - 13~1 FY i 5) 

(Vx) F x  - - - (YY) pj?/ ( 6 )  

The general idea oi' CBV is that all bound occurrences of a variable in a wff> where the 
binding is by the one quantifier, can be replaced bji some other variable, so long as that 
new variable will not change tile pattern of birding in the formula. For  exaxpie,  in (7) 
we display the binding pattern, 

lA7e can replace x with z .to get (81, and the binding pa-ttern remains the same. 

L e t :  a b e  a7zy !\iff of MQT 
i/ and be arig individual variables 
Q be either 3 or 'd . 

a (a// V )  means: the result of substituting bd fo r  every occurrence of v i n  a 

Now we can set out the principle CBV: 

(Qv)a = (Q wia:wl/v) 
provided w does nor occur in a 

We now set out  some change of scope examples $12) to (19). i n  these formulae we 
allow p :c represent any wff in which x does not occur free. 

(3x)(Fx &p) r. (3x)Fx & p  

j3x)(Fx V p )  r. (3x1 F x  ?/ p 
(Vx)(Fx & p j  f. ( V X )  F x  & p 
(Vx)(Fx V p )  r, ( V x )  Fx V ~p 
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In fact, using (12) t o  (15), we can show (16) t o  (19). For  exaliiple 
( 3 x ) ( p  & Fx)  

* ( 3 x ) ( F x  & P )  Corn 
( 3 x ) F x & p  (12) 

* p & (3x1 Fx Corn 

S o  43x)(p PrFx) . p & ( 3 x ) F x  

In each of (12) t o  (19) we assume that there is n o  free occulrence o f x  in p. in the L I E  
the scope of the quantification is maximum, so the quantification is the main operator in 
the LHE. In the RHE the scope is minimurn, and the main operator is not the same as in 
the LHE. 

The scope of a quantification can be changed over & and V so long as tliere is n o  binci- 
ing pattern change. We now use such equivale~~ces and the principle of  replacement of  
logical equivalents to  see what happens when hook is involved. 

S o  we get (20) 

These principies can be ~ s e d  l o  put a formula into MSF. -When a formuia, a: is pill inio 
MSF we are finding a closed wff, 0. such that a is Iogicaily equivalent to j3, 2nd in P 
n o  quantirier, propositional letter, individual constant, or free occurrence of an individl-iai 
variable occurs inside the scope of any quantifier. For  exznple:  

" (3x1 Fx 3 (p & (3y)iGj~ & Ha)) by (21) 
0 (3x1 Fx 3 ( p  8( ((3y) Gy & Ha)) by (12) 

This Zastf'ormula is an MSF of (24). 

Similarly, we car, use these principles t o  put a formula into PKF, T o  do this we find a 
formula, 0, such that the  formula is logically equivalent r o  fl: and fl is closed, contains 
n o  vacuous quantifiers. and is of the form 



and a is quantifier free. For example we begirl with (24) 

@ (VxNFx 3 ( ~ Y ) ( P  & (GY & Ha))) by (16) 
@ ( V x ) ( j y ) ( F x  3 (p & (Gy & Ha))) by ( 2 2 )  

S o  we have a PWF of (24). PNF is important for the application of  the short cuts set ou t  
in 511.3 and 511.4. 

EXERCISE 12.4 

1. Use truth-trees t o  verify all the  specific equivalences mentioned in this section. 

2. Use the principle of  substitution of logical equivalents t o  find an MSF formula equiva- 
lent t o  each of the following 

(a) F x  3 p ( f )  (3x)((Ga & F a )  3 (Gx & Fx)) 
(bi ( ~ ) ( V Y ) ( F ~  2 GY) (g) (3x)((Fx 3 Gx) 3 (Fa 3 Ga)) 
(cf (Vx) l3 .~)%Fx & GYI (h) P V q 
6 4  i v x l l p  3 O Y ) ( F Y  V Cx)) (i) (Fx & Fa] 3 (Vx)(Fx & Fa) 
(el ivx) (Fx  3 ( 3 ~ )  GY) 0) (V~I:VY)((P & Gal 3 (Gz V (Gx & Fy))) 

3. Use your knowledge and intuitions t o  say whether or not  the following pairs of formu- 
lae are equivalent. If doubt persists use truth-trees. 

%a) -WY) FY and f3y) -FY 
(b) ( 3 x ) G x  a n d m ( 3 x ) - G x  
(c) ( 3 ~ )  Hx arid ( 3 ~ )  
(6) and(Vy)i;";~ 

- le,) Sj, --<Ax) 3- Gx 
i <i, C1 'iiFY & ::t'?) <3?) C';/ $ g Y ;  CJi $ J / , \  

ii;1 1 a) <';?zj(Gz '\: jfi) 3") Gz ji {'Ciz) EZ 
.i,. % :3 ,.,#(,C. 
\ lL, , ) / ]  < ~ .  1, :-:;); 2.q 6 .- .: 'J ), )( c>> qL .* , Lt~5> 1 
(;\, /\,).~)(cT;, (L c:.%,\ -.-; 
\ ,  \ ) d,Q.'.t ! 7,,1) &F? & 'yrlj,? cj> 
i : \  
: < J )  { ,7';7)(?-,; ,2 3;:; rfis. ( \,'y ;(>.c,] & 5 1 ,  -,, 1 >. 

. ~ 

4. ~ S - L  the pri:.,eipl- of subsrdLi.rtlcr 3 5  logical equi.~alen$ ic; find a P N F  formula e8q~;iv;tu 
l en t  t~ -askl c;f '&e foilowing. 

(a) ( 3 ~ )  !i",- > p Cb) ('dx)(r"x 3 ( 3 ~ )  Gy) 
(e) ( b ' ~ ) ( ( 3 ~ )  Gy 3 F x )  Id) (Vx)(Fx & (2x1  Gxj  
(e) (3x1 F x  V (Vx) Gx * (f) (Vx) --I+ - --(3y) F y  
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Puzzle 12 The flight crew of a jumbo jet includes a pilot (P), co-pilot ( C )  
and navigator (N), whose names are brown ( b ) ,  Jones ( j )  and 
Smith (s), not necessarily in that order. Travelling on board are 
three passengers: Mr Brown ( m b ) ,  Mr Jones ( m j )  and Mr Smith 
(ms) .  The following facts are known. 

1. The co-pilot lives in New South Wales (N). 
2. Mr Brown thinks a yogi is a type of bear. 
3. Mr Smith lives in Queensland (Q). 
4. Jones borrowed a Rubik Snake from the navigator. 
5. The passenger whose surname is the same as the  co-pilot's 

lives in Victoria ( V). 
6. The pilot's favourite meal is red herring. 
7. The co-pilot lives next door to  one of the passengers, an 

advanced student of yoga. 
Who is the pilot? (The following grids may help.) 

P C N  AT Q V 

EI: K ,/ (3 v )  qiv 
$I< $ K  iww t o  the path) 

U4 : K ... \ ( V V )  $v 
$K (for any K )  

Existential expressions may be instantiated once only. to  a new constant. UX is noi a 
replacement rule, and may be used as often as desired. Wiili UI, it is usually b e s ~  to 
instantiate t o  old constants as much as possible. Never instantiate tliroug!l a - : use 
Q W  t o  shift it. In multiply quantified expressions. instantiate from ieft t o  right. 

Efiicieizcy Rules: Don't branch until you have to. 
In general, follow the order PC 

QN 
E 1 
U1 
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Closure Rule: Same as for PC. 

A formula ( V V ) ~  has been Totally U~~iversally Instantiated (TUl'cl) in a path if it has been 
UI'd at least once, it has been Ul'd with respect to  every 1C in the same path, and every 
formula of the form (3 o ) a  In the same path has been EI'd. To indicate that a formula 
has been TUI'd in every open path whose end stems from it we cross the backslash in 
front of the formula: X (VV) a .  

Completion Rule: Keep going until either 
(i) all paths close or 
(ii) there is at least one open path in which every formula with a 

universal quantifier main operator is crossed, and in which 
every unticked formula is free of quantifiers, dyadic proposi- 
tional operators and double negations. 

If alternative (ii) occurs, the path is permanently open, and a countermode! may be read 
from it. 

The overall MQT-tree tests for propositions and arguments are the same as the PC-tree 
tests. Various MQT-modal relations may be defined and tested by MQT-trees; the 
standard modal relations may be tested by extending the possible-truth tree method to  
MQT-trees (see 5 12.3). 

Let a be any MQL wff, u and w be IVs, (2 be either V or 3 , and a ( m / / v )  denote the 
result of substituting w for every occurrence of u in a. Then the Change ofBound Variable 
/CBV) equivalence principle is as follows. 

-, - !- 

Lo! Q j e  Y e: A. ai:d 9 2~ 4ny 13ir35:li2 #it:~ ~2 Fiec ~c;;u:.r-:_;,e .;; ;x", 
I ;hi- fe";2.j,!LE 

c,$a,xgc G , ~ S C O ~ ' .  (25,' -qlj-i..,dielnces apply 

QN, CBV and CS equivalences may be used to put a formula intoMinimum Scope Form 
(MSF), where no quantifiers, propositional letters, ICs or free TVs occur in the scope of 
any quantifier. Formulae in MSF are closed. These equivalences may also be used to  put a 
formula into Pre~zex Normal Form (PNF). A formula is in PNF iff it is closed, has no 
vacuous quantifiers, and is of the form (Qv) ... (Qw)a  where a is quantifier free. 



Logic Diagrams 

B 3.1 INTRODUCTION 

Logic diagrams are geometrical figures used to represent either ternis, sets. proposi- 
tions or forms, with a view to  solving logical problens. Eeonhard Euler (11707-1783) was 
the first to make systematic use of diagrarrrs in logic. Earlier logicians: such as Lehniz, 
had made some use of diagrarris, but Euler set au t  a detailed sys tem,  usuaily referred io as 
Buler Diagrams. 1% coi?"iemporary of Euier; 5. H. Lamberi, also set out a systenl some- 

-, iike Eu?er5s; CIJ; -;~~ileieas i;u!e: used circles, LamSerr used lines. L;le systzins of 
Eruie; and Lambel-; were. in some sense: displaced by T/t..ziz Siagrun?~. These diagrams 
. - .  ~ 

,$.or- ,uLl, 1 :n:;or;ted -..,,-. b y  Jt3h5 (', , - 52;?..?,23) 3ir;d ~ : 2  In c--pi-r: ;":sc F5dc~{ . -'.hic,al,- .,A .& . * l i ~ ~ v o - n  d l c ~ 3 ~ ~ l x L s  
. . 

;2cl:er ;>!;,", <%:  .i .<.:<; r ,.. ' .*,(! e!:i;~j2e; -E;;rzs2j;: e:<l".a% "-. " i  . L-'-7;s I - - ~  !>v .- ,a ,  ,>.r - l i , i i : . l i i - - r -  ~,~.<-.-.,- n,,: 
~ - 

. . . ,  
, , , .-3-- -T,, , $ 

.<- . . 
c.7,.,, .. l i g L l i ;  ;?le:esl .,%r:l; 5i: ir. 1'75 3: ~ i ; i g ~ z i ; i ~  :c ~cp:,~Se:?lf^f.~;jli. 

, ~ ,  ,- n .. . 
+lilicll i;$i.;e 'odk h' 81.9 2~j.f ii;ic xi:;as. :!-:ere are "he cal-eg:>,*ica' &ag;ams i.30 [he ,;ilt-:>l 

diagrams. The 6if'ferel:ce is ciinsiderable a116 will become c]eare!- as we g 3  alcng. Buler 
dii3gra.m~ are categorical, whereas Venn diagrams and Karnaugh maps are fill-in diagrams 
P rrorn a practical point of view tile difference cari be seen iri terms ol drawing and filling- 
irz. Categorical diagrams are simply drawn. whilst fill-in diagrams are dravda and then 
Fdled in. 

13.2 REPRESENTING FORMULAE 

Euler diagrams, Venn diagrarns and Karnaugh maps were used traditionally to 
represent A E Hi and 0 forms. 1Ve are going to sllow how to use such diagrarns to  
represent formuiae of MQT. We begin with the fill-in diagrams. 

Fill-Ira Diagrams: 

To use a fill-in diagram we  nus st first draw a suitable blank diagram, and then fill it 
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in to  represent a formula. Set out below are formulae and blank diagrams. For each 
formula tlzere is both a blank Venn Diagram and a blank Karnaugh Map. There are two 
things to note. First. in each diagram there is an area for each predicate in the related 
formula and an area for the complement of each predicate. For example, in the first pair 
of diagrams there is, in each diagram, an area for F ,  marked F, and an area for non-F, 
marked F'. Secondly, in each of the second and third pairs of diagrams we have numbered 
the areas for ease of reference. But normally the areas are not numbered. 

Fig I Fig. 2 a 
Fig 3 Fig. 4 

In Figures 3 and 4 area 1 is for all those items which are both F and G ;  area 2 is for all 
which are non-F and 6 ;  area 3 is for all which are F and non-6;  area 4 is for all which are 
non-F and non-6. 

8 i 
Pig  5 L-L Fig, 6 

In Figures 5 and 6 the areas are as follolws: 
area i : items F, G, izn~z-H; area 2:  items ~"j, G, H ;  area 3 : iteiiis vion-F, C and N; area 
4: items non-ir, 6, non-H; area 5 : items P;: rzon-6, )?on-H; area 6 :  items F, nnn-G, H; 
area 7: items non-F, I~oM-C,  If; area 8 :  items non-F, izon-6, ~zorz-f1. 

F I F' 

Fig. 7 

Fig. 8 - 
Fig. 9 
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Figures 7 and 8 deal with four predicates, and Figure 9 is a Venn diagram for five predi- 
cates. 

Note that in the Venn diagrams the area outside the circles is one of the areas taken 
into account. Usually, Venn diagrams are drawn without the surrounding rectangle or 
square. But tile area outside the ciicles must be taken into account. Carroll diagrams for 
one or two predicates would be the san?e as the Icarnaugh maps. 

The nulnber of areas required in a blank diagram is 2n where n is the number of mona- 
dic predicate letters: 

No. of Predicates: 1 2  3 4 ... n 
No. of Areas: 2 4 8 16 ... 2n 

So much for blank diagrams. Now we must discover how t o  fill them in t o  represent 
formulae. There are five devices used. We now set out  each of these devices in  turn. with 
a formula and maps filled-in t o  represent the formula. Initially we will restrict ourselves 
t o  one-predicate formuiae, a ~ d  so fill-in Figures 1 and 2 .  

(i) individual constants are placed in the area of what is predicated of them. 
F 

!ii) a cross is placed in an area in which there is a:: least one it.um, 
- 
!- I 1 F" 

,... . . 
(1~1) areas m w&;c% there 93 i~c;~;:; art: sh.liided ob;?. Si ich  azea-s are null ayeas 

(iv) Null areas nlay be shown with a small circle instead of shading. 
F l F "  o (VX) - FX 

(v) a disjunction bar is used tc represent alternatives. 



The disjunction bar is combined with the cross and the circle below. 

We now turn t o  some formulae containing two predicate letters. Without further ado we 
set out the diagrams, both Venn and Karnaugh, which result from filling in Figures 3 and 
4 for the A E I and 8 forms. 

A (b'x)(Fx 3 G x )  Every F is G 

F G  F I F '  

( 3 x ) ( ~ x  & -- G x )  Some F is not G 

Note how, in a sense, the A form is represented b y  filling-in the diagram forh'othing is F 
arid rzoiz-G. Now look carefully at  the following two tricky cases, and w o k  out the 
explanation for each. 



Each disjunction bar has three points of disjunction. To make this clear in the Venn dia- 
gram the bar is kinked. Remember that p 3 q a --p  V q .  

Finally we represent the following formula in a Karnaugh map. 

jtix)((Fx V tix) 3 (Hx & Jx)) 

We need a sixteen-area map because there are 4 monadic predicates, and we fill it in to 

get 

The diagram shows that no area which is LV or G outside of the area which is both H and 
J has any members. 

Two things inust be noted. The first is that these diagrams represent the particular 
forms no matter how many items are in the world. An empty area is empty no matter 
how large the world. A cross does not limit the membership of an area to one itern, it 
only says that a t  least one item is in that area. 

The second thing is that a form luay be represented in a diagram which has more 
areas than are needed for that form alone. So we can represent ( 3 ~ )  Fx in Figures 3 or 
4 to get: 
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We need the disjunction bar 
G or non-G. Similarly for Fa 

because (3x1 Fx 
we get: 

does not say whether the at least one F is 

We now set out the representations of A and I forms in the eight area diagrams. 

F 
(Vx ) (Fx  3 G x )  

( 3 x ) ( F x  & Gx)  

e 

-1 . . i i ie reverse procedure is also importai~i. Gix~e~! a ciiagi-a:*: which has besn filled in we 
should 'oe ab1- to read t he  inf.arina"ion i': c m t a l c s ,  e.g j'T.017; 

we can read off: 

(Vx ) (Fx  3 Hx)  Every F  is H  

(3 x)( - Fx & -Hx)  Some non-F is non-H 

As the above example shows, we can represent several forms conjointly in a diagram. 
Here is another example. We can represent (Vx)(Fx  3 Gx) and (3x)(Hx $i Fx) in the one 
diagram: 

F 
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Since the shading coveis one end of  the disjunction bar it  follows that the item which is 
bo th  H and F must be at the other end. Let's look at  another example. 

( V x ) ( F x  3 G x )  and ( V x ) ( H x  3 F x )  

Note that the shading lines for the two formulae have been drawn in different directions. 

Inconsistellcy of a set of forms can be detected by a diagram. If the diagram is filled in  Sol. 
each form in turn and it is not possible t o  make all the forms in the set true, then the set 
in inconsistent. For  example, consider the set 

{ ( V x ) ( F x  3 6 x 1 ,  ( 3 x ) ( F x  & - C x )  } 

We begin with the universal ( Y x ) ( F x  3 Gx) 

NOVJ. wlzen we turn to  (3x)(P7,r 8~ -GX) we f i d  we cannot fill it in, because vie need t o  
. , place ; cross in the shrded area to  sigpify a; l easmne  itern t l l e r e ,  So, the Set 1s 1ncon.s- 

ie;lt 

" .  Sc [a: ;-/s k:::r: 1167 COI.$~JC: 64 k r : ) ~  fo;-:xcize 1, i~!i-~;cK :~:~:+jdljl;i c:;r;i;siaf;ts, prr;pcy- 
,. ~lona i  ierrers 3r ;;;~aniifCe;s have accurred inside the scope of any vant i f ie f .  ilzdeed, we 
i:eve not looked at any fom~ti!ae containing 2 propositionai - 1e:ieis. The following formuiae 
!lave o n e  a- other of these features. 

Such formulae cannot be dealt with using the methods set out above. We will restrict 
ourselves t o  formulae in MSF which contain no propositional letters nor free occurrences 
of individual variables. Even so, we further restrict ourselves to  formulae containing n o  
more than one dyadic operator outside the scope of  a quantifier. Such formulae we will 
call SimpleMQL wffs. The following are non-simple MQL wffs. 

( ( Y x )  F x  V ( 3 x )  Gx) & Fa, p 3 ( V x )  F x ,  Fx ,  ( j x ) ( ~ x  3 C y )  

We later introduce a diagrammatic method for dealing with non-Simple MQL wffs. 

Categorical Diag~ams: 

As we have seen. Venn circles are always drawn overlapping, and the relationship to  be 
displayed is indicated by filling in certain areas with appropriate markings, Euler 
diagrams also use circles. but  tlrese are no1 filled in. In contrast, the relationship to  be 
displayed is indicated by the spatial an.aiLgei77ent of the circles. Moreover, Euler adopted 
a covzprehenrive ex'xiste~ztial vieicpoiizt for his diagrams, assunling that soine items exist 
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in all the areas (including the area outside the circles). When two terms are involved there 
are five different relationships that can be displayed on a single Euler diagram: 

(iii) 

(i) Every A is B and every B is A 
(ii) No A is B 

(iii) All A is B and some B is not A 
(iv) All B is A and some A is not B 
(v) Some A is not B, some A is B, and some B is not A 

According to the comprehensive existential viewpoint it will also be true for each of the 
above that some items are A ,  some are B, and some are neither, Euler diagrams are 
more useful however if we omit this extra requirement, and instead treat the readings 
above as complete (for instance, with diagram (iii) we will not assume that some iterns are 
A). 

Adopting :this approach, a ~ d  t r e a ~ n g  k and B as sea  (review 59.4 if necessary), the 
above diagrams can be used to display the following set relations: 

i A = Pa A is identical to B 
(ii) A n B =  { )  A and B are disjoint 

(iii) A C B  A is a proper subset of B 
(iv) B C A B is a proper subset of A 
(v) A - B # { ) . & . A n B # { ). & . B - A # {) A and 63 properly overlap 

Note that we cannot represent the general relationship A C B (i.e. A is a subset of B) on 
a single Euler diagram since this relation includes the possibility that A = B. However, 
both A C B and Every A is B can be displayed as a disjunction of the diagrams (i) and 
(iii): this can be done by placing a "V" between the two figures. 

Euler diagrams can be quite useful for finding counterexamples to various arguments 
involving quantifiers and to various purported set theory identities. They are also useful 
for explaining a limited number of relations in a simple way. In some mathematics texts 
they are confused with Venn diagrams. Venn diagrams are much more efficient at esta- 
blishing validity of argument-forms or verifying set theory identities since only a single 
diagram is required. Recall that when Venn diagrams are used to test set theory identities, 
shading displays the set under consideration rather than indicating an empty region: in 
this text we have used dots and lines to distinguish between these different uses of 
shading 011 Venn diagrams. 
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1. Use either Karnaugh maps or Venn Diagrams t o  represent the following forms. 

(a) (Vx) --Fx (i) (b'x)(Fx 3 (Gx & Hx)) 
(b) (Vx)( -Fx 3 - Gx) 6) (b'x)(Fx 3 - (Gx V Hx)) 
(c) (3x)((Gx & Fx) & Hx) (k) F a & G b  
(d) (3x)(Fx V Gx) (1) F a V ( \ J x ) F x  
(e) (b'x)(Fx V Gx j (m) (3x1 Fx V (b'x) Fx 
(f) (3x)(Fx & (Gx V Hx)) (n) (3x )  Fx & (Vx) Fx 
(g) (3x)(Fx V (Gx & Hx)) (0) (3x1 Fx & -(b'x) FX 
(h) (b'x)((Fx & Gx) 3 Hx) 

2. Use either Karnaugh maps or Venn Diagrams to represent the following sets. If any 
set is inconsistent state that it is. 

(a) { ( b ' ~ ) ~ F x , ( b ' x ) G x  
(b) { (b'x)(Fx 3 Gx) . (\Jx)(Fx 3 -Gx) } 
(c) { (3x)(Fx & Gx) , (Vx)(Fx 3 -Gx) ) 
(d) ( ~ a ,  Gb, Ha)  
(e) { F a V G b )  
(f)  {"Fu, " ~ b )  

(g) { jb'x)(Fx 3 Gxj, (Vx)(Gx 3 Hx j , (3x)(Fx & -Hx) ) 

3. (a) Draw Venn diagrams to  depict the five relations discussed for Euler diagrams. 
(b) Use Euler diagrams to  represent the form Every A is B and every B is 6, 

(i) assuming that Some B is not A and some Cis not B. 
(ii) without either of these assumptions. 

Diagral-ns can %c used to assess arguments for vaiidijty. We will loo!;, in this section, z"i 
argument forms in which all the f~rrnulae are Simple MQL formula-e. The procedure for 
testing is as foElows: 

I )  A diagram is drawn to cope with ali the predicate letters in the argument form. 

2) Each premise is filled in on the diagram. 

3) The question is then asked: Does the diagram either 
(a) include the conclusion, or 
(b) show an inconsistent set of premises 

If the answer t o  either 3a or 3b is "yes" then the argument is valid; if not then it's 
invalid. 

Example 1: 

(b'x)(Fx 3 Gx) 
(b'x)(Gx 3 Hx) 

. (b'x)(Fx 3 Hx) 

Step 1. Draw an eight area diagram, (Fig. 1). 



Fig. 1 Fig. 2 

Step 2. Fill in both premises, t o  get Fig. 2. 

Step 3. The answer t o  3a is "yes", so the argument is valid. 

Example 2:  

( 'dx)(Fx 3 G x )  
( V x ) ( H x  3 G x )  

. ( V x ) ( F x  3 H x )  

Steps 1 and 2: Draw an eight area diagram and fill it in t o  get Fig. 3. 

Fig. 3 

Step 3. TkLe answer tc 3a is ""no" and to 3b is '$10". For the: diagram 
r e p r e s e ~ l t  I-k"ie co;.ir;lusisri ihf: -top lef i lmst  prea, area 1, yw3!ould have fi; 

. . be sha6ed oat. Hr is cot ,  Since 11: 1s nst it is easy to constpjc~ a 
zou~?i-,rexample. Some item, say a ,  in that area .~ouid leave the 
premises true but ~ n a k e  the conciz~sion false. So the counterexample 
is a one item world set out as 

N ' I  N I N "  
So the argument is invalid. 

Example 3: 

( 3 x ) ( F x  & G x )  
( 3 x ) ( G x  & H x )  

. (3 x)(Fx & H x )  

Steps 1 and 2: Draw an eight area map and fill it in t o  get Fig. 4. 



Fig. 4 

Step 3 :  The answers t o  bo th  3a and 3b are "no". For  us t o  be able t o  read 
off the conclusion we would need either a definite cross in area 2, 
or one in area 6, o r  a disjunction bar across from area 2 t o  6. The 
two bars in Fig 4 leave open the possibility that there is an item in 
area 1, one in area 3, and none in areas 2 or 6. 

So, we construct the  counterexample. It will be a two-item world 
as follows 

1. Use KarnaughIMaps or Venn Diagrams 'ic test %he following argument-forms for 
validity. If iqvalid set out a counterexample. 

(a) (VX)(HX 3 ~ F x )  , ( V x ] f  Gx 3 Fx)  / .'. (VX)(HX 3 > GGX) 
(b) @x)Fx> ( 3 x ) G x  / .~. (3x)(e"sc & G x )  
(6) (Vx ) (Fx  2 GxP / .~. ( V x ) (  --Gx 3 -Fx)  
(d) (Vx ) (Fx  3 Gx ) / .~. (Vx ) ( (Fx  & Hx)  3 G x )  
(el (vx)(Fx 3 G x )  / .'. (Vx ) (Fx  3 (Gx & Hx) )  
(f) ( 3 x ) ( F x  & G x )  / .'. ( 3 x 1  Fx 
(g> ( 3 x ) F x ,  (Vx)(Fx  3 G x )  / .'. ( 3 x ) ( G x  & F x )  
(h) ( 3 x ) ( F x  & G x )  ; (Vx ) (Gx  3 Hx ) / .'. ( j x ) ( F x  & Hx)  

(i) ( 3 x ) ( F x  & -Gx)  / .'. ( 3 x ) ( F x  & -(Gx & Hx) )  
(j) ( 3 x ) ( H x  & Fx),  ( 'dx)(Fx 3 Gx)  / .'. ( 3 x ) ( H x  & Gx) 
( k )  (Vx ) (Fx  3 --Gx),  ( 3 x ) ( H x  & - Gx)  / .'. ( 3 x ) ( H x  & -Fx )  
(1) ( 3 x )  Fx ,  (Vx ) (Gx  3 Hx) ,  (Vx ) (Fx  3 -Hx)  / .'. ( 3 x ) ( F x  & -- C x )  
(m) ( 3 x )  Fx ,  ( 3 x )  Gx / .'. ( 3 x ) ( F x  V Gx)  
(n) (Vx ) (Fx  3 Gx) ,  ( 'dx)  Fx / .'. ( V x )  Gx 
(0) ( 3 x ) ( F x  & Gx)  / .'. ( 3 x ) ( ( F x  V Hx)  & (Gx  V J x ) )  

2. Translate the  following arguments into MQL, using the dictionary provided, and test 
for validity by  using either Venn Diagrams or  Karnaugh Maps. 

(a) Every bag of wheat is counted. Some unmarked bags are bags of wheat. So some 
of what we counted is unmarked. (Wx = x  is a bag of wheat; Cx = x  is counted; 
Ux = x is an unmarked bag.) 
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(b) Not all price rises can be justified at the moment. Why? Because increases in 
service charges by Government are price rises, and n o  such increase can be justi- 
fied at  the moment. (Px = x is a price rise; Jx = x can be justified at the moment;  
ix = x is an increase i~ service charges by Government.) 

(c) People said t o  be successful in our society are well off, and since no-one who 
receives the pension is well off. it follows that people said t o  be successful in  our 
society never receive the pension. (Sx = x is a person said t o  be successful; W x  = 
x is well-off; R x  = x receives the pension.) 

(d) Everyone is imperfect, and everyone is mortal, so some mortals are imperfect. 
(Px = x is a person; ix = x is imperfect; Mx = x is mortal.) 

(e) No analytic t ruth is a synthetic truth. Some synthetic truths are a priori truths. 
Hence some a priovi truths are not analytic. (Ax = x is an analytic t ruth;  Sx = 
x is a synthetic t ruth;  Px = x is an a priori truth) 

(f) Some bugs are not insects since insects have six legs but some bugs d o  not  have 
six legs. (Bx = x is a bug; Ix = x is an insect; Sx = x has six legs.) 

(g) Some children who eat acidic foods are hyperactive, and all children who eat 
foods t o  which they are allergic are hyperactive. So, there are some children 
eating acidic foods who are eating foods to  which they are allergic. (Universe 
= children; A x  = x eats acidic food;  HX = x is hyperactive; F x  = x eats food t o  
which x is allergic.) 

(h) Scientific theories are all contingently true, because scientific theories are empiri- 
cal propositions. and empirical propositions are all contingently true. (Tx = x 
is a scientific theory; Cx = x is contingently true; Ex = x is an empirical proposi- 
tion.) 

ii) No ane who agi.:ates for reforn: is apathetic, r-nd everyone who really despises 
injustice agitates for i-aforn-:. Sc, n o  orre who reaily despises injustice is apathetic. 
. <: s , i i ; e ~ g  r?:, - PP,SSQ~S: I.:.'. = x ayj.te':es foi ~ e k c r m ;  Ax .I /: is aye+h"ti-. 3 . x  := ; 

dL.-- . ~, 

despists injus.ii.ce) 

( j)  Siree no one who is looking for security will expect a windfall profit, it follows 
that some who expect a wiizdfali profit will not  invest at low interest -ates, 
because everyone whcl iavests at low interest rates is looking for secnf'lty. (Uni- 
verse = persoils; ix = x is looking for security; .Ex = x expects a v~inclfali profit; 
dx = x invests at low interest rates.) 

(k)  Some river-bank land is not t o  be built on. This is because all river-bank land is 
flood prone and n o  flood prone land is t o  be built on. (Rx = x is riverbank land; 
Bx = x is t o  be built on ;  F x  = x is flood prone land.) 

(1) All of the bantam's eggs are fertile, and eggs which hatch are fertile eggs. So some 
of the bantam's eggs will hatch. (Bx = x is one of the bantam's eggs; F x  = x is a 
fertile egg; Hx = x will hatch.) 

(m) Some items on student records are kept secret. Since n o  items on  student records 
are released without special permission, it follows that some items kept secret are 
not released without special permission. (Univevse = items on student records; Sx 
= x is kept secret; R x  = x is released without special permission). 

(n)  A11 social welfare programs are stop-gap measures, because stop-gap measures are 
all measures brought in during an emergency t o  help people, and all measures 
brought in during an emergency t o  help people are social welfare programs. (Px = 

x is a social welfare program; Sx = x is a stop-gap measure; Bx = x is brought in 
during an emergency t o  help people.) 
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(0) Everyone trying t o  work will find satisfaction. No one who sits by and watches 
will find satisfaction. Hence, some who sit by and watch are not  trying t o  work. 
(Universe = persons; Tx = x is trying t o  work; Sx = x finds satisfaction; W x  = x  
sits by and watches.) 

(p) No one who is alert t o  public opinion will introduce unpopular changes in educa- 
tion just before an election. Some who are alert to  public opinion d o  not win 
office. So, n o  one who introduces unpopular changes in education just before an 
election wins office. (Universe = persons; Ax = x is alert t o  public opinion; Ix = 

x introduces unpopular changes in education just before an election; W x  = x 
wins office.) 

(q) No analytic truth is a synthetic truth. All analytic and synthetic truths are 
propositions. All propositions which are true by virtue of the meanings of terms 
are analytic truths. So, synthetic truths are propositions not  true by virtue of  the  
meanings of terms. (Ax = x is an analytic t ruth;  Sx = x  is a synthetic t ruth;  Px = 
x is a proposition; Tx = x is true by  virtue of the  meanings of terms.) 

(r) No efficient bureaucrat fusses about. The red Queen's ministers are all rabbits. 
Rabbits fuss about. So none of the red Queen's ministers are efficient bureau- 
crats who are punctual. (Bx = x is an efficient bureaucrat; F x  = x  fusses about;  
M x  = x is a minister of the red Queen; R x  = x is a rabbit; Px = x is punctual.) 

(s) No EIO syllogism is invalid. Since there are figure 1 and figure 2 syllogisms which 
are invalid, it follows that there are figure 1 and figure 2 syllogisms which are not  
EIO syllogisms. (Ex = x  is an E'IO syllogism; Ix = x is invalid; O x  = x  is a figure 1 
syllogism; Tx = x is a figure 2 syllogism.) 

( t )  No-one who has paid tax and applies for  the dole should have problems getting 
money. Some people who apply for the dole d o  have problems getting money 
even though they have paid tax. So it Eoi?owis that sorrie people do have problems 
getting money even though they should sot ha172 such problems. (Px = x is a 
person; Tx - x has paid tax; Sx = x shol~id have problemis gettifig money; A x  = 
x applies far  t h e  dole; ,GSx := x does have prcbiei-n~ g e t r i ~ g  money j 

13.4 MORE %'OIB/IP&EX CASES IN MQT 

Consider the three formulae, (1) to  (3) 

We now introduce the indirect method of representing these formulae. We will not repre- 
sent these formulae in  diagrams, but will use diagrams t o  represent these formulae in PL. 

First we set out  a fixed dictionary, and use the numerals 1,  2,  3 ... as fixed proposi- 
tional constants: 

1 = area 1 is null 
2 = area 2 is null 
3 = area 3 is null 

n = area n is null 

Consider Diagram 1 with its areas numbered: 
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Diag. 1. 

By using the dictionary and the usual shading for (Vx) F x  we can represent (Vx) F x  
with respect to Diagram I as (4). 

2 & 4  (4) 

(4) reads as (5) 

Area 1 and area 4 are null ( 5 )  

Similarly (Vx) Gx is represented by (6) (with respect to Diagram 1). 

3 & 4  (6) 

So (1) is represented by (7) (with respect to Diagram 1) 

(2 & 4 )  v (3  & 4) 

In the same diagram (3x) Gx is represented by (8) 

-1 v--2 

which reads as (9) 

Either ares 1 is not empty or area 2 is not empty ( 9 )  

So we represent (2) as (10) 

p > <  " 1  '"'-2) 

Note  rha!; pfcpcsitioilai ~$rar;abies ieFresen,t tj2ems-ires. So ( 3 )  :eps-seLrTs ( 3 )  in Dragrm 
. " 

q rj ; ,,. .,A, eve?y diagram. 

We use these PL i-epresentaticirs ic test formulae for MQT-Necessity. Consider jl i) 

(b'x)(.Fx 3 Gx) > ((Vx) FX > (Vx) Gx) I ;  1) 

In Diagram 1 we represent (1 1) by (12) 

3 3 ( ( 2  & 4) 3 (3  & 411 (1 2) 

This is a tautology. So we can conclude that (1 I )  is an MQT-Necessity. Consider also 

(13) 

( 3 x ) ( F x  & Gx) 3 ( ( 3 x )  Fx & (3x1  Gx) (13) 

This is represented in Diagram I by (14) 

-1 I ( ( - 1  V - 3 ) & ( - 1  V-2))  

Once again, this is a tautology, so (13) is an MQT-Necessity. 

Unfortunately, there is one complication. In our representations of (1 1) and (13) we 
have not had to worry about whether the domain is empty or non-empty. But formula 
(15) is an MQT-Necessity for just the reason that, in MQT, we operate in non-empty 
domains. 
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In Diagram 1 we represent (15) by (16) 

( 3 & 4 ) 3 ( - 1  V - 2 )  

(16) does not have the form of a tautology. The counterexan~ple is the top row of the 
truth-table: 1 = 1, 2 = 1 ,  3 = 1 ,  4 = 1. That row represents the domain's being empty. 
We can overcome this problem by always using a truth-table with no top  row. We use a 
non-null truth table. If we use MAV or t ruth trees, then any model or path in which 
every numeral of the formula (or argument) is true is closed. So (15) is an MQT-Necessity. 
Of course, we need test formulae only in  the s~nallest diagram in which they can be 
represented. So we could test (15) in Diagram 2. 

Diag. 2 

For  (1 5) we test (17) 

2 3 - 1  

which is always true in  a non-null truth-table 

This method of testing can easily be extended t o  arguments. 

We test 

(Hx)(Fx 3 Gx) 
( 'dx) (Cx  3 .fix> 

Diag. 3 

by  testing: 5 & 6 
18.54 

:. 1 & 5 

Care must be taken when representing formulae such as Fa in Diagram 3. In some 
arguments Fa might represent itself. In others we need ( -- 1 V -- 2 V - 5 V - 6) for 
Fa. 

Despite the effectiveness of this testing method we still cannot use it generally for 
MQT. We cannot represent formulae like (1 8), (1 9) and (20) 



(Yx)(Fx 3 P) 
(Vx)(Fx 3 Ga) 
(Yx)(Fx 3 (YY) GY) 

These are the for~nulae in which propositional letters, individual constants, or quantifiers 
occur within the scope of a quantification. 

The only way to deal with such is t o  have a minimum scope procedure. That is, we 
need a way of producing formulae which are logically equivalent t o  (IS), (19) and (20) 
and their ilk, but in which no propositional letter, individual constant, or quantifier is 
within the scope of a quantification. There is such a procedure, as we have seen in 9 12.4. 
It would produce, for example (2 1) t o  (23) from (1 8) to  (20) respectively: 

NOTES 
The indirect method of representing MQL wffs is due to Phillip Staines. 

EXERCISE 13.4 

I .  Translate the following arguments into MQL, using the  dictionary provided, and test 
them for validity by using the indirect method of diagrammatic representation. 

(a) Names aie not revealed to the press becatlse a91 names are kept secre"ito protect 
the victims and w h a ~ e ~ l e r  is k e p  secret is protect liictirn~ is never revealed t~ the 
press. ( P J - ~  1: ,. -- is 2 n a p e ;  Ki- = i: is r-veslsd t o  the press; *P,x = .x is kept secret tc: 
*313;e-t th- iiictiy*is,, 

~. .  
;hj ~Vhoevex h2:: 2 ga;i;e i~jlll g~ to t:-te second ~ o u n d  wifh f e l ~ e r  2oifits. Whoever 

goes "r the secoizd ~ o u n d  wick feiver poi:?ts v7j.E play under a penalty, So some 
who piay undei, a perzaity have I s t  a game. (Xx =: x has lost a game; Gx = x will 
go to ihe second i'ound xi~ith fewer. points; Px 3;: ;X play apder  a penalty.) 

(c?  Debaters are never unbiased and advocates are debaters. So some unbiased men 
are not advocates. jDx = x is a debater; Ux = x is unbiased; Ax = x is an advocate,) 

(d) Some reporters are not likely t o  be fair t o  members of groups of eccentrics. 
Reporters are looking for interesting stories. So some who look for interesting 
stories are not likely t o  be fair to  members of groups of eccentrics. (Rx = x is 
a reporter; Fx = x is likely t o  be fair t o  members of groups of eccentrics; Lx 
= x is looking for interesting stories.) 

(e) Some soldiers are heroes, but  some soldiers are not brave. So, some heroes are 
not brave. (Sx = x is a soldier; Hx = x is a hero; Bx = x is brave.) 

(f)  All members are both officers and gentlemen. All officers are fighters. Only a 
pacifist is either a gentleman or  not a fighter. No pacifists are gentlemen if they 
are fighters. Some members are fighters if and only if they are officers. Therefore 
not all members are fighters. ( M x  = x is a member; Ox = x is an officer; Gx = x is 
a gentleman; Fx = x is a fighter; Px = x is a pacifist.) 
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(g) If the University's rules are equitable, then students who have either academic 
qualifications or demonstrable ability will be eligible for entry. Since students 
who have academic qualifications o r  have demonstrable ability are not all admit- 
ted, it  follows that even if the University's rules are equitable, not every student 
who is eligible for entry will be admitted. (Universe = Students; R = The Univer- 
sity's rules are equitable; Qx = x  has academic qualifications; Dx = x has demon- 
strable ability; Ex = x is eligible for entry; Ax = x is admitted.) 

(h) All applicants who are women will be disappointed if they are not hired. Some 
women will be hired, but all applicants are women, so it follows that  some appli- 
cants will be disappointed. (Ax = x is an applicant; Wx = x is a woman; D x  = x  
is disappointed; H x  = x is hired.) 

(i) If there are innovations in education and some teachers are not  re-trained t o  cope, 
then some students d o  not  benefit. Only those who benefit are seen as evidence 
in favour of innovation. Since there are innovations in education and some stu- 
dents are not seen as evidence in favour of innovation, it follows that  teachers are 
not all re-trained t o  cope. (I = There are innovations in education; Tx = x is a 
teacher; Rx = x is re-trained t o  cope; Sx = x is a student; Bx = x  benefits; Fx = 

x  is seen as evidence in favour of innovation.) 

(j) Either all empiricists are illogical o r  n o  philosophers are realistic. Thus, if some 
philosophers are empiricists, then some empiricists are either illogical or unrealist- 
ic. (Ex  = x is an empiricist; Ix = x  is illogical; Px = x is a philosopher; R x  = x is 
realistic.) 

(k) No dentists are quantity surveyors, and n o  garbage pickers are dentists. So it 
follows that n o  garbage pickers are quantity surveyors. (Gx = x is a garbage 
piclrer, Dx = x is a dentist; Qx = x is a quantity surveyor.) 

(1) Only beliefs invoi~iing God are, on B r o ~ ~ n ' s  definition, religious beliefs. But since 
some easterr_ religious beliefs d o  ~zai involve God, it follows that scme easterc 
1-elig;eus beliefs are .;lot, sr: B?cvir.'s definjsion. r~liglt..us beliefs. {Gx -- n i s  e 
3elief invo;x~icg S o d ;  Bx = x is; ~ r _  r c w f i ' s  definc;ion, 2 reiigious belie" Ex = 

x is an eastern religious belie*') 

(m) Not all scientists are convinced that nuclear power is safe. This is so, because 
soille opponents of ~zuclear power are scientists, and n o  cne  who is convinced that 
nuclear power is safe is an opponent of nuclear power. ISx = x is a scientist; &x 
= x is convinced that  nuclear power is safe; Ox = x is an opponent of nuclear 
power.) 

(n) Every detail of the new system is in this book. Since n o  detail of the new system 
has been put on file it follows that some things in this book have not been put on 
file. ( D x  = x is a detail of the new system; Ix = x is in this book;  Px = x has been 
put on  file.) 



Puzzle 13 Three couples go t o  dinner. They sit around a rectangular table, one 
couple on each side. and the third couple sit opposite each other at 
the ends of the table. The three men are Fred, George and Henry, 
and their partners are, in alphabetical order, Anne, Beth and Cath. 
From the following work out who is with whom, and who is sitting 
at  the ends of the table: 

0 0 1 Fred is immediately t o  the left of Anne. 
2. Henry is opposite Beth. ! 

0 
3. George is not  opposite Fred. 

0 4. Beth is neither t o  the immediate left nor t o  the 
immediate right of George. 

13.5 SUMMARY 

-,  14 Ven;t o -  Msr:?augii diagram ibr n preai,J:es sr sc:s x/,.!il have 273 distinct aress" 01; :: 

Karnaugli map these are :iurnbei-ed in ~isual  reading order (lefr to right. do;;.,in\n/a-rds); 
vFr- , r i l  . ~ ~ L J S  ..". are n~imberecl to  corresposici vv.it11 these. iie;;:: diagrams consist of overlapping 
circles or ellipses for each predicate or set, with a complementary rectangular outline 
(sometimes omitted). Karnaugh maps have a rectangular array of cells whose coordinates 
are the predicates (or sets) or iheir colnplemen~s. The example below shows first a 
Venn then a Marnaugh diagram for F, 6, N with the areas nilrnbered. 
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Inibrmation can be hot11 e~ltcved GI? and read o,[fVe~ln and Karnaugli diagrams in accord- 
ance with the five conventions mentioned earlier: a clash with these conventioils when 
coding a set of foi-mulae onto one diagram indicates tlie set is inco~zsisterzt. 

MQL wffs in MSF which contain n o  propositional letters. n o  free IVs. and at  most one 
dyadic operator outside the scope of a quantifier are called Simple MQL ~vfj's. These rnay 
be tested on a single Venn or I<arnaugl diagram. 

Unlike Venn diagrams, Euler diagvams display relationships by the spatial arrangenzent of 
circles instead of filling in areas witli'marks. In addition, items are assumed to exist in 
certain areas. When two predicates or sets are involved, five different relationships can be 
displayed on a single Euler diagram (see 5 13.2). Further relations can be displayed by 
disjoining diagrams. Though useful for finding counterexamples and explaining simple 
relations, Euler diagrams are not very useful for establishing validity or set-theory identi- 
ties. 

Venn and Karnaugh diagrams may be used t o  test for validity of Simpie MQI, argument- 
forms by filling in all the premises on the one diagram: the argument-form is valid iff 
either the co~~clus ion  may be read off from the result or the premises were inconsistent. 
This method may be extended to test arguments, with the additional requirement that 
the countermodel must be possible. 

MQE wffs which are not Simple but are in MSF may be treated by the indirect diagvanz- 
matic method. Here the appropriate Venn or Karnaugh diagram is selected, with areas 
numbered 1 ,  ..., n as usual. The forrnula is then translated into PE with respect to  this 
diagram by using the numerals I, ..., 12 as propositional constants, where 2 = area 1 is 
empty ,  etc. Testing rriay now be done by PC methods (e.g., MAi7  a r  tables) except that 
we assume liot all areas are empty (so the model whefe each o f l ,  ..., i? = 1 is crossed ofi' 
and cannct be ]used for a counterexampie). 



Theory 

3 4.1 RELATIONS AND MULTIPLE QUANTIFICATION 

Tlle quantifier theory which we have been studying is not able l o  cope with proposi- 
tions such as (1). (2) and (3). 

Somebody loves somebody. (1) 
Every event bas some cause. ( 2 )  
For any two people, if the first is a cousin of the second then the 

second is a cousin of the first. ( 3 )  

In order l o  deal these. and oti-eis lik.: tilei?:, we have :i: :ake acco:lni ef ~elcriiins. --- 
. . ~. e2c;> cf --..,- 

. . , , 4') 16). is ess-i-r,26 ii:,3i a !eial.ijr~;?l;; fii i~q?,:  kil:d 
n ~ j d s  's?i;-,,eei; tw,.; j\~er:i: 

~ i i n e  ii\i7es 8111. ( 4 )  

Charles is a brother. of Sii.2, 
T i  

15)  
 en a ~ c  J u d y  gre causins. (6) 
a;.iiid is a;? ar_cestor 3: I%;-.l. < y >  I ,: 
Australia is crwaile! than Canzda. (8) 
Cairns is west o l  Canberra, (9) 
The passage is in the book.  (10) 

These relations are d-yudic relations because they Inold between t ~ v o  items. Some relatjolls 
al-e triadic. because they hold between three iteins. For exanlple: 

John is between Bill and Fred. (11) 
Sue pro~nised t o  give this pearl t o  Sally (12) 

Some relations are tetradic, because they hold between four items. Consider (13). 

Toni will share the prize with Michelle and Sandra. (1  3 )  

In general we refer to  17-aclic relations where the relation holds between r l  items: 17 then 
gives us the adi~i iry  of the relation. n-ilclic relations are also called 72-place predicates. This 
enables us to  talk about one-place. two-place, three-place etc. predicates. 

Our  main interest and focus of attention will be on iiyudic predicates. Many of the 
dyadic pi-edicatei vire ineel in ordinary conversation can be expressed ill either of two 
fonns. The two forms are called the nctive voice alid rhe plissive voice. For example, in 
(14) and ( 1  5) we have the two ways of expressing the same propositiolls 



"Anne loves Bill." 
"'Bill is loved by Anne." 

(14) is in the active voice. but 11 5) is in the passive. The word "by" often occul-s when 
the passive voice is used. In the fallowing pairs tile first is in the active voice and the 
second in passive 

Ms Jones owns the flats. 
The flats are owned by Ms Jones. 

Harry threw the ball. 
The ball was thrown by Harry. 

Many dyadic predicates do not have such alternative forms of expression in English. For  
our purposes we will consider them to be in the active voice. For example: 

John is smaller than Sue. 
Alan is a brother of Bill. 
Coonabarabran is west of Goondiwindi. 

Many propositions involving relations are expiessed in one of the A, E,  I or O f o r ~ ~ ~ s .  
Consider the following, (7 1) to (24): 

Every logician admires Russell. 
No logician admires Russell. 
Some logician admires RusseU. 
Some logic~an does not admire Russell 

They are A, E ,  I and O respectively. Since the relation is expressed in the active voice ir, 
each of (31 j t o  (24) we will say that they are. respectively, A aciive, E active, I active and 
8 rrctivc. The following, (75) to  ( 2 8 ) .  are A passive, E passive. I passive a n d  8 passive 
respeztively , 

Consider tile i'ollowii~g four propositions, I29 io  32): 

Every logician tdmires every gen?r::s. 
Every logician admires no genius. 
Every logician admires some genius. 
Every loacian admires not  all geniuses 

Each of  the above four is A active,  but eacli has a quantifier in its conseque~zt .  We can 
describe (29) as an A over A active proposition, (30) as an A over E active,  ( 31 )  as an 
A over I active, and (32) as an A over O active. Note that the negated A is treated as 
0. Look carefully at each of (33) to  (36) and see if you  can decide how each is to  he des- 
cribed before looking at the answers below. In this  iotat ti on the first letter and the last 
word give the overall form. 

No logician is admired by  every genius. 
No logician is admired by  n o  genius. 
Some logician is admired by some genius. 
Some logician is admired by  not all geniuses. 

(33) is IE over A passive. (34) is E over E passive, (35) is I over I pussille, (36) is Hover 0 
passive. 

Consider each of the following four A over A active propositions, (37) t o  (40): 



Every logician who respects everyone admires every writer. 
Every logician who respects no one admires every writer. 
Every logician who respects some one admires every writer. 
Every logician who respects not everyone admires every writer. 

Each of these has a quantifier in its antecederzt. We can describe 
(37) as an A by A active over A active,  
(38) as an A by E active over A active,  
(39) as an A by I active over A active,  and 
(40) as an A by 0 active over A active. 

We are using "by" as an abbreviation for "qualified by" to  indicate the form of the ante- 
cedent of a quantified conditional. and "over" as an abbreviation for "has scope over" 
to  indicate the for111 of the consequent. Where it is a quantified conjunction then "by" 
indicates the form of the left conjunct. and "over" the form of  the right conjunct. 

We now set out four further examples. (41) to (44). Try to  describe them before 
looking at the answers below. 

Some writer admires all geniuses. (41) 
Some writer who likes all authors admires all geniuses. (42) 
No writer who likes all authors is admired by all geniuses. (43) 
Every author who likes some writer admires some geniuses. (44) 

(41) is I over A active. (4'1) 1s I by A active over A active,  (43)  1s E by A actwe over A 
pussive. (44) is A by I actwe over I actzve. 

We \\)ill make co~isiderahle use of this descriptive te rmi~~ology  in the section 011 trans- 
la t ion .  5 14.5. 

W e  i?;~:,e ~ i e c  'adinit:,' rather Il lan .':idici:yn jvsi in case sorile st-ade?rts get to think i h c y  :;re learning 
;hoi i~  !he 813 o!'~:redicates. Some aiil!lors use tlie latin based terms 912a7ylj,. biilail), 1cr.17oi.y; e ~ c .  

EXERCISE 14.1 

I .  What is the adinily of the relations in the following propositions? 

(a) Susan is a cousin of Sally. 
(b) Elizabeth is a parent of Charles. 
(c)  Fred is the spouse of Wilma. 
id)  Cliff negotiates between Ian and Mal. 
i e )  Tony stands t o  the left of Margaret between Shrley and Karl 

2.  Which of the following are in the active voice and which are in the passive? Rewrite all 
the passive ones in the active. 

(a) Sally respects Sue. 
( b )  Mike was struck by the ball. 
(c)  Dennis was given out by the umpire. 
(d )  Robin is Chrls' sister. 
(e) Everyone 1s respected by someone or other. 
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3. Describe each of the foljowing In terms of A E 4 and 0 ,  active and passive. 

Some politicians take note of  Milton. 
Not all viewers are watching the Two Ronlzles. 
Some viewers are being monitored by the rating firm. 
No problenls in  logic confront every student.  
Every student is confronted by  some problem. 
There are some problems which every student solves. 
Some logician is ad~nired by all logicians. 
Every logician who is loved by  someone solves every proble~n. 
No student who solves some problems will ignore every problem. 
Every student who solves no problems will admire Aristotle. 

14.2 SYNTAX FOR Qk 

We now define the formulae for a language called Quauztificational Laulgzrage (QL). 
This language ir~cludes all the for~llulae o f  MQL. We can see QL as an extensiouz of MQL. 
In order to  extend MQL we need to d o  two things t o  the definitions for MQL. First we 
must aiter the primitive syrnbols by cllangi~lg the capital letters. Then we need t o  change 
clause (R2h.l). The capital letter list is as follows: 

Fn, Gn, fin9 In, Jn,  ... Any number of capital letters with superscripts 

We need the following terminology 

ST" denotes any primitive drawn from Fn, G", ... 

s: ... s, denotes n primitives (not  necessarily different) drawn from either or both. 
a5 x, y ,  ... and ci, i?, . . 

Fife can now generate i'ormi~iae siic1-1 as: 

Here is an example of a QL-wff assembly lrne 

The same principles operate in QL as in MQL for bound and free occurrences of individu- 
al variables. Binding can be displayed with lines as follows. To  avoid lines crossing, if 
possible. we use lines over as well as under the formula. 
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P 
Notice how both quantifiers, in our examples, have binding lines running into the same 
atomic sub-formulae: ~ ~ y x  and ~ ~ x y .  

EXERCISE 14.2 

I .  Set out assembly lines for the following formulae. 

(a)  (Vx)(F1x 3 ~ ~ x a )  
(b) ((3x1 F2xa 2 PI 
(c) (3x)(3y)  F ~ X ~  = ( V x ) ( ~ l a  3 ~ l b ) )  
(d) ( - ( 3 y ) ( 3 x ) ( ~ z )  ~ ~ x y z  3 ( ~ x ) ( 3 z )  - ( F ~  xz & H ~ X Z )  
(e) (Vx)((p 3 (3x)  FIX) V --G2xy) 

2. Draw binding lines for the formulae in Q. 1. 

14.3 SEMANTICS FOR QT 

The sy~nbols of QE are given meaning in the same way as we gave meaning to the 
symbols of MQL. The resulting system is calied Quantification Theorv (QT). 

We need consider only !he new set 3f capita: letters alld [he quaatii'iers 

S' zonadic  or me-piace predicais letters 
S" dyadic or two-place predicate ietters 
s3 triadic or three-place predicate letters 
s4 tetradic or four-place predicate letters 
s5 five-place predicate letters 

The formulae (1) means that a has the relation F to b 

~ ~ a b  

If we have the following dictionary: 

a - Alan 
b = B i l l  
F2xy = x is friendly t o y  

then (1) rneans 

Alan is friendly to Bill. 



Similarly ( 3 )  ineans (4) 

F~ ba 
Bill is friendly t o  Alan 

It  is important t o  note that just as ( I )  and ( 3 )  have a and b reversed, so do (2) and (4). 
Consider the further dictionary entry 

L 2 x y  = x is larger than y 

It is clear here also that the order of x and y is very important.  So (5) means (6 ) ,  and (7) 
ineans (8). 

L2ab 
Alan is larger than Bill 

L2ba 
Bill is larger than Alan 

Given our familiarity with the English language it is more natural to  place the dyadic 
predicate letters between the individual letters. Also, the adinity of a pledicate may 
be obtained by counting the number of associated individual letters, so the superscripts 
are redundant. So we relax our rules for QL-wffs as follows 

Practical Concession: Dyadic predicate letters may be placed hetweea individual 
letters: 
Predicate superscripfs may be deleted. 

So, (5) may be w r ~ t t e n  as either (9) or preferably as ( lo),  and (6) as e ~ t h e i  (1 I )  or prefer- 
ably (12) 

Lao (9) 
aLb  (1 0) 

Pbii ( 1  2 
sLc ; L\ 

'Ne now st O L L ~  a alctlor;a~.y for p~d . ica te  letters. TVherever possii;ie oiLr dictionary sets 
dyadic ~relarions in the active voice, 

px = x is a perso3 a = Aian 
,4x = x is happy b = Bill 
Jx = x jumps c = Caron 

xLy = x is larger than y 
x R y  = x respects y 

Alan jumps Ja 
Bill is not larger than Caron -- bLc 

Alan respects Bill aRb 

Let us now look at some two-item worlds. On the diagrams we will represent the rela- 
tion xRy by x + y and its negation by x y 
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In each of A. B. C and D, tlze individuals respect themselves. That rerriai~is constant. 
But of course that could change. Consider E. 

Neither a nor b has seif respect. 

- Fn worlds A and E aii5 and bi?a are tr.i;e. 1 here is mutual respect. In B aRL1 is true 
but &EIu 1s not. In (c) we have the reverse of B, In D neither respects the other. Each of 
these worlds can be described by Cayley tables. We set out  the following five tables and 
a key. 

0 1 '  b l l  

KEY 

Look caref~~lly at each table. The truth values are for the formulae in that position in the 
key. 
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In general tables for dyadic predicates are set out  as follows: 

a b c d . . .  

Each dyadic predicate has its own table. The items are listed in the same order across the 
top  and down the side. The values are inserted according to the key set out  below: 

For a one item world, where the item is named "a", there is only one entry where 
aRa is in the table below 

Tables for triadic, tetradic, etc.; predicates are set. out. like truth-table matrices with 
3ne co!urnn of values. For one item worlds there is only one space into which either 1 ijr 
C is entered. For exa.-pk: 

/ f-3 -- 
am 1 1 

But there are massiveiy more spaces for va-lues in aey 'two-item world. Vie set our the 
blank table for F' in a two-.item worid: 

abb 
baa 
bab 
bba 
bbb  i 

For any predicate of n places, in any world of i items there will be in spaces for values. 
So, for example, a tetradic predicate in a five-itern world would have 5" or 625 spaces in 
its table. 
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We can describe a two-item possible world, using the earlier dictionary, by means of  
the follo~virig three tables (taken conjointly). 

Note that there is one table for all the monadic predicates, but one each for the dyadic 
predicates. By referring t o  our dictionary we see that in this possible world, F ,  there are 
two people. Alan and Bill. Alan is happy but  does not  jump. Bill is not  happy but does 
jump. Both Alan and Bill have self-respect. but neither respects the other. It  is clear that  
Alan is the larger of  the two. 

Froiii this point on: in this section. we will restrict our universe of discourse t o  people. 

Universe = persons 

We will also use the notation [a. .... b ]  t o  represent any world where items are a ,  ..., b 
i.e. any world whose domain is {a, ..., b 1 

For finite worlds. the quantifications can be eliminated in  exactly the same way as for 
MQT. So,  in [a, b ]  (13) is equivalent t o  (14) 

( V x ) ( V y )  ~ R Y  (1 3) 

aRa & aRb & bRa & bRb (14) 

To show this equivaience we now eliminate the quantifications step by  step. 

(. T )  
\ A  r, 

(eliminate ( 3 y ) j  

(16) 

'in the world. (F). (14) i s  false, so (133 is false. (14) asserts that, in ('1. each person 
respects everyone (including himself) i.e. (17). 

Everyone respects everyone 

(1 7) is false in (F). 

But (16) is true in (F). Check it out  carefully. (16) says that a respects either a or b 
and b respects either a or b. In other words, each item respects at least one item or o t h g .  
We can read ( I  5)  as (18) 

Everyone respects someone or other ( 1  8) 

In (F), (18) is true. 

Now considei (19) and its equivalent (20) 

( 3 y ) ( V x )  ~ R Y  

" ( 3 y ) ( a ~ ~  & b R y )  

* (aRa & bRa) V (aRb & bRb)  

(19) 
(eliminate (Vx)) 

( 2 0 )  

(20) 1s false in (F). (20) says that either u and b both respect a or a and b both respect 
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b .  In other words, at least one  tern 1s respected by evely item. We lead (19) as (21). 

Someone is respected by everyone. ( 2 1 )  

When there are two quantifications one universal and the other existential in sequence. 
then one sequence will be equivalent t o  a conjunction of disjunctions. the other t o  a 
disjunction of conjunctions. Compare (16) and (20). So the order of quantifications, 
when they are of different kinds, is very important.  Consider (22) and its expansion 
for (F): ( 23 )  

( 3 x ) ( \ J ~ )  ~ R Y  ( 2 2 )  

* ( 3 x ) ( x R a  & x R b )  

* (aRa & aRb)  V  (bRa & bRb)  ( 2 3 )  

From ( 23 )  we see that ( 22 )  is read as (24). 

There's a t  least one person who respects everyone (24)  

In (F) (23)  is false, so also is (22). Finally we consider (251, its expansion (26). and 
reading as (27) .  

( j x ) ( j y )  ~ R Y  ( 2 5 )  
a R a V a R b  V  bRa V  bRb ( 2 6 )  

Someone respects someone. ( 2 7 )  

( 26 )  is true in (F). So ( 25 )  is true in (F). 

For MQT. all logical problems with which we would be concerned can be resolved in 
finite worlds. This is not so for QT. So we have to consider worlds with infinitely many 
items in them. The fiisi obvious thing about infinite worlds is that we cannot describe 
them by means of tables such as we used for (Ej .  We can provide a partial d ~ s ~ ~ i p f i c i i ~  

only The seco~ld obvious thing is that w e  carxnot expazlc! forxclae for ii~fifiiie \vL)rEds. 
But i i je c:;r_ o,;t t~:ikil ~3fid::i~pb: 

Definition: ('7'~) a is true iff every iaemizafion of a is tale 

@ V )  a is Brne iff at least one itemization s f  a is true. 

11 should be noted that therse conditions apply to  finite as well as ro ini'iniie worlds. I; 
turns out that we need concern ourselves with infinite worlds only when we are setting 
out counterexamples. So we will leave infinite worlds until 5 14.6. 

1. Eliminate the quantifiers in  the following formulae for the finite world (i), and for ( i i ) ,  
and calculate their t ruth values for (i) and for (ii). 

( a )  (Vx)(Px  3 xRa) 
( b )  (Vx)(Px  3 -aRx) 
(c) ( 3 x ) [ ( P x  & C x )  & xRa]  
(d)  ( V x ) [ ( L x  & Gx)  3 xRa]  
(el ( V x I ( 3 y  xR? 
(f) ( 3 y ) ( \ J x )  - xRy  
(g) ( \Jx)lPx 3 ( ~ Y ) ( P . Y  & CY & - x R y ) l  
(h) ( V x ) [ ( L x  & (VY)(GY 3 xR?)) 3 xRa1 
(i) (3.~1 Y R ~  3 P 
(j) ( V Y ) ( P  3 ( 3 x 1  ~ R Y )  
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B 4.4 PROPOSITIONS. ARGUMENTS, AND QT-TREES 

We begin by considering QL-jbrr?zs and QL-arglcttzerzt-foms. QL-forms, just like 
MQL-forms, are those forrnr~lae which contain n o  propositiollal constants, and for which 
there is no dictionary. (See 5 11.3). The basic definitions for QT-Necessity, QT-Co~ztra- 
d i c t i o ~  and QT-Contingency are essentially the same as for MQT. 

Definition: A form is a QT-Necessity iff it is true in every world. 

Definition: A form is a QT-Contradiction iff it is false in every world. 

Definition: A form is a QTContingency iff it is true in some worlds and fake in others. 

Unfortunately for us, fact A ,  as set out in f; 11.3. does not apply in  QT. It is possible for 
every finite expansion of some QL-forms t o  be true, but for the formula t o  be false in 
some infinite world. But fact C can be modified t o  apply t o  a restricted set of forms. The 
modified C is C': 
C' If a ,form is ilz Prenex Normal Fornz 

arzd no existential quanli@v is to the left of any universal quantifier, 
and there are n universal quaizt$iers, 

then the form is n QT-Necessity iff every expaizsiorz up to n items or one-item, 
whichever is larger, is a tautology. 

The following formulae match the description: 

la'otc that  in them ai i ,  t i l e  ~;nlve;szl qilai9:ifiers are ail t o  t11.e iefi o l  any e::istentials, The 
:^oliewing clLo i:o! rnrrch: 

The nletrlod of applying C' is ;:he s a m e  as for 6: 

Example: Is (b'x)(3y)[,!!~ 3 1S"y V xRy)] a QT-Necessity? 

1 .  kt d.oes match. 
2.  There is one universal quantifier. 
3 .  Since [Pa 3 (Pa V aRa)] is a tautology the  formula is a QT-Necessity 

When C' cannot be used we have t o  use some other method of  testing QE-forms for 
QT-Necessity, QT-Contradiction and QT-Contingency. Even when C" could be used some 
other method might be more practical. 

Truth-trees are generally applicable t o  QT. There is a closed truth-tree for every QT- 
Necessity, and one for every QT-Contradiction. Truth-trees for QT use precisely the same 
rules as for MQT. 
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Example: Is ( j x ) ( V y ) x F y  3 ( V y ) ( j x )  xFy  a QT-Necessity? 

J 1. - [ ( ~ X ) ( V Y )  XFY 3 ( V Y ) ( ~ X )  X F Y ]  N F  
b  J 2. ( 3 x ) ( V y )  XFY PC 

J 3 .  - ( ' d y ) ( 3 x ) x F y  
a  4 4.  ( 3 ~ ) - ( 3 x )  ~ F Y  3 ,  QN 

J 5. - ( 3 x 1  xFa 4 ,  EI 
a  \ 6 .  ( V Y )  ~ F Y  2 ,  El (new constant) 

-b \ 7 .  ( V x )  -xFa 5 ,  QN 
8. - bFa 7 ,  UI 
9 .  b Fa 6 ,  UI 

X 

So ( 3 x ) ( V y )  x F y  3 ( V y ) ( 3 x )  x F y  is a QT-Necessity. Recheck to be sure you can see 
how each resolution was carried out.  

Example: Is ( V x )  xFx  3 ( V y ) ( V x )  y F x  a QT-Necessity? 

1 .  - [ ( V x )  x F x  3 ( V y ) ( V x )  y F x ]  
baX 2 .  ( V x )  x F x  

J 3 .  - (vY) (vx)  Y F X  
a  J 4 .  ( 3 ~ )  - ( V X )  Y F ~  

J 5 .  - ( V x )  aFx 
b  J 4 .  ( 3 x )  -aFx 

7 .  -aFb 
8 .  aFa 
9 .  bFh 

'r 

"i?.C 
, . - . .  

, ..4,e ilia( ~h-,re is one va;i.e mlssmg. Tl1.e value i:! t l i ~ t  sp;re s.nol;id !:a: ma:ter. B L ? ~ ,  15-e 
- - 

leave it blank to see what happe~is .  We expand our form i b r  iu, b ;  to gel :  

So : (1 & 1 ) 3 ( ( 1  & . . ) & ( O &  I ) )  = 1 3 0  = 0 

Even with the blank spdce. the forrnula is false. So (A) 1s a countelexample. in  fact, 
(A) gives us two counterexamples: ( A 1 )  and (A, )  

Fact C' can be extended to the testing of argun~ent  forms. But the argument must 
meet a QT short cut cotzclitioi7 (QTSCC) 

Q TSCC Every premise and the co;~clusion must be of  i'ieizer il'ormal Forln. 
In a premise no universal quantifier is to  the left of  aily existentiill quanti- 
fier. In the co~zclusion no  existential quantifier is to  the left of any univer- 
sal quantifier. 
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Method 1. Clieck that the argument meets QTSCC. 

2 .  Count the existential quantifers in the premises and add to the number 
of universal quantifiers in the conclusion. 

3. ia)lf the total from 2 is one or  zero check the one-item expansion only. 
If valid, the argument-form is valid. 

ib)llf the total from 2 is greater than one then check the expansions 
from one up  t o  that number. 
If all are valid, the argument-form is valid. 

Example: Is (Vx)(Vy)(xFy 3 --yFx) 

.'. (VY)-YFY valid? 

1 .  It  does match QTSCC 
2. The total is 1 
3. aFa 3 -aFa 

. -- aFa is valid, so the  argument-form is valid 

Example: Is (Vx)(3 y) xFy 

.'. (3y)(Vx) xFy valid? 

I .  It does not match QTSCC. So another method has t o  be used. 

Example: Is (Vx)(Vy)(xFy 3 y Fx) 

. . (VY) YFY valid? 

1 It  does match QTSCC 
2 The total is 1 .  
3. aFa3oFa 

if this short cut method involves worlds which are too large, or if this method cannot 
be used, we can use truth-trees. Truth-trees are used to test the validity of QT-argument- 
forms in the same way as for MQT. 

. ~ (VY) -YFY valid? 

So the argument-form is valid. 
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Example Test the following argument-form for validity. 

(Vx)  - ( F x  & - C X )  

( V x ) ( [ H x  Br. ( 3 y ) ( G y  & XKY)] 2 M x )  
( 3 x ) [ H x  & Ox & ( 3  y)(Fy & xKy)] 

- ( 3 x ) ( H x  & Ox & Mx)  
( V X )  -(Hx & OX & Mx)  

Ha & Oa & ( 3 y)(Fy & aKy) 
Ha 
Oa 

( 3 y ) W y  ~ K Y )  
Fb & aKb 

Fb 
aKb 

The tree closes. :. the argument-form is valid. 

In the trees for MQT. when the tree looked as though it would remair, open, we could 
check to be sure of TUI. This is not always possible in QT. Consider the argument: 



The ilee goes as follows: 

Not only is there no closure, but if we try t o  TUI of either line 1 or line 3, the tree will 
go OII and 011 for ever. never c!osing. So far. we are up  to four items. We could try out  
the couliterexa~nple suggested by the open tree. 

There are only three values. We could expand 
the argument for four items. We leave that task 
to  the  reader, if you wish. 

In fact, we don't need such a large couliterexample. All we need is (D): 

IE QT; an open 1i.c: Goes not guzrantee a couil'cerexarnpie. This is unlike the siiuation 
in either PC or MQT. Noiletheless tilere is a closed tree f o r  every necessary truth, contra- 
diction. a11d valid argument in QT. A closed tree is a guarantee, but an open tree is not ,  
so when a counterexanlple is read off from any open tree it llas ro be checked. 

1 .  Select from the following formulae those which can be dealt with by means of c+, and 
work out which of the selected formulae are QT-Necessities by  expansion. 

(a) (VxjiVy)(Fx 3 FJ;) 
(b) i V ~ j i 3 ~ ) ( x r i ~  3 ,VRX) 
(c) (Vx)(Fx V G x )  . 3 . ( V x )  F x  V (Vx)  GX 
(d) ( v x  j(3.~)(3 z)( VIV ) [ Z R M  3 XRJ' ] 
(e) ~VZ)(EIX)(~.V![(XR 3 -yR x )  3 -zliz] 
(f) (Vx)(V,y)(~z)[zRz >(xRy V yR.x . 3 . yRv) j 



Section 14.4 370 

(g) i V x ) ( 3 ~ , ) ( 3 ~ )  [XFX 3 J I ~ Z  j 
(h) (VX)(~:G)[(S.Y 3 PY) 3 ((SX & T.X) 3 P X ) ~  
(i) (Vx)('dy)(3z)(3 M)> [XRJ' 3 J'R w j 
(j) ( j x ) ( j y ) ( ~ x  3 Fy) 

2.  Use truth-trees to test the unselected formulae of Q 1 for QT-Necessity 

3 .  Use truth-trees to show that the following are QT-Necessities. 

(a) (3xX3y)  xFy - ( 3 ~ ) ( 3 x )  yFx 
(b) Wx)(Vy) xFy (Vy)(Vx) ~ F Y  
(c) ( V X ) ( ~ Y )  XFY 3 (Vy)yEji 
(d) (3x)(Vy) xFy 3 (3x)  xFx 
(el (Vx)[xFx 3 ( ~ Y K x F Y  3 yFx)l 
(f)  (Vy)iVx)--[(Vz)zGx&--(3w)yCwI 
(g) (3xI(Vy) xAy 3 [(Vx)(Vy)(yAx 2 yBx) 3 (VyI(3x) xBy I 
( h )  (3x1 -- [iYy)(Fy & xGy) 3 (3y)(  --xGy 3 --Hy)j 3 --(Vy)iFy 3 Hy) 
(i) (3x ) (3  y)(Px & Py) r i 3 x )  Px 
(1) (3x1 XFX 2 ( 3 ~ ) ( 3 y )  xEj, 

4. Provide a counterexample for each of the following formulae, and verify your counier- 
example. 

(a> (Vx)(Vy) xRy F (Vx) xRx 
(b) (Vx) xRx 3 (Vx)(Vy)(xRy 3 yRx) 
(c) (3x1 xRx 3 (Vy)(3x) yRx 
(d) (3x)(3y)  xRy 3 (3x)(Vj>) XRY 
! e )  (3x)(Fx & 13y) xRy) 3 i3~)j.~'>.: & xRx) 

6.  Use truth-treesto deal with the argument-forms in Q 5  which do not match the QTSCC. 

7. Use truth-trees to show that the following argument-forms are valid. 

(a) ( 3 y ) y F y  1 .'. ( 3 ~ ) ( 3 x ) y F x  



(d) (Vx)(Vy)(xLy 3 xFy) 
(3x)[Px & (3y)(xF~ & -.YLJ)] 

. ' . - (V.x)(Vy)(xFy 3 .xLj>) 
(e) ( ~ x ) ( F - ~ V G X )  

( V,Y) ( F.x 1 - ( 3y)~H~y) 
(Vx)(Vjj)(,~Hy = (F.x & Gy)) 

.'. (3x)(Vy)xHy2(3x)6x 

(f)  (Vx)(Vy)(Vz) [xGy & xGz . 2 . Bxjlz] 
(3x)[N,u & (3 y)(3 z)(xGjs & xGz)] 

.' . - (Vex) (Vy) (Vz) (Bx-vz 2 -Nx) 
(8) iVx)(G.w 3 ( j y ) ( P y  & xHy) )  

( 3 x ) (  Gx & T x )  & -- (Vx ) (Gx  3 Tx)  
(Vx ) (Vy ) ( (Gx  & Tx & Gy & -- T y )  3 - x  V y )  

.'. ( 3 x ) ( 3 y ) ( P x  & Gy & yHx & ( 'dz)((Gz & -- T z )  3 --y V z ) )  

8. Which c!' the following are couckerexamples to the associated form~iitie'! Proyide proof 
1 0 ~  lrciir answer by rhe eiirrlinaiisn of  q-antifiers 

(a)  ( b u ) ( V y ) ! x l i y  3 xRx) 3 ( V x )  - x R x  

( c )  ( V X )  " P x  3 ( j x ) ( V y ) ( ~ x  3 x R y )  P "- 
b o o  

(d) i V z ) - z R z  3 ( V x ) ( V y ) ( x R y  3 -yRx) 

b / 1  0 



(f) (vx)(3~)xRy 3(3y)(Vx)xRy 

9.  Provide a counterexarnple for each of the following argument-forms, and verify your 
counterexampie b y  eliminating quantifiers. 

(a) ( 3 s)( ~J,)xRJ, / .'. (Vx)( 3y)xR.v 
(b) ( 3 .Y)( 3 j * ) . ~ R j ~  / , ~ ~ (V,~)(vy)xRy 
(c) (3s ) ( IS~* )xR j~  / .'. (3x)xR.x 
(d) (Vs)( 3j ; ) jsRy & xI5j~) / .' . ( 3 x)(Vy)(xRy & xS.1,) 

*(el ( 3 .I:)( F x  2 ( 3 ~ ~ ) ( p  2 ,YR>J)) 
p 3 ('.Jk)Fk 

( 3 .?:) ( 3 jl) ( F:x & -< Fjs & XRJI) 
' ' ' > \ ' , p V > D ;  

, . , A .-!* -LA-..* A 

Notice how the quantifier binds an x io the le,ft in xAb.  Now look at ( 3 )  vvhicli is A 
passive and its Translation in (4). 

Every logician is admired b y  Russell. (31 
(VX)(LX 3  AX) (41 

coritrast i n  tile passive we see how the quantifier binds an x to tire right in bAs .  A sirni1,lr 
will be found with the E active and E passive, H ncti~~e and I piirslve, 0 active and 0 
passive. For example. cornpare and contrast (5), (61, (7) and (8). 

0 acrive Some logician does not admire Russell ( 5 )  
(3x)(~x & -xAb) 16) 

0 passive Some logician is not admired by Russell 
1I-lilc)iL.x & - b A x )  



We have alleady seen that (9) is A over Anct ive .  

Every logician admires every genius. 

Let: Gx = x is a genius. 

We can semi-translate (9), showing the overall A form. as (10): 

( V x ) ( L x  3 x  admires every genius) 

We now need to show the A form of the consequent. as in (1 1) 

( V x ) ( L x  3 (Vy ) (Gy  3 ~ A Y ) )  
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(9) 

Note how, since the overall form is A active the order of x and y about admires is the 
same as the order of the quantifiers which bind tlzem. To translate (12) we would get the 
same as (1 1)  but with the x and y in opposite order to  the quantifiers, see (13). 

A over A passive Every logician is admired b y  every genius. 
( V x ) ( L x  3 (VyXGy  3 y A x ) )  

Compare and contiast (14), (151, (16) and (17). 

I over E active Some logician admires n o  genius. 
( 3 x ) ( L x  & (Vy ) (Gy  2 - x A y ) )  

I over E passive Some logcian is admired by  n o  genius. 
( 3 x ) ( L x  & ( V y ) ( G y  3 - y A x ) )  

We have also seen that (1 8) is A by A active active 

Every logician who respects everyone admires Russell. (1 8 )  

To i~aiislate (18) we need t o  show the  A form irl rhe antecedeli'c. M7e semi-transiate (18) 
a s  ( I $ > ) ,  

( H x j ( i x  and x respects e-ve:-y persc r  3 (19; 
$ 4 ~ ~  L ~ ~ ~ ~ - ~  , U L :  j'ji-n\ , I -: - 1 . :  . :?x = :: i s  o persari. 

xzQy - ;( respecis y .  

l : v ~ ) [ i r ~ ~  & :VJ . ) (P~  2 .xR;I)) 1 X A S I  (20; 

( 2  1) A bjl 1 passi:>e active 

Every logician who is respected by  someone admires Russeii. ( 2 1 )  

So we trallslare to  (22) :  

( V x ) [ ( L x  & ( 3 y ) ( ~ y  & ~Rx)) 3 x i fb j  (22)  

Consider (23). which we earlier described as A by I active over A active: 

Every logician who respects someone admires every writer. (23)  

If we let Wx = x is a writer, then (23) translates to  (24): 

( V x ) [ f L x  & ( 3 y ) ( P y  & x R y ) )  3 (\dz)(Wz 3 xAz ) ]  (24) 

Cornpare (23) and (24) with (25) and (26) 

A by I passive over A passive: 

Every logician who is respected by someone is admired by every writer (25) 
i 'dx) [ ( I d s  & (3y ) iPy  & yRx)) 3 ( 'dz)(  Wz 3 z A x ) ]  (25)  

See how rhe chdnge to passive levelses tile ordei of variables 
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Now 7,ye will look a t  a case where a triadic predicate is involved. We lei 

ixyz = x loves y at z 
Tx = x is a time. 

It seems reasoilable t o  describe (77) as A over I over I active 

Everybody loves somebody sometime ( 2 7 )  

(27) translates to (28). 

(VX) [Px 3 (3 y)(Py & ( 3  z)(Tz Sr ixyz) 1 ( 2 8 )  

Similarly it seems reasonable t o  say that (29) is A over 1 over I passive, and it translates as 

(301. 

Everybody is loved by  somebody sometime. (29) 
(Vx)IPx 3 (3y)(Py & (3z)(Tz & Lyxz))] (30) 

This use of "active" and "passive" for predicates of  greater adinity than two is risky, but 
can soinetimes be helpful. 

Solnetin~es when trallslating E propositions it can be helpful t o  consider the E in terms 
of  a uzegated I. Consider (3 1). 

No-one loves anyone 

We can ie-express this as (32) 

Not  even one person loves at least one person is?,) 
The change ro negated 1 forces cinrification of ""allyone", The translatiorl is then o f  a 
negated 1 < n e t  H crctlvc. t o  give (331, ifr:Ly = x ic;vesy 

*- / \-. 3 .; )[p;< \ & .;:y);?y & ;:L;y)? ( '3 )  

iri 5 1 k.3 (3i) sr_i$ (3:) :;i$:-e <iiiaYSeLj in  2 l .$~lziCtEd ilfi jver~e p t ~ ~ 3 1 1 ;  (%L!? nresesls z 
. I  . !zi!:t!::e l)f each ne-sc;~,  i-especling - sui-rrc-orre, 43; :.ct ipeceisaf~!y ii!e ja;ni: 13e;~ofi (35) 

presents a pi(;-iure 0;' c.aci. persork respectiiig t:?e sarnc (a t  least or:" )eisi:i;. (4atside 2 
restricted universt of  persons we wauld need (36 )  and ( 37 )  respectively. 

( V X , ( P X  3 : ~ J J ) ~ P Y  a xliy)) (36; 
(jy)(Py & (Vx)iPx 3 xRy)) (371 

(36) is A over H active while (37) is I over A passive. 

Let: xCy = x is a cousin of y. 

(38) is symbolized by (39). Note how "any two" indicates two universal quantifiers 

For  any two people, if the first is a cousin of the second, then the 
second is a cousin of the first. (38) 
(Vx)(Vy)I(Px & Py) 3 (xCy 3 yCx) l  (39) 

If the univei-se of discourse were restricted t o  persons we would get (40) 

(VX)(VY)(XCY 3 yCx) (40) 

Let: x Ty  = x is taller than y . 

(41) is syn~bolized by (42); or by (43) in a 1-estricted uliiverse of discourse. In this case 
"any three" indicates three universal quantifiers. 
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For any three people, if the first is taller than the second, and the 
second is taller than the third, then the first is taller than the third. ( 4 1 )  
(Vx ) (b ' y ) iVz )  [ (Px  & Py & Pz) 3 ((x Ty & y  T z )  3 x  T z ) ) ]  (42)  

(Vx ) (Vy ) ( t i ' z ) [ ( xTy  & yTz )  3 xTz1 ( 4 3 )  

EXERCISE 14.5 

In questions 1-7 translate into QL using only the dictionary provided. 

1. e .... English 
in .... Maths 
s .... Science 

S.u .... x i s  a subject 
.uNv .... x is harder than y 

English is a subject. 
Maths, Science and English are all subjects. 
Science is harder than Maths. 
Neither English nor Maths is harder than Science. 
Science is a harder subject than Maths. 
There is a subject which is harder than both Maths and English. 

No subjectis harder than Science. 
At  ieast one sf Science and English is harder than Maths, 
Any sabje::t harder lhan Science is also harder than English. 

c, . ,MI S U ~ ~ ~ , L , . S  2, :em<- a x  ha:de~ lhar5 Mal,h,s hi: few siibject:j are $larder 
:ha;: Science. 

Only a subject harder Matk.,s ca:n quaiif~i ass being s 
subject than English. 

- ~ 5 = Bob c = Carol 
px = -< ; - i ~b a person Gx = x is generous 

xRy = x is related t o y  

Everyone is related t o  Bob. 
Someone is related t o  Bob. 
No-one is related to  Bob. 
Someone is not related t o  Bob. 
Everyone who is related t o  Bob is generous. 
Everyone who is not related to  Bob is generous. 
Some one who is related t o  Bob is not generous. 
Some one who is generous is not related t o  Bob. 
Everyone who is generous is related t o  Bob. 
Everyone who is related t o  Carol is related t o  Bob. 
Everyone who is related t o  Carol is either generous or related to  Bob 



3. b = Betty c = ear; = David 
P:i = x is a person iX7x = x i s  kiqd 

xHy = .?: helps .v I).u = x is dese~ving 

Betty heips Carl but Carl does not help David. 
Everyone helps Carl. 
Everyone is helped by Carl. 
Everyone helps someone. 
Everyone is helped by someone. 
Everyone who helps David is kind. 
Everyone who is helped by David is deserving. 
Everyone who helps someone is kind. 
Everyone who is helped by someone is deserving 
Every kind person helps someone. 
Every deserving person is helped by someone. 

U ~ t v e v s e  = persons j = Joe Blow 
b = Bob m = Ma1 
il = Dame Edna Px = x is a politician 

xCy = x convi~~ces  y xLy -- x loves 

Bob is not convinced by Ma!. 
Eab  convinces someone. 
Yct  everyone is convinced by Mal. 
N o  politician corvinces Joe Blow. 
Dame Edna loves al! politicians. 
Dame Edpa is not cazivinced by any poiiticiar, 
Pollticans corivince no-onr. 

- .  
Scjmeari- 15 ncit 2 politjcian 1a:ir;s sornec;rie w!lo is. 
.tLthoubli :via; co;lvirlce: Joe bi.;~?. nor i-,i~-;;< po?lii-ies drj-5 

L ~ <  ,<'!t:llS; 
,~)-,? &,.- P -1 , ; I  .- -*.,-Wu 

",he fair maidea. 

x r s a persor? 
x is good 
x imprisons .j9 in a dungeon 

x loves J 
x rescues y from z 

(a) The evil warlock does not Iove the fair maiden, and has imprisoned 
her in a dungeon. 

(b)  IF the evil warlock loves nobody then he doesn't love hirnself~ 

" (c) Anyone who loves everyone is good. 

" (d) The evil warlock will imprison himself in a dungeon if anyone 
rescues the fair maiden from him. 

(e) Lord Alpha, who loves and is loved by the fair maiden, rescues 
her tiom the evil warlock. 

6. a .... Alf 
b .... Betty 

c .... Colin 



N.u .... .x is a person 

.V.Y .... .x is a make 
xql. ~ ~ . .  s is a parent of .v 

Alf is a parent of Betty. 
Someone is not a parent of Betty. 
Alf is Betty's father. 
Alf has a son. 
Betty is a female person. 
Betty is AlPs daughter. 
Betty has a parent. 
Colin is a grandparent of Betty. 

Betty has a grandparent. 
Betty has a grandmother. 
Everyone has a parent. 

Not every parent is a male. 
Fathers are all male. 
No person is his own parent. 

7 .  Supply your own dictionary and translate the following into QL. 

(a) Beitrand Russell was a philosopher. 
(b) All philosophers are persons. 

(c) Gonh.cius was a phiisspher only if K9ur?g TzG was. 

i d )  There is someone s d h c m  erieryone loves. 

(e) Etveryone laves a g e i s t  orie Dersoc 
;?I Nob&\r J i ~ v c s  r:obc.&y. 

7, 

(g) J here s a mar: viho loves hirnseli: 

( h ?  If aajione zvas a philospher, Bertrand Russell was. 

* ( i )  Logicians and philosophers are both interesting and intelligent. 
(j) N o  mamrnoehs exist. 

(k) Some people hear but do not listen. 

( 1 )  Only those who listen are worth listening to. 

* (m) Laziness never leads to success. 

* (n)  Laziness sometimes is damaging. 

* (0) Nothing but a miracle can save us now. 

* ( p )  Nobody save a genius would have thought ofthat. 

(q )  ,411 cheerful. hardworking students with a big work load deserve a rest. 

In  questions 8-10 you are given formulae which should be translated into English using 
the dictionary provided. 

8. Px .... x is a person 
S.r .... x is a sport 

Mx .... x is a mental activity 
-uGv .... x is good at y 
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9. Px .... x is an adult person 
M x  .... xis male 
Fx .... is female 
xLy .... x loves y 

(a) -(Vx)(PxxMx) 
(b) (Vx)[(Px & Mx) 2 (3y)(Py & FY & y.Wl 
(c) (3 x)(3 y)(Px & Py & xLy & --yLx) 

* (d) (3 x)[Mx & xLx & (Vy)(Fy 2 --xLy)] 
*(e> ( V x ) [ P x x ( M x $ F x ) ] 2 - - ( 3 x ) ( P x & M x & F x )  

10. Rx .... x is a real number 
Px .... x is a positive number 
Nx .... x is a negative number 
xGy .... x is greater than y 
xly .... x equals y 

(a) (Vx)(PxxRx) 
(b) (3x)[Rx&-(~~xVNx)] 

" (c )  ('v'x)(Vy)[(W;c & Ry) 3 "(xC~ :I yGx ?;v xljy)j 
(d> ( ~ x ) ~ A ~ 2 P r > - ~ 3 y ) ( ~ ~ y & y ~ ~ c ) i  ' r ~  , J 

( \ 1 ; $ [ ~ x j ~ / 3 y ) ( ~ ~ ; p 4 ~ L ~ ~ y ) , ~ e ~ ~ ~ ; j  

14,6 INFINITE 'WORLDS AND COUNTEWEXANJPLES 

Our main problem with infinite worlds is the problem of counterexan~pies. For 
example, consider argument Corm (I), which certainly does not match QTSCC 

(VxI(3y) XSY 
(V~)(WI(~~)((~SY & YSZ) 3 xSz) 

(Vx) -xSx 

.'. (3x)(Yy) ysx 

The tree begins as follows: 

(YX)(~Y 1 ~ S Y  
(YX)(VY)(Y~)((XSY & YSZ) 3 ~ S Y )  

(Vx) -xSx 
--(~X)(VYI YSX 

(VX) ~ ( Y Y )  YSX - (Vy) ySa 
(31,) -ySa - bSa 
(34') bSy 

bSc 
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The tree will riot close. Attempts for TUI will lead t o  an infinite open path. So we might 
try for a finite counterexample in a two-item world by  using PC methods (e.g. MAV, or 
trees, or even tables). 'The argument expands t o  (2). 

. . (aSa & aSb) V (bSa & bSb) (2)  

Tlle expansion of the second premise can be shortened because six of  the eight conjuncts 
are tautologies. So we get (3) 

(aSa V aSb) & (bSa V bSb) 
((aSb & bSa) 3 aSa) & ((bSa & aSb) 3 bSb) 

-aSa & - bSb 
. (aSa & aSb) V (bSa & bSb) (3) 

It will be discovered that (3) is valid. Indeed the expanded premises are inconsistent. This 
can be shown in a tree. We leave that task t o  the reader. 

111 fact. this will be so in every finite world. Hence, there is no counterexample in any 
finite world. 

We can iizfevprct argument-form (1) in the following way 

Lei: Universe = nrrrnbers 
x = x is smaller than  ,y 

k-/$rxr ;?,, I(- ,~:L~,T is ihan ~0-6.- I - - 8  - b . ~ = j d - L  -I--- c r  .,- - ' h ~ -  - C L ~ - ~  
~, ; $ 

. * 
.. li~ii~:~,:i. 13 siaaLer :has 5. sc2:;oi:d ;iii ths s t c o ~ d  is sinal~ie: t k a ~  
a L141.d, the11 :he first is sizlaller than the third. 
No nualber is smaller than itseif. 

- 
Hei?r,e, :hex is a number than which all rrum'bers ale smaiier, (4) 

" i~  ~ i n i t e  possible v ~ o r l ~ s  of numbers the premises are inconsisterit. But In any infinite 
possible vv.orld of naiural nfimhers, 1 ,  2,  3,  ... ; the premises are all true, bur the conclusion 
false. We have interpreted the symbolization of the argument-form by fixing a dictionary. 
If the for111 is a valid form, it will be valid for every interpretation. 

The worlds of natural numbers are most useful for providing infinite counterexamples. 
They may also be used for finite counterexamples as well. A certain amount of inventive- 
ness is needed in order t o  pick appropriate properties and relations for the interpretation 
in the dictionary. It must be quite clear that ,  under the interpretation, the premises are 
true and the conclusion false. For example, consider argument-form (5). 

(Vx)(Ax 3 Bx) 
(Vx)(Cx 3 Bx) 

.'. (Vx)(Ax 3 Cx) 

We can provide an infinite counterexample by the followi~lg interpretation: 
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Let: Universe = numbers 
Ax = x is divisible by 6 
B x  = x is divisible by 2 
Cx = x is divisible by 4. 

Under interpretation, (5) is (6) 

Every number divisible by  6 is divisible by  2 
Every number divisible by 4 is divisible by  2 

. Every number divisible by 6 is divisible by 4 (6) 

The premises are true, the conclusion false. If we altered this interpretation of (5 )  by:  

Let: Universe = natural numbers 1 t o  20 

then we would have a finite counterexample 

This method of counterexamples by interpretation can be extended t o  the testing of argu- 
ments. In that case the counterexample is called a counterargument. It  must be remem- 
bered that an infinite counterexample cannot be checked by  expansion and calculation. 
So the interpretation must show clearly that formulae have the appropriate truth-value 
without calculation. 

The following steps should be followed when developing an infinite counterexample. 

1 .  State what the universe of discourse is, (e.g. the natural numbers: 1, 2, 3, ...) 

2. Give each predicate, monadic, dyadic, etc. an interpretation relevant t o  the 
universe, (e.g. Ex = x is even, xLy = x is less than y )  

3. It~Iaite each individual constant the name of some one thing in the restricted 
uni~verse (e.g. n = 3 ,  B = 1)  

5. XJdrite down ihe reading of each fo.;muia in azcordance with 1 to 4,  shot:/ 
\*?laat its truth-va!ue i s .  

Free occurrences of individual variables should be dealt with by universal closure. 

1. Translate the  following arguments into QL,  using only the dictionaries provided. Test 
them for validity in QT, using the  method of your choice. 

(a) There is at least one proposition implied by every proposition. Since contra- 
dictions are all propositions, every contradiction implies some proposition or 
other. 
(Px = x is a proposition; Cx = x is a contradiction; xly = x implies y) 

(b) If anyone is superior to  anyone, then the latter is not superior to  the former. 
Hence, no-one can be superior t o  himself. 
(Px = x is a person; xSy = x is superior t o  y . )  

(c) All gifts are given by someone or  other. Although some gifts are tangible, not all 
are. Gifts which are tangible are not as valuable as gifts which are not tangible. So 
some people give gifts which are not as valuable as gifts which are intangible. 
(Px = x is a person; G x  = x is a gift; xfgy = x gives y ; Tx = x is tangible; x Vy = x 
is a valuable as y). 
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(d) Every word fiend is a scrabble player. Crossword checkers are all word fiends. 
Since there is at least one book which every scrabble player uses, i t  follows that 
crossword checkers all use at least some book or  other. 
(Wx = x is a word fiend: Sx = x is a scrabble player; Cx = x is a crossword 
checker; Bx = x is a book;  xUy = x uses y )  

(e) Every philosophical empiricist admires Hume. Some philosophical idealists like n o  
one who admires Hume. Therefore, some philosophical idealists like n o  philoso- 
phical empiricist. 
(Ex = .w is a philosophical empiricist; Ix = x is a philosophical idealist; xLy = x 
likes y ; xAy = x admires y ; a = Hume). 

( f )  Every major newspaper is biased against the Communist party. If such a news- 
paper is biased against a political party then it is not biased in favour of it. Since 
the Communist party is a political party it follows that there is at least one 
political party which major newspapers are not biased in favour of. 
( c  = the communist party; ,Vx = x is a major newspaper; Px = x is a political 
party; xBy = x is biased against y ;  xFy = x is biased in favour of y). 

(g) Vacant allotments provide n o  income for their owners. Any owner of real estate 
must pay rates on it. Therefore any owner of a vacant allotment must pay rates 
on  something which provides n o  income for its owner. 
(Vx = x is a vacant allotment; R x  = x is real estate; xly = x  provides income for 
y ; xPy = x pays rates on y : xOy = x owns y.) 

(h) Every tautology is implied by every tautology, contingency and contradiction. 
Tautologies, contingencies and contradictions are all propositions. Since there is 
at least one tautology. it  follows that every contradictioil implies some proposi- 
tion or other. - (Pi' = .:: is a prgp~~iti~ll: ix = .\: s a tauioiog:;; Sx = .x is a .:or.tingency; Cx = ;; is 

. % a conr:adirtion; x;, = x 1m3~1es y.: 

i j 
( J ,  -4 ssubsta!?ce is ~~nlirni ted by anything. A2y  substance wsvid be limitad oilly by a 

, . r e  cr~~reren t  substance, If any two substances are cliffere-t ficm OCP ailo.tber, then 
ane Emits the other and is limited by the  other. Consequently; if any snbstance 
exists then no substance is different from it. 
!Sx = x is a silbstance; xLy = x limits y ; xLy = x is different from y . )  

(k j  Every citizen is either a patriot or a traitor. Patriots, and only patriots, are hon- 
oured by governments. Some citizens are honoured by governments, and so it 
follows that some citizens are traitors. 
(Cx = x is a citizen; Px = x is a patriot: Tx = x is a traitor;xHy = x honours y ;  
Gx = x is a government.) 

(1) All land is owned by someone or other. Some land is owned by  the Crown. 
All land not owned by the Crown is privately owned. Hence, some land is private- 
ly owned. 
( C  = the Crown, L x  = x is land: Px = x is a person, R x  = x is privately owned; 
xOy = x owns y . )  

im)  Salesmen will talk t o  people they know well. Salesman d o  not talk to  any person 
who is not a prospective buyer. So, only prospective buyers are people salesmen 
know well. 
(Px = s is a person; Sx = x is a salesman; Bx = x is a prospective buyer; xKy = 
x knows y well; xTj1 = x will talk t o  y .) 



Section 14.6 382 

(n) If the report is accepted then some recommendations in the report ~7i l l  be put 
into effect and some will not.  All the recommendations in the report would be 
put into effect if we were t o  have real progress. So,  we will not have real progress, 
even though some recommendations in the report will be put into effect. 
(a = the report; W = We will have real progress; A x  = x is accepted; R x  = x is a 
recommendation; Px = x is put into effect; xIy = x is in y.) 

(0) If some books should be censored then all books should be censored. Why? 
Because a book should be censored only if there is a t  least one person who knows 
that it is certain t o  corrupt and deprave. Any person who knows that some book 
is certain t o  corrupt and deprave will be infallible. But n o  one is infallible. 
(Bx = x is a book;  Cx = x should be censored; Px = x is a person; Ix = x is 

infallible; xKy = x knows that y is certain t o  corrupt and deprave.) 

(p) Every new product has some defect o r  other. No careful buyer wants to  purchase 
any product with any defect. So, careful buyers do not want t o  purchase new 
products. 
(Px = x is a product; N x  = x is new; D x  = x is a defect; Cx = x is a careful buyer; 
xHy = x has y ;  x W y  = x wants t o  purchase y) 

(q) Whoever belongs t o  the Jet set is richer than any member of the Golf Club. Not 
everyone who belongs t o  the  Jet set is richer than everyone who does not belong. 
So there is someone who is richer than everyone in the  Golf Club. 
(Px = x is a person; Jx = x belongs t o  the Jet set;  G x  = x is a member of the Golf 
Club; xRy = x is richer than y) 

(r) If someone moves a motion and that motion is ruled out of order, then that 
motion lapses only if there is n o  successful challenge. Mr Brown moved a motion 
which .;hias ruled out of order, but there was a successfui challenge. So. at least one 
of Mr Brown's motions did not lapse. 
(1% = x is a person; Rx = x is a ination; xk f y  = x moves y ;  Q x  =. x is r~rled ou t  sf 
order; L X  = x lapses; Q = there was a success f~~l  challznye; b = M: Brawrr.) 

, \ 

I s )  Bernie anti Alice are people. I.: Bernie :s nlarri-d ro A:!ce :ner either Alice 
five sons or she five Saughrers (but not  both). N o i ~ ?  ;i-clyone whci hc:lcv/s Bernie 
and Alice knows that they are married. Moreover, Alice has five daughters only if 
she also has five sans; and she has five sors  only if she is an Australian. It so 
happens that Bernie and Alice are known bg7 Noi-ma (who is a wonderful perso?)). 
Now it stands t o  reason that Bernie and Alice are married provided that someone 
knows they're married. From all this it follows that Alice is Australian, and has 
five sons but does not have five daughters. 
(a = Alice; b = Bernie; Px = x is a person; x M y  = x is married t o  y ; Sx = x has 
five sons; D x  = x has five daughters; xKy = x knows y ;  Tx = x knows that 
Bernie and Alice are married; A x  = x is Australian; n = Norma; W x  = x is won- 
derful.) 

2. Translate the following arguments into QL,  setting out your dictionary clearly, and 
then test for validity in QT, using the method of your choice. 

(a) All very intelligent people manage to pass the exam. Alan is a student, but he is 
not very bright. Hence Alan will fail the  exam. 

(b) No number is greater than itself. Thus n o  number is greater than every number. 

(c) If black holes exist then some objects are invisible. Black holes have strong gravi- 
tational fields. Hence some invisible objects have strong gravitational fields. 

(d) Any belief is either rational. irrational (against reason), o r  extra-rational (outside 
reason). Any irrational belief is not rational. Alan's belief in the transcendent is 
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an extra-rational belief. Therefore Alan's belief in the transcendent is not justified, 
since any irrational belief is unjustified. 
(Symbolize Alan's belief in the transcendent by an individual constant.) 

(e) Some males love all females. Hence any particular female is loved by at least one 
male. 

(f) Was the Hatter mad in assessing the following argument as invalid? 
I see what I eat. Therefore I eat what I see. 

(Lewis Carroll, A l i c e  i n  W o n d e r l a n d )  

(g) Anyone who studies logic is sensible. All sensible people should be  congratulated. 
Hence anyone who studies logic deserves congratulations. (Hint: the solution is 
easier if you restrict the universe t o  people; if you  don't you  will have t o  include 
"Px ... x is a person" in your dictionary.) 

(h) K'ung TZ; was Chinese, and Mo TZ; was his intellectual o p p o n e ~ ~ t .  All intellect- 
ual opponents of Chinese were Chinese, so Mo ~ z ;  was Chinese. 

(i) No beer tastes better than Fourex. It  is clear then that Bloopo doesn't taste 
better than Fourex, since Bloopo is a beer. 

(j) Since Mars is a red planet, any astronaut that lands on Mars lands on a planet. 

(k) Anyone who teaches Chemistry o r  organizes sporting activities works hard. Now 
Ivor has taught Chemistry provided only that he has also organized sporting 
activities. But the general claim that  any person who teaches Chemistry also 
organizes sport is a false claim. Hence lvor has not worked hard. 

(1) Some people are older than others. Alice is a person and so is Bernie. Hence 
either Alice is older than Bernie or Bernie is older than Alice. 

(m) .Anyme who gains satisfaction does n;ot daspak. NOIN anycne v ~ h o  gets this prob- 
:em out will gai i~ satisfaction. Therefore, no matter w~bat person it is, unless tha: 
person gets this prohiern out rbat person wiii despair, 

$UZZ/& 1 4  A sector of space is charted into four quadrants: ASI, A52, A53 
and A54. In each quadrant is a Rhul spaceship. There is a scout, 
a tanker, a heavy cruiser and a destroyer. The ships each have a 
different battle status. One is at maximum efficiency (status I), 
one is retiring (status II), one has a new crew (status 111) and one 
is damaged (status IV). From the following decoded messages 
work out which ship is in what status in  which sector. 

1 .  The cruiser has a better status than the scout. 
2. The tanker is in sector A52. 
3. The destroyer has just left A54. 
4. The damaged ship is in A53. 
5. The destroyer has a new crew. 
6. The ship in A54 is retiring. 
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14.7 SUMMARY 

In  addition t o  the properties (monadic predicates) considered by MQT. standard Quanti- 
fication Theory (QT) deals with relatioizs jpolyadic predicates). The language QL is 
formed from MQL by replacing monadic predicate letters with n-adic predicate letters: 
the adinity (n )  of these letters equals the nuinber of  associated individual letters, stan- 
dardly written in  the suffix position but  in tile case of  dyadic predicates often written on 
either side e.g., Fx, Lab or  aLb, C.XJU. 

Dyadic relations in a given world may be depicted on world-diagrams using arrows or 
slashed-arrows to indicate whether a relation does or doesn't hold between an ordered 
pair o f  items. They may also be displayed by means of Cayley tables. Relations of higher 
adinity may be displayed in single colunln tables with the matrix listing the various item 
sequences. We use "[a, ..., b ] "  as an abbreviation for "any world whose items are a, ..., 
b". 

With respect t o  any world: (Vx)a  is true iff every itemization of  a is true: ( 3 x ) a  is true 
iff at least one itemization of  a is true. Modal properties and relations (including validity) 
in QT are defined as for MQT, with "QT" substituted for "MQT". Unlike MQL-forms. it 
is possible for a QL-form to be true in all finite worlds but  false in an infinite world. If a 
QE-form is in PNF with n Vs and no 3 preceding any V , then it is a QT-Necessity iff 
every expansion up  to n items (or one item if I? = 0) is a tautology. 

a QE-argument-form meets the QT Short Cut Condition (QTSCC: each premise and 
the concll~sion are in PNF. in each premise n o  V precedes any 3 , and in the conclusion 
nn 3 precedes any V), then add the number of 3s ini the premises t o  the nuniber of Vs in 
the conclusion to give a total of c :  if r = 0 or I then :he argument-fcr:m is valid iff its one- 
iterr: expacsinn is iiaiid:, 3i:herwj.e the r,rgur;:e.r!x-lo:m ic. uaiid iff Its expansions :rp {<? t- 
i,;ems are valid 

-, .!~, 
>_'-:,:*pe:? --, >.,icb!.> rj:i: sarr.; I ~ L ~ T  ;jac , ~ ~ y g ~ , ~ ; - ~ e ~  ~ ~ ~ ~ ~ ~ ? ~ ~ d ~ l - .  tJ!;<i1 i>c ;lrlp:,$ij;;ie 
-- - : ,'j a [~>:r:lala, 2~1.d conscijiL;-nl:i,/ i .  ~e :a:; ;:evei. ia;zplet:;d. sLlch c-scs ,v:!- c a r  
A : I  __ firad a fiilite cci~n;t~example jnsing a n  open pati-, ;s 2 ilint) 2nd test illis by sui;si;i- 
tu:lc~. Sometiines. ihr; only c-ufiterexarnples i>~ii! be Iillhiilr ;Dnc \i!ay :!f oecersiing c. - -  a:. 

. - i r i h j t e  ccunle:exarr,pte ior 2 CL-argunien;-i,;m Is ti: &r::se -nii:?:s- be ~ e ;  31' 
natural numbers, and interpret the individual and predicate l e i ~ e r s  iii ierixs of nuinhers 
and mathematical predicates which clearly make the premises ti-lue and the cor;clusion 
false. Unlike PC and MQT, there can be n o  decision procedure for QT in general. 

In translating from English to  QL, it is useful t o  distinguish between the active voice (e.g., 
All cats like mice) and the passive voice (e.g.. All cats are liked by  mice). If we choose a 
predicate in the active voice. the passive voice can be expressed by changing the order of 
the individual letters around the predicate e.g., using ' ' x u y "  for "X loves y" we may 
express "x is ioved by y" as "yLx". 

The letters '%A 'E", "I". "0" may be used t o  classify phrases as well as sentences: 

type sentence phrase 

A Every A is B Every A 
E N o A  isB No A 
I Some A is B Sonle A 
0 Some A is not B Not all A 



Using "by" and "over" as abbreviations for "'qualified by" and "with scope over", rnany 
sentence constructions may now be classified e.g.; 

"Every cat who likes n o  mice is liked by some mice." 

is A by E active over B passive. In this notation the first letter (here "A") and the 1as.t 
word (here "passive") give the overall form. Most propositions can be expressed in 
English sentences fitting this classification scheme. 

Translation from English into QL is best done in a top-down fashion. For instance the 
above example may be translated in stages as follows: 

(Vx) fx is a cat who likes no mice 3 x is liked by some mice] 
(Vx) [(Cx & x likes n o  mice) 3 some mice Like x] 
(Vx) [(Cx & -x likes some mice) 3 (3y) (My & yLx)] 
(Vx) [(CX & ~ ( 3 ~ 1  (MY & xLY)) 2 ( 3 ~ )  (MY $~.YLX)I 

The order of mixed quantifiers is important,  e.g., (Vx) ( 3 y ) a  is not equivalent t o  

(3.~1 (Vx1 a. 



R a f u r a l  Deduction 

P 5 .I SUBSTITUTION RULES 
T, rile system of natui-ai deduction which was se t  oui in Chapter 8 can be extended t o  

QT, Ali the inference and substituliorr r d e s  of PC are ificli~dec! in the system for QT. 
PLiiles are addea fo- q~.;~t:f;caiioi;. 

I Construct d e b u c t i o ~ s  to show that the following are valld. 

(a) (3x)(r"Jc & 6.x) / .'. - (Vx)(i.x 3 -6r)  
(b) (t'x)(Fx 3 -13,v)!Gy & xRy)) / .'. --(3x)(Fx & -(Vy)(Gj> 3 -xKy)] 
(c) (Vx)(Fx 3 Gx) / .'. (Vx)( - Gx 3 -Fx) 
(d) (Vx)(Fx 3 -Gx) / .'. (Vx)(Cx 3 -Fx) 
(e) (Vx) Fx / .'. ~ ( 3 x 1  -Fx 



Ufiiversai l:-:sr:ant;atioi! (UI) i'cr natilral deduction js exactly the same as UCTI in t r ~ r l i -  
trees. 

. a g ~  where is zn ilemizaiioa of ipii to any lndividu-31 ccsxtant, K. 

VJitl! this rule we show ( 1 )  :o be valid 

-- i h e  second s i ~ p l e  ruPe is Existential Ceneraliratiofi (EG). The rule is best set out 
iisiilg the  notalion: a Qvils) \where a is any indiviaue! constant or variable and a ( u / / s )  
is the :esiill of '  su5stl i i~iir .g i' f ~ . -  t;'v'ej.;lJ occurrence of y ill cs: 

For example: Fa (x / / a ~ ;  is Fx 
(FL; 3 Gb)(y  // b )  is (Fy  3 >Gy? 
!3y) r e i . y / / a )  ' is (jY)FY 

'Ye use the rules we have t o  slloav (2) valid 

The restriction on EG prevents (3) from being shown valid 

( 3 ~  1 ~ F Y  

If the restriction "v does not occur in a" were not there, then the conclusion of (3) 
would follow from the premise directly. But there is the following counterexample t o  

( 3 ) :  



By the elimination of quantifiers in (3) we get: 

aFa V aFb = 0 V 1 = 1 
aFa V bFb = 0 V 0 = 0 

Note that the left-most quantifier in the conclusion is vacuous. So our rule allows the 
addition of' vacuous quantifiers. 

It  should also be noted that formulae with free occurrences of individual variables 
should be Universally Closed before dealing with them in any proof. 

1.  Construct deductions t o  show that the following are valid 

(a) (VX) Fx / .'. (3x1 Fx 
(bj Fa, (Vx)(Fx 3 Gx) / .'. (3x)(Gx & Fx) 
(c) (Vx)(Fx 3 Gx). Ha & Fa / . ' ~  ((3x)(Hx & Gx) 
(d) - (gx)(Fx & Gx), t i r z  & Fa 1 .'. .~X)(~YX & - 6x1 
(e) (Vx)(Fx 3 Gx), Ha & - Ga / .'. (3 x)(Hx & - Fx) 
(I) (Vx)(Vy) XRY 1 .'. 13x1(3~) ~ R Y  
(g) (Vx)(Vy)xRy / .'. 13x) xRx 
(h) (Vx)!Vy) xRy .'. (3x);Hy) xRy 
j i j  (vx)(i'x 3 Gx) \/ -(2x)(Kx &, Lx), Fa & F- Ga, K 3  . . --Lb 

*(.\n ( J ,  (~/X](P~FX) / ~~, ~~3(2~)i:'k 

U@ a 
.'. (VV) a t v / /  K >  where ie is an ir~diuicinal constant 

provided that (i) tC does not occur in a z y  premise or undischarged assump- 
tion. 

(ii) K does not occur in  the dictionary 

This rule can be demorlstrated only in the context of a deduction. We can use it  to  show 
( I )  to be valid. 

1 .  (Vx)(I:x 3 Gx) 
2. (Vx)(Gx 3 Hx) 
3. Fa 3 Ga 
4. Ga 3 Ha 
5. Fa 3 Ha 
6. (Vx)(Fx 3 Hx) 
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We can replace a in 5 by x because re does not occur in any premise or undischarged 
assumption, and there is no dictionary for ( I ) .  

The idea behind UG is that if the individual constant is utterly arbitrary, then every- 
thing has its properties and relations. In  the  deduction above a is utterly arbitrary. 

If the proviso is ignored we can see what happens. 

Let Fx = x is a farmer Universe = people 
a = Alan 

1. Fa 
2. (Vx) Fx 

P / ... (Vx) Fx 
1 UG (ignoring the proviso) 

The obvious counterexanlpie is 

In the next section we introduce the use of Existential Instantiation (EI). Great care 
must be taken when both UG and EI are used in a deduction. 

1.  En which of the following is UG correctly used, and in which is i; riot? If  not ,  why not? 

(a) 1.  (Vx)(*Fa 3 6x1 P (b) !. !Hx)xRx p 
7 2 >Cb -. 1 UI 2 ,  aRa 1 i!I 

r-+.';. 2cg 3~ y y j  ;!-2.;J 2 3C 
1 ,t " i. 
, i n  

~ > .> u 
{Zl.,,,>>-:. 
2.. .( .,,; w r ? j  3 BC 

1 5  >,,,I . 5, , ) #'Y b 3 .  " 

. . 2 .  Constructdded~ctions t o  show that tii? -follcwing are valid. 

(a) {Vx)(Fx 3 Gx), --(3x)(fi & 6x1 .'. idxjiAYx > -j-x) 
(b j  {Vx){Fx 3 (i:~) 1 .~ .  <V:~)~(FX & K:<) 3 GJ:) 
(.?) (Vx>/Hy j x,'i2, / :. (k/j )iLj\dx) xRg 
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(d) p 3 (Vx) F x  / .'. (Vx)(p 3 Fx)  
(e) (Vx)(p 3 Fx)  / .'. p 3 (Vx) F x  

*(f) ( 3 x )  F x  3 p / .'. (Vx)(Fx 3 p) 
(g) (Vx)(Vy)(Vz)((xRy & yRz) 3 xRy),  (Vx) -xRx / .'. (Vx)(Vy)(xRy 3 -yRx) 
(h) (Vx)(Vy)(xRy 3 --yRx) / .'. (Vx) -xRx 
(i) (Vx) xRx / .'. (Vx)(Vy)((xRy V y R x )  3 xRx) 
(j) (Vx)(Fx & Gx) / .'. (Vx) F x  & (Vx) Gx 

15.4 EXISTENTIAL INSTANTIATION 

The rule of Existential Instantiation, (EI), fbr natural deduction is quite different t o  
the EI rule in truth-trees. EI in natural deduction is the most conlplex of the rules. 
We set the rule ou t :  

We can use EI to  show (1)  valid. 

(Vx)(Gx 3 Fa) 
(3x1  Cx 

.'" Fa 

where p IC is an itemization of v t o  iC, and 
(i) K does not occur in any premise or undis- 

charged assumption 
(ii) K does not occur in (32)) p v 
(iii) K does not occur in  a 

I\Tote how ihe jus-iificaiion is entered. Line 3 is gakzed f ro i l i  2 hy z move like the Iru:h- 
tree EE. kine 5 does not contain b ,  so we can discharge the assurnp'tion 'to get Fa. 

Consider some of the invalid moves which can occur when the proviso clauses are 
ignored for EI. Consider a deduction with the foliowing dictionary in mind: 

Universe = persons R x  = x is rich 
b = Bill xLy = x loves y 
c = Carol 

1 .  R b  P 
2.  ( 3 x )  cLx P / .'. (3x)(cLx & R x )  
3. cLb A (ignoring proviso (i)) 
4. cLb & R b  1,  3 Conj 
5 .  ( 3 x ) ( c ~ x  & R x )  4 EG 



There is an obvious counterexample 

Bill is rich. Carol is not rich; neither is d .  Carol does not love Bill, but d .  Carol loves 
someone, but not someone rich. 

With the same dictionary we see what happens by ignoring proviso (ii) 

P / :. ( 3 x )  xLx  
1 UI 
A (ignoring (ii)) 
3 EG 

5 .  ( 3 x ) x L x  2,3-4 EI 

Clearly this is invalid. We have the counterexample: 

L j a c  

Everyone loves someone, b u t  it  is false that 
someone loves themselves 

Consider what happens when proviso (iii) is ignored. 

1 .  ( 3 x )  xLc P / .'. bLc 
--+ 2.  bLc A 

r' bLc A 

4 .  SLc 3 bi,c 3-3 CP 
5. 6 T ,  uirr  2 , 4  ;\A 

6. b ~ c  1 ,  2-5 Ei (ignoring (iii) 

The cou~lterexarnpie is clear 

Someone loves Carol, but it is not Bill 
0 1 

EXERCISE 15.4 

1 .  In which of the following is EI correctly used, and in which is it not? If not ,  why not? 

(a)  1 .  ( V x ) ( F x  > G x )  P (b) 1 .  ( 3 ~ ) ( 3 ~ )  ~ L Y  P 
2 .  ( 3 x ) ( ~ x  & F x )  P 2 .  ( 3 y )  aLy 
3 .  Ha & Fa A 
4. Fa 3 Simp 4.  (jx) xLx  
5 .  Ha 3 Simp 
6.  Fa 3 Ga 1 UI 5 .  ( 3 x )  xLx  
7 Ga 4.6 AA 
8. Ha & Ga 5,7  con^. 6.  ( 3 x )  xLx  1,  2-5 El 
9 .  ( 3 x ) ( H x  & G x )  8 EG 

10. ( 3 x ) i ~ x  & G x )  2.3-9 EI 
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ie) 1 .  (3x)jFx 3 Ga) P 
2 Fa 3 C a  A 
3 (Vx) Fx A 
4 Fa 3 UI 
5 .  Gu 3.4 AA 
5. 13x)Gx 5 EG 

(d) i . (3xjiElu V Gx) P 
I>2. Frr\JGa A 
i r - B  3 .  Fa A 
1 i 4. (3x)_~s 3 EG 

L 

5. i;b>(jx)Fx 3-4 CP 
Ga A ;: (3x1 Gx 6 EG 
I / 8. Go 3 (3x1 Gx 6-7 CP 

1 9. (3x) Fx V (3s) Cs 3,3.8 CD I 

2 .  Construct dedv.ctioiis t o  show that the following are valid 
- 

(a) (3x)ll";x 3 [ij I .'. r Vx j 1L17: 3 p 
P ,  (b) ( 'd:c)(Fx 3 Gx). (3.x) c j ~ w  ~~ pd( 'd . t ) lgx  

(c) (:x):3,,/) .xl?;, / . ,~  (;>,)(3x; ,?<El. 
- 

( " 7 ~ .  / --,, ~ , , . S  ,/ .), ) ( 3 "5 i 1 lL: ( L i ,  
\l,+)#< \/;",).-.:R;: ' . ' t - ' -  ~ 

" 

( , \-, \ ,  L! i '., -- , : ;  : -" , , /.c; x-:x 

A convoy of four trucks is on the road. The trucks are from ail arms factory, a 
food store, a fuel store, and a building materials store. The drivers are an army 
sergeant, an RAAF sergeant, an army corporal and an army private, The army 
corporal is driving the first truck. The trucks each have a final destination. Those 
destinations are an Army base, an RAAF base, a Navy base and a civilian airfield. 

The convoy commander has left his clip board of details behind. He receives a 
message that one of the trucks has a bomb in it ,  and that if the truck stops moving 
the bomb will explode. He also is told that the bomb is in the truclt driven by a 
sergeant who is going .to a destination not of his own branch of the armed forces. 
The commander jots down what he knows. It is as follows: 

( i j  The truck going t o  the  Army base IS ahead of the one going to the Navy 
base. 



393 Section 15.4 

(ii) The truck froni the arms factory is ahead of the one from the fuel store. 

(iiij The rrv.ck from the building store is ahead of the one driven by the RAAF 
sergeant. 

(iv) The truck going t o  the civilian airfield carries food. 

(v) The truck driven by the army pr~vate  1s t o  the rear of the truck going to 
the Navy base 

(vi) The army sergeant drives a truck to the rear of the truck going to the 
RAAF base. 

(vii) The corporal is not driving the truck from the fuel store or the building 
materials store. 

iviii) The army private is driving the truck which is t o  go t o  the civilian airfield. 

(ix) The RAAF sergeant is not  driving t o  the  army base. 

Which truck holds the bomb? 

Show how you arrived a t  your answer - (you have 30 minutes)! 

15.5 SUMMARY 

The system of natur.al deduc i io~  for QT subsumes that for PC (see Ch. 8) and adds two 

substitution rules (QN) and four inference rules (UI, EG, UC, EH). In specifying these 
rules we use the followingnotations: K denotes any individua! constant, oc(v// K) denotes 
the result of s~~hst i tur ing v for each occurrence of K in a ,  and @K denotes an itemization 
oVQ 31 ;o K. 

G ~ Q ~ T  t; j ier _ ~ * ] C ~ Q ; ' ~ ~ J :  /Q!!ij: -.-(sd:,Jn 1 .  ( < 3 y ) - c  
. "  

,- ( 7 ; ) ~  , , j ~ p )  .-. i3. 

iJ): il;t.rnai Genera.nif=cticji; ( t5Tpcr j , 2 

.". (Hv) a j l ~ / ]  K) (~r/nere K is not  in any 
premise oi  undischarged 
assumption or the 
dictionary) 

Existential bnstar?tiation (EI): 

a (where K is not  in any 
premise or undischarged 
assumption, in (3 V )  $ v or 
in a) 

Note that this versio~l of Ei is quite different from the El used in trees 





POSTSCRIPT 

Although we are nearly at  the end of this text ,  we are nowhere near the end of logic. 
There are vast areas as yet to  be explored. Some can be discovered by following proposi- 
tional logic and quantificational logic into their many extensions. Some areas of logic are 
quite different to  anything we have rnet in this text.  

The extensions of propositional logic cover a wide range of modal and relevant logics. 
In the rllodal logics there are systems which attempt to  formalize the notions of  possibil- 
i ty and necessity. Other modal logics attempt the formalization of the notions of time, 
knowledge; obligation. and processes. Relevantlogicsattenlpt t o  give better formalizations 
of conditionals than is possible in ordinary propositional logic. 

The extensions of quantificational logic include all the extensions of propositional 
logic, and n:ore. There are foul  very important extensions t o  quan'tificational logic. They 
are rile iogc  of iderzritj*. the theories of dejiizite descriptions, tl-ie theor j~  of dyadic 
preiJicates. and sei- l ' b e c ~ .  MYe ilave ziready met some set t11eo1-y in chapters 9 and E 3, 
bu t  ii'erc js a n7c.e adequa;e aild extensive basis fcr set theoiy in the extelmsions of QT. 
js f i  ::?is area Iha: v.e the i:>gjcai rools disci~ss the fo;rnda"o-.s 3f ~ ~ a ~ h ? ~ ~ l a t i ~ <  
arzii orlcgic itself. 

Most of the logic we have considered descends firom the work of Gottlob Frege. But 
no: all l o g c  in the modern world is so heavily in debt to Frege, One other important scrt 
of Lcgic is mereoiogy. a i o g c  of pal-ts and wholes, developed by the P ~ h s l ;  Logic~ans, LTI 
particular ~ekniewski .  

We hope that you will pursue logic further. There are many fascinating things in the 
far reaches of the abstract. and many amusing things in the logical puzzles and paradoxes 
of  Lewis Carroll, or Rayrllond Srnullyan and others. So, in conclusion we hope that i t  is 
not the conclusion. 



APPENDIX 1 

TRADITIONAL LOGIC 

Traditional Logic derives mainly from the system which Aristotle (384-322 B.C.) set out in the Prior 
Analytics. Although the system is very limited in scope, it is important in two ways. First, it is the  
first system of formal logic in the history of logic. Second, it incorporates, in one version, an unusual 
logical feature which is worth noting. 

Traditional logic deals only with arguments in which all propositions are of either A, E, B or 0 form. 
The logical form of these is set out  in ordinary language, e.g: 

A : Every S is P E : N o S i s P  
I : Some S isP 0 : Soine S is no tP  

Propositions of these forms are usually called categorical propos~tions. The A and E are of universal 
quantity, the I and O of particular quantity. The A and H are of affirmative quality (affirmo), the 
E and 0 of negative quality (nego). 

The letters S and P are term variables. Any capital letter may be used. i n  each of the above S is said 
to  be in subject position, and P in predicate position. So, in "Every frog is green", the subject term 
is "frog" and the predicate term is "green". 

Arguments which satisfy the following conditions are syllogisms: 

(a) there are two premises, 
(b) the subject term of the conclusion occurs in one premise, and 

the predicate term of the conclusion occurs in the other premise, 
(c) there is one term in common between the premises. 

In a syllogism the predicate term of the conclusion is known as the t?:ajor term, and the premise in 
which it occurs is the major premise. The subject term of the conclusion is the minor ternz, and the 
prsrnlse in which it occurs is the minor premise. When sex our in s t a ~ ~ d a r d  forit: a jy!iopism has the  
major premise as the first premise, e.g: 

Major ?remise : 310 dog is a cat 
?:fine;. ?reraise : . ~ e r y  kelpie is e dcg 

C _ .,i?~:~l:s~;C,~ 
" ." , : , !:ei ::is i.: 2 ;;? : ' I  ,, \, 

The lines a c t  as a useful reminder. .4rgurnen? (1) is in Figure I 

Syilogisms may be assessed for validity f ~ o m  either the fr'j'pothetic~i i7iewpoiiii or thc F.xisiei?tinl 
Yiewpoin~. When syllogisms are assessed f icm the Hypothetical Viewpoint rhr A. E. I and 0 proposi- 
tions are treated as they would be in !vIQT. The square of opposition is as below. Contrast :ite two 
squares. 



We will us? Sap, SeP. Sip and SOP for the A E I and 0 respectively: 

H y p o t h e t i c a l  

SUP SeP 

I Contradictories I 

Existential 

SUP .-----Contraries - - - 9 Sep  

I 
I 

implies 
I 
I 
I 
.k 
Sip 

Contradictories 

Y 

e -  - - Subcontraries- ---* 

implies 
I 
I 
I 

The A and E are not contrary from the Hypothetical Viewpoint because there might be no  S i.e. 
S could be an empty term. Also. i f S  is empty. the A can be true and the I false, so A does not imply 
I .  In like fashion, fro111 the Hypothctical Viewpoint the E does not Imply the 0, nor are the I and 
0 sub-contrary. 

In the Exis te~~t ia l  Vienpoint we acsurne that no subject term is empty. When using diagrams to assess 
foi- validity from the Exislential Vien-point, care rnust be taken to ensure that every subject term 
occurring in the argument is non-empty. I f  you think of this in terms of MQT, the Existential View- 
point is like adding to  every syllogism as extra premises (2) and (3) or (4) or both, depending on the 
figure: 

: 3 x )  s x  
( 3 ~ )  .Klx 
(3x) Px 

There are fifteen valid syllogisms. described in terms of mood and figure. from the Hypothetical 
Viewpoint. There are an extra seven when the Existential Vie~vpoint is taken. The additional seven do 
not each require the existential viexrpoint for all the subject terms. So a re  set out  a table of valid forms 
be lo^^^. n - i t i ~  the presuppositions ncces\ary: 

.- I 

EAC 

AAI ( 3 x 1 ~ ~  

Traditionally. it was claimed that the subject terms of universals, A and E, and the predicate terms 
of negatives, E and 0,  were distributed. The other terms were undistributed. The general idea was that 
in a proposition. if the assertion is about all things to which the term refers then that term in that  
position in that proposition 1s distributed. Whatever the rationale for distribution, if we treat it 
for~nally as above, the notion can be used \vith the follouing five rules to give a short cut assessment 
method for syllogis~ns from both Viewpoints. 

1. In any valid syllogism the middle term is distributed at least once. 
2 .  In any valid syllogism no term is distributed In the conclusion unless it is distributed in a 

premise. 
3 .  No valid syllogism has t u o  negative premises 
4 .  Any valid s>-llogism has one negative premise if and only if it has a negative conclusion. 
5 .  N o  syllogis~n valid Gorn the Hypotiietical Viewpoint has two universal premises and a particu- 

lar conclusion. 



The syllogistic techniqus !nay be extended to  haildie certain longer argumeilts which l u v e  i71ore r i i ~ ~ n  
two premises. Consider for instance the argument 

All logicians are nice people 
Sorne students are logicians. 
All students are seekers of knowledge. 

Some seekers of knowledge are nice people 

'Ne cannot evaluate this as a single syllogism since there are more than two pren?ises. Iiolvever the first 
two premises map be used to  yield the syllogistic conclusion "Some students are nice people" wllicil. 
when combined with the third premix,  syilogisticaliy irilplies the f'inai conclusion. The argument may 
thus be treated as a choin of syliogisrns wherein the internledlate conclilsions have to be supplied. In  
the example above there were two links ii? the chain, but in practice the chain may be as long as we 
wish. Any such argument with three or more premises is k n o ~ v n  as a sovifes (from the Greck word for 
a pile). Lewis Carroll, in his logic books, has many delightful sorites. some with 2,s many as fifty 
premises. 

Arguments in which there is one premise only, and in which the conclusion terms are the same or the 
negatives of the premise terms, are called immediate inferences. if we a i l w  * to 'be any one of a a i 
c: o, tnen ?he following syntactical terminologjl is used: 

the converse of A * B is B * A 
the confvapositfve of A * B is n o n B  * non-A 

Any immediate inference in which the conclusion is the converse of the premise is known as 
conversion. Sirnihrly, when the conclusioil is iile contrapositive of the premise the inference is kriown 
as c ~ n t m p o s i ~ i o ~ : .  Clearly, conversion with either an I or E premise is valid, and contraposition wilh 
either an A or 0 premise is valid. 

The inference SaP / .'. is known as co?zversioi! per accideizs, and is valid from the Existential 
Viewpoint. 

The obverse of a categoricai proposition is that proposi~ion which has the same terms in the same 
position, but the predicate is negated anfiehe quality. bu l  not qua:?iity, is changed. l a  the foilowing 
9aLi.s ri;e right is ihe sbvezse 0.f the left:  

s$a.p - Se nojq-]D &I> - -0 ~o:IP 
3 -- j:3 yc??P 8L, V 9 D  ~ - &y- .~<??-p  2 L J. ,. - 



APPENDIX 2 

CRITICISMS OF DEDUCTION 

From at least Plato's time, various attempts have been made to depreciate the value of deduction. The 
most well known critic in this regard was John Stuart Mill (1806-1873), who in his System of Logic 
argued that deduction is never the source of new knowledge, the sole method of making real 
inferences being induction. Let us now consider briefly two main criticisms: deductive reasoning begs 
the question; deduction is merely a disguised form of induction. 

The argument that deduction is question-begging runs something like this. T o  be of any use a deduc- 
tive argument must be valid. But in a valid argument the conclusion can contain no i n f o r m a t ~ n  not 
already in the premises. Hence such an argument is useless and question-begging since its conclusion 
must already be assumed in the premises. Consder the following two examples. 

All footballers on  our team are right handed. 
Bozo is a footballer on our team. 

. Bozo is right handed 

All bachelors are male 
Toin is a bachelor. 

. Tom is male. . . .(2) 
In orde; to establish the first premise of argument (1) we would have to already know rhe conclusion. 
In argument (23. we cannot knon the second premise without first knowing the conc!usion. 

The above criiician-, niav be countered faii-ly ~eadi ly .  Even with the two favourable arguments cited it 
must he admitted ihai they rvoizld noi  be question-begging for some people e.g., in argument (1) a 
pzrseii mip??t iearn ihe f i ~ s t  p~er.,ise sinlply b:; hearing i i  froin 2 reliable source. This is onlgi n miner 

. .  . . 
o3je;;lon I:(;\; .:?:.. p fc!.!!; :rbur;,jl !he criticis~li is n~?;ie-:e< 5:. giviilg oiher tx.m;>!es of ded!rctics 

. . . . 
- 7  . ; - + 3 - - 7"2:il2:':;j7 :;,;i: ,; :yrpies aboui-tfi 'q I",- :ogj: ';a nav- 

b,,y2a,e~,, s*>j!:;c7, 
.~ --, . -c-.,. . ~ . . ., :..ll, :.c?, I, :.:rciicr ., I:.? d e + ~ ~ [ q < s  ;:?~TI?:,: iy 53.1. .!-:.i :3nr.;:slci: :pat 

*: , . , y . , ~ ,  
. . . . 

, .;,I-' ;.I;,? .::-I 7 , :  $.I+. - ,> r ;  >,. ,,:->, ~,,- ,_ --e,,,.r3., ~ , .  ~r-J.3 :>-iL,s: .>? f;3-;z.fi 3 . - p . v , " c s  ,,- - 1 : x j  2.. LC+-': c32 

Le; us n o i ~  c3nside-r ,he seconc cii?isisrn. i n  response :o rhe thai deduction helps us make 
explicit what n-as only implicit in the premises. Mill demanded an expkanation for how something 
could 'oc implicitly contaiiled in \vhat a re  already know. Consider the following argument. 

All men are mortal 
Tom is a man. 

. Tom is mortal. ... (3) 

Mill expounded a theory wherein a generalisation like "All men are mortal" is no  more than a mental 
note or register of our observation? that many particular men have died: when we "deduce" that some 
orher living person is mortal this is actually in inductive inference from our previous observations of 
people who died. The inductive inference to the generalisation "All men are mortal" was useful, but  
the deduction from this generalisation to  a particular instance provides no new information and is only 
an "apparent inference". Thus, according to  Mill, only in induction do we make any "real inferences". 
When applied to  well chosen examples like argument (3), Mill's theory seems plausible enough. But t o  
identify, say, the derivation of Green's Theorem from the axioms of vector analysis, as an exercise in 
inductive analogy, is clearly ludicrous. Mill did attempt to overcome such a counter move b y  develop- 
ing a theory whereby the axioms of mathematics are derived inductively from our experiences. This 
psychological theory was never accepted by other philosophers, and is incompatible with the modern 
approach to axiomatic theory which regards axioms as arbitrary assumptions rather than "obvious 



truths". The formal treatment of deductive systems has zero inductive content, and the tecting for 
isomorphism between the formal theory and physical reality is purely deductlve: if a prediction from 
the theory fails, the isomorphism does too;  if not the theory may be tentatively (but never certainly) 
accepted untila later prediction fails. Karl Popper and others have extended this hypotherico-deductive 
viewpoint to  not  only rebut but reverse the position of  Mill, reducing induction to a species of deduc- 
tion (hypothetico-deduction). 



Ex, 1.2 
I .  a,c.d,g.h,~,j.l,m,p.q (only if "Super-sausage" refers), r,s,u.n.. 
2 .  (a) John hiinself nladc ihc mince. John made the mince ov.t of his o m  hands. (b) The lamb feels so 

hot it does not vz-ant to eat. The temperature of  the  piece of cooked lamb is too high for people to 
eat it. The lamb was recentll. stolen and should not be  eaten. (c) To visit relatives can be a nuisance. 
Relatives who visit can be a nuisance. (d) Students dislike lecturers who are boring. Students don't 
like to bore lecturers. (e) Some dogs have no sense of smell. Some dogs have no odour. (f) He is 
speaking about o!d languages. He is speaking about old animal tongues. (g) The gaine of cricket 
stopped when the cricket bat began to squeak. The cricket stopped when the other animal, a bat, 
began to squeak. (h) Sons but  not daughters are spoilt. Sons with no brothers are spoilt. (i) He 
spoke to the chairman. We wrote an address on the chair while on the floor. 0) The wind caused 
the person bowling to lose his temper. The bowler hat was blown off the handle by the wind. (k) 
Tom. the American Indian would make an effort. Tom would judge the indian. 

3 .  (a) Condensed short courses, or courses on how to crash. (b) "may" for "may possibly" or "are 
alloived to". (c) Police record, or musical record. (d) a~nbiguous left-scope of "-freen (e.g., was the 
diet meat-free?) and ambiguous right-scopes of "honey-dipped" and "curried" (e.g. Lvas the rice 
curried?). 

4 .  Reading "same.' roughly :is "equivalent" gives: a ,  c. f, g, I?. i ,  j .  Some of these are debatable with 
a stronger reading of "same" e.g.. can "norrh" and "south" bc conceptually distinct? 

5.  c. e, g. i (debatable). 

Puzzle 1. 
One analysis is as fo l lo \%~.  Since Epimenides was a Cretan, n-hat he said, if true, would be a lie and 
hcnce both true and false. So what he said cannot be true. If some Cretans tell the truth sometirnes, 
then whar Epimenides said is simply false. So \ire may conc!ude that Epinienides did utter a proposi- 
iion ia false one). Noti try your h a ~ d  a1 the foilou-ing sentence, known as rhc pxeudornenoi~ or the 
1 d o : :  "lr'2iai 1 ail1 noiv sajrillg is 'alse.". .A \~a!?darCI annlys~s of t l ~ i s  is tihnt ir docs no? eupress 
a p~.cposiiioii became thc ufl.e~ar~ce 15 :rue if anti only if iL is I'aise :jI:hy'?). Fol- fu.r:llei. isci;ssio13 of 
' .  
!cg.c;i! ?2:iraoses see Ti . ' .  ';. Q ~ ~ i i e ' s  'Fnf:i~!o:'~. ScI":~;ific ~ i7? i ' , ? i~a3  (1962, $l)ii:) ~!,rci [or so2i!e 1;icc 
j.,;ci - ..... - c-'' ' ~- - ~ . . ~  .". .. - .  " - - 

L , e s :  , L , , . ' ; ,  , ! , >  9 -. , ,[t..-,<hJ: ' J ; c  ! , 

Ex. 1.3 
I ,  Coniradictorie,: a, c, e ,  g. i,  Contraries: 5 (assunling niex exist). d f. h . j .  I:-. 
2 .  (a) J o l ~ n  is not sick. (b) lack is not Bii!'s blotliti. ;i.) J?ck and J:l: are  :io~ bcili cKrr?bers. 

(d l  '\/ales is not imaller illan Queeni!and. (e) .Tack is nor Aus:raliaa or Jill is riot Scottish. if) 
Sometimes i r  rains. (g) r o t  all men are morta.!. ihl  It's iinpossible that you Iefr it in the rain. 
(i) Some fools arc rich. (j) No students are very wise. 

3 ,  i;ssuming the subject term exists, and writing the negation first: (a) That number is not positive. 
That nurnber is zero. (b) Paul did not come first in the race. Paul came third in the race. (c) My 
fzavourite recording artist is nor Donovan. 41y favourite recording artist is Neil Diamond. (d) He is 
not 33 years old. He i i  35 years old. (e) The universe did not  begin with a big cxplosion 10 billion 
year? ago. The universe has always existed. (f) The colour of the car is not red. The colour of the 
car is blue. 

4 (a) If a contrary of p is true then p can't be true. So .Vor p is true. and illis is a conti-adictory o f p .  
All other contradic~ories of p are equivalent to  Not p. (b) p is false, but  this reveals nothing about 
its contraries. 

5 .  (a) No. ib) Yes. (c) Logic is not  vcrJr interesting. 
6. They could both be false c.g., Tom Iliay not be enrolled in the cul~ject. 
7 .  a ,  h .  c i s  false e.g..?lot p i s  the negation o f p .  but not ~onversely.  
8 .  ('1) Here "in" rneani "into" riithcr than "not". so "inflarnril:ib!e" meant "higl~ly tlammable"; 

some people hon-ever read it as "non-flammable". (b )  '?incorrect". '"infamous" means "notorious" 
and "invaluable" means "priceless". 



Ex. 1.4 
1. (a) Thc workinen put d o n  n trieir i031~.  Brox I? iliade a speech. ! h) ?,fichael is  lo;^. . 1llch:iel is care- 

ful. ((:) A a n  is lzri-. Betty is h?re.  Co:in is hers. (d)  The pates ~ ; r c  no1 L~cked. N?itllc-r the sidc door 
nor t!lc b~iclc do01 ii closed. !ei The biil.pi;:r is not in the houce. The biiiplar will be either on tlic 
rioad or on the Illooi!;. i f )  Ii' linyone is sick they sliould see the doctor. i t  is clear that Bill is not 
well. (g) If' tlie bus !ins gone ihen my \~;itc?i is s1o\ir. If my n-stch is slo\\. then the tower clock is  

2. a, d (b: Jane is Mary's sister. e: share the same room. e: went up together). b is allowed if "sister" 
means "religious sister" or the like. 

3. (a) Janies went to the library. James went to  the club. Inclusive. ( b )  Mary is to  enroll in matlls. 
Mary ir to enroll in physics. Exclusive. ic) He studied French. He studied logic. In. (d) The number 
is less than 10.  The number is greater than 20. Ex. (e) The person who chose that colour scheme 
was colour-blind. The person who chose that colour sclicrne was lacking in good taste. In. (i] The 
rain will come and the crop wili be  planted. We will sell the farm. Ex. (g) The number is not more 
than 10. The number is greater than 6 .  In. (11) Mary takes matlls and logic. hfary takes Japanese 
and computing. Ex. 

4 .  Contradictories: a ,  b ,  d ,  e. Contraries: c. 
5.  (a) Susan is neither a clerk nor a teacher. (b) Sandy is not both a i'armer and an accountaiit. (c) 

It's not that both the bus is slow and time is running out. (dl Ncithei is the bus slo\v nor am I 
impatient (e) Not both Robin and Chris are mechanics. (f] Cathy is either beautiful or not attrac- 
tive . (g) You  will not  finish your hoiuework before 9.30 and you will watch T.V. after 9.30. 

Ex. 11.5 
I .  (a) Taxes are cut. People will rpend more money. fb)  Snoopy is a dog. Snoopy is an animal. 

<ej  i o ~ n  beiieves he is belng helped. l o n i  is aa ing  iii a stra~lge \!-a:.( ( d j  Furzp is a bear. Fuzzy is 
hairy. (e) Fuzzy is a bear. Fuzzy is an aniinal. {ij heither Bro~.;n nor Solie5 breaks the law. Broivil 
and Jones have nothing to fear. (g) The cvheat mill grow. The wheat is planted. (h j  It rains. Either 
there will be a flood or the crops will be ruined. !i) Conditions are not  comple te i~~  sterile. The ex- 
periment wili not be  ruccessf:d.i. 

2 .  
3 .  

 ex^ 1.7 
1. 3 ,  d ;  b ,  f :  c, h ;  e, g. 
2 .  (a) If D then R/L I f H  then M, D or H / .'. i1.f (b) R oizl}' i f h f ,  ,M / .'. R (c) I f N  then F Ar / .'. 

F (d) lVof (P and C), P / .'. ~ Y o t  C (e) If T tlzen S, .Vat S / .'. :Vot T (f> (G and t;ll or D, Not 
(G and H) / .'. E (p) If M the;i S ,  Not M / .'.Not S (h) If T then .v, if N then C, If C then E 
/ .'. If T then E (i) K or:!v if F / .'. rf not F then not K (j) G only lf R, R / .'. G ( 1 ~ )  I f  C then 
E, Not E / .'. Not C (1) I f  D then A, Not D / .'. Not A (nl) If R then AT. If!V then I,, Z f L  then 
C j .'. I j 'R  then C (n) lVot (I and A), I .'. i170t A (0) S only if U / .'. I f  not LT then not S 
(p) If R then W ,  If N then IV, R or H / .'. W ( q )  (R and F) or D, .Yot (R and F) / .'. D (r) I f  V 
then L,  v / .~ .  L. 
Matched pairs: a ,  p: b . j :  c, r: d. n :  e. k :  f .  q ;  g, 1; h,  ni; i,o. 

Ex 1.8 
1. (a) A (b) C: (c) B (d) C fe) D 2 .  a. c 3 .  a 
4.  (a) If Spinoza \\-as 2 Queenslande~. then he  as an Au\traliail. Spiiloza was a Queenslander / .'. 

Spiaoaa war an t\ustraliar!. 'CALK. ( b )  Iiiiler Ivas :I fascist. / .'. EJitlsr n:!s a fLrscist. \ ' A I D .  
(c) YOU can't be both a Ciir~stian and a Conlmuiiiat. You're no[ a Christia~l. .i .'. YOLI'TC a Coin- 



~nunist .  INVALID. (d) If the universe i? part of God then God is imperfect. If the universe is not 
part o i  God then God is imperfect. Thc  universe is either part or not part of God / .'. God is imper- 
fect. VALID. (e) Queensland is hot. The Northern Territory is hotter. / .'. The Northern Terri- 
tory is very hot. INVALID. 

5 .  Code: T = True, F = False. (a) F e.g.. Quesrion l c .  (b) I; e.g., l c .  ic) T .  (d) T.  (e) T.  (f) T. (g) F 
e.g., Lemons are sweet fruit / .'. Lcrnons are fruit. (h) F e.g., Lemons are fruit. / .'.Lemons are 
sour fruit. (i) F e.g.. Lemons are fruit. / .'. Lemons are sour. 0) T. (k) F e.g., 5h. (I) T.  (m) T. 
(n) F e.g., 5h. (o) 7.  (p) F e.g.. 4b (however the argument has no persuasive value: it ir said to  
"argue in a circle"). iq) F e.,o., remove the first premise from: I like birds. I like cats. All cats and 
birds are animals. / .'. I like some animals. 

6 .  kii ale vaiid except for Question 2 b ,  j. g, 1. 

4 .  (a) (i) Yes (ii) No (iii) Yes 5. (a) (i) No (ii) Yes (iii) Yes 

Ex. 2.3 
I .  ( a )  p > q  .r., " p V q  ( h ) p & ( q V p )  . 3 .  ( q & q ) > p  i c ? : p > q ) > l ( q 3 u ) & ( r 3 s i i ~ .  

(p 3 s ) j  

2. (a)  ( ( p &  q) ((2 & p ) )  (b) (((.z 3q) & p) 3 q j )  (c) -((p & (q \.I?)) $ i ( p &  o) L 1 ( p &  r)))  
? ". -"'; "'i q 3 p  g > p  $ ZLJ1,3  " ; : , " 8  - = -1;c $:I<:, 5 ,  q q e  

1 .  - __.i- 

n 1 
, . , ~  + -i-- , i , !J i jl , ! ( , l j  i 

,: ! "i , " ^  9 1 ; ;  3 2 1 3  
1 9  0 

1 I ! 1 

Ex 2.48 
1. (a) I. ihj 4 . (c )  2 id) 3. ie) 1 . 2 . 3 .  (13 2 ; 3 . 4 .  (g? 1 , 2 . 4 .  (hj  l . 3 , 4 .  

(i) Ambiguous scope of "'not": "(not tall) '"gives 3 ;  "'not (tall and leafy)" gives 2.  3: 4. 
0) 2 ,  3 ,  4. Ik) 3.  (1) Ambiguousbetween m and n. (ni) 1, 3, 4. (n) 4. ( 0 )  4. (p) 1, 3. 
iq) 1 , 2 o r 1 , 4 o r 2 , 3 0 1 2 . 4 o r 3 , 4 .  (r) 2 , 4 .  

2. (a) The tree is tall. (b) The tree is not tali. (c) The tree is leafy and beautiful. (d) The tree is 
tall or leafy. fe)  The tree is tall or leafy but  not both. (i) The tree is leafy and beautiful but not  
tau. (g) The tree is not tall and not  leafy. (h) The tree is not bo th  tall and leafy. (i) The tree is 
neither tall nor leafjr but it is beautiful. 

3. (a) P & G (b) - T (c) G V B (d) --B (e) (3 & T) & G (f) S & T (g) -S & -T or 
"(S  V  Ti (h) -(S & T)  (i) -S V -T (j) T f s 

Ex 2.4B 
1. ia) Today is 12riday. ib)  Today is not Friday. (c) Today is Friday and tomorroLi- is Saturday. 

(d) Today is Friday or tomorrolr is Saturday. (e) If today is rr iday then to~norrov,  is Saturday. 
(f) Today is F'riday if and only if tornorroi; is Saturday. (,a) Today is either Li'ednesday or Friday, 
but not both. 

2, a , c , d , e , f , g  3 .  b . e . f  
4 .  (a) If I am a man or \yoman then I am human. (b! i an1 human if and only if I am a man or a 

\yoman. i c )  I'm not b ~ t h  a man and a n-ornan. (d) I f  I'm a man then I'm a liunian but not a 
noman.  ie) I f  1.111 PI:J.~IIL:I tllcn I'm either a Inail or rr \VO!~II~IX b u ~  not both. if) If I'm not a I~urnain 



then I'm neither 3 Ilia11 nor a IT omail. (g) If 1'111 a human then 1'111 not both ;i rnan and a n-oman. 
5 .  ( a l l  (b) -B (c) I V  C (d) I &  LT (el I &  U &  -B (9 B 3 M  (g) 111 3,Y ih)  I f  B 

(i) A&fz:l' (j)-B& -~Vor  -(B\]~V) ( k j  - ( L ~ & B )  
6.  (a) -6 (b) E \/ -6 ici 0 3 - E  (d) -E 3 0 (e) 0 --E (F) N 3 -P (p) - ( I f  & 0 )  

( h j - P & - I V O Y  - (PVI IV  (i) Z 3 ( - P & - , V /  (j) P V Z  V V  ( k )  - ~ > ( P f ! l ; i  (1) 
N 3 - P  (m) E & - Z & P  (n) E f - 0  (0) ( E V P )  3 - (O&A; i  (p) ( E & P )  f ( O &  
N)  ( q ) P 3 (  -Z& -N) 

Ex 2.5 
1. (a) H E J  (b) -IV&C (c) (.MVT)>-W 
2. (a) p r q ; p  (b) - p & q ;  p & q ;  p (c) ( p V q ) > - r ;  p > - q ;  p 3 q ; p  
3.  No. For example H  and J  each have the explicit form p. 

Ex 2.6 
1. (a) People understand how others feel if and only if they empathize with one another. (b) If 

either people are selfish or the inflation rate doesn't drop then people will be  unhappy. (c) The 
inflation rare won't drop if and oilly if people are both selfish and ignorant of how others feel. 
(d) If people are selfish then neither will the inilatio~l rate drop nor xi11 they be happy. (e) The 
proposition that people mill be happy if and only if both the inflation rate drops and they are both 
unselfish and understanding of how others feel, is false. 

2.  (a) S 3 ( -E & -H) (b) (D & H) V  S (c) -((D & 5 )  3 H) (d) -5 3 ( -E & -CT) (e) 
-S 3 ( E &  H) 

2, ca; c > F (5) -, IC z :c; c 9 --P id) F V (? & Cj (2) C  3 (P 3 -F) (fj (C f P) \/ N F  
(g) -F>(C& P) (h) F>-(C& P) (i) -P>C (j) -(f'VC/ 3 F  (k) -F f ( C &  Pj 
( 1 ) - C V - P V - F  (m) F > ( - C V - P )  (n) ( - F 3 C ) &  -(C>-F) 

4.  (a) If Clark Kent disappears and Superman appears then Lois Lane becomes suspicious. 
(b) If Superman appears then, Lois Lane does not become suspicious if and only if Clark Kent does 
not disappear. (c) (A  & -D) 3 -I (d) [(L V  I) 3 (A & D ) j  & -/(A & D) 3 (L V I )  / 

5.  (Dictionary not supplied here) ia) E (S) H ie -M (c) A ie R id: /T $ B) 3 S (e)  -S 
if) D > ( i & E )  ?;lg) ) D $ ( . F 3 R )  (1:) -i.fifVA) (i) s f  11: ij) (.%f>Hj& - (K31?y)  
(k) 1V & 2- & $I! {:Acti~a!l;; ;ilis i., better trrnsiatcri :IS ille arp1a1e:it "i.[> ;${ i .'. B) (:) i 3 3  
(n?) >- & -/.;j7 \J -P v 13 j2 v v 1 )  <jl> -.,(! (1,' ,fr & S)J ( o )  ( j >  & & -A,$ ;2 *w/ -u>' _ , _  7 

Ex "2 
1. (a) - [ p > ; ; j  (in) v =--q ic) ( f i > q )  $ ( - q & p j  i d )  p \ / q V ;  (e) ( p & q ) \ / ( ; > - - s )  

E ' I  2 5  7 4 2 3  2 2 1 4 3 2  

2.  To coriserve space, an,.&-ers to truth table questions will normally consist only of the main column 
from top to bottom but laid out left to right. It is assunled that the matrix is in the standard order 
with PVs li\ted left to  right in alphabetical order. 
(a) 00 (b) 0110 (c) 1111 (d) i l l 1 1 1 1 0  (e) 1111011101110111 

3. (a) 32 rou matrix x i t h  p = 1 on first 16 rows. (b) 27 i.e. 128 
4.  (a) 3 2 1  7 2 3 (b) 42 1 1 2  3 3 4  

( ( i P & 4 /  3 ~ )  3 ~ )  - ( / q  V i p  =I;ii > - i r & q j /  

Ex 3.3 
To conserve space the follo\ring code will be used: T = tautology: 1- = Contradiction; C = contin- 
gency. 
1. a )  F (b) C (c) C ( d )  C (e) C 
2 .  (a) C (b) C (c) C ((1) T (el F ( t ]  C (g) C (lil C (i) i. (j) C ( k )  C (1) C (m) T 

(n) T (0) T (p) i-' (4) C (I) 1; (s)  C ( t )  T 
3.  - /4  V p) i~nplie, -11. p cC -p is a contradiction. I l i t  n q a t i o n  of a coiltradiction is a tautology. 

So the Cormiila is a t i iut~lopy.  



Ex 3.4 
1. Code:  T = Nece\sirq. Trutli;  I = Contradiction: C = C o n t ~ n g c r i c ~  

( a )  C ( b )  1 ,  ( c )  1, ( d )  T ( e )  C (i) T ( f )  1 (11) 1 ( i )  r !j) T ( k )  C (1) I: im)  T 
!n) T (0)  C (1)) T ((1) T 

-. 7 (a)  I '  ( b )  5- ( c )  C (d)  1, (e)  T 
3 .  (;I) T rue  (b )  l .alre ( c )  1:alse !d) True  ( e )  True 
4 .  Code:  LP = lo pic all^^ possible: PP = Physically poscibie: .A = hl lo\ \ed 

(a) l'P (b )  PP (c) PP (d)  PP (e) LP (C) Can PP; 11134 A (g) -\inbig~ious: PP or  A 
Puzzle 3 T h e  si~iiple anslyer is tllat Dr. What lives at t he  North Pole. There  arc ho~vever  infinitely 

niany otlicr places on tiiir plunct n here Dr. \ \ ' I i ~ t  could livc nnd sti!! iatisfy the  z o n d i t i o n ~  
riben. See if you can i ~ n d  these. ( I I i ~ z t :  I)ra\v a \plierz and consider lincs of laritudc very 
close to  the  poles.) 

Ex 3.5 
I .  Code: T = t;iurology; I: = PC-contradiction: I = I'C-indeterniinacy. 

( a )  1 ( b )  T (c) 1: ( d )  T (e)  I if) I (el T (11) I (i)  T (1) T (kJ I (1) 1- (m)  T 
(11) T ( 0 )  T 

2 .  (a) 1, ( u ~ e  A = John  Iiac a red car and a blue car).  (b )  (ii)  1: (c)  S T 
3. ( a )  T (b )  S o n e  

Ex 3.6 
Code: T = Necec\ary Tru th :  I = Contradiction: C = Continpencq 
1.  ( a )  T i b )  C !c) C ( d i  I: (e) C 
2 .  (a) T (b)  C (c)  C (d )  1; !e) T !i) C (g) C ( h )  I- ( i )  C' ( 0  1r.hcn C=O.  P =  I .  S =  I )  

Ex 3.7A 
I .  ;I, f ;  b. h :  c, p: d. e .  2 .  a. d ;  b ,  c .  
3 .  (b)  every proposition (hence nn inCinite number) .  (c! \:tme ansuer  as  for  (11). 

Ex 3.48 
i .  ( i j  2 iii) 1 (ill) 3 (I!)  3, ( v )  7 ( v i )  5 ivii) 6 { ~ ; i i i )  3 ( I \ )  5 7 (x i )  4 (\ii) 3 

(11ij) 4 (-xiv) 6 (11:) j ( ~ ~ v i )  6. 
1. [c><ie:  T = Tl.Llc: = . ,a]se, (1) 1 ,  ( j i ;  ~F ,iil 1 i 1 . i  ~ {.,,i:i; - (i-,; - 
2 {;j  5 (ij) i (j:) 2 ( i \ r ;  ,s (:,) 7 4.\1;  7. :li) 5 . . :  I . , 9-{ 

: &;it n-iih f , = ~  8 - .,..,, Lb. I::: u4j~n~:-istcc:. : i :  5 ( ii} ; ,i:) 2 , / I /  ! ~ .  .- 

h r"onsistei1t: ( i i ,  ' r l i j .  ( v ) .  (1.i). lilciiiicis!c;:t. (i!i:, ti\!) 

5 .  No i-ou s e!iiiiina!eC. 1.1) c::ntrarlgcs ib )  cnnti.~:c!icio:ic\ i ci cnnt! l;r1cd, 
8. lion-s n i t t i  3 = $ , ,  = l ai-2 cijiiliiiatcd. (;i; No t i ; )  Vc!; i c )  L'=-;i=L=i ; i. ., :volld in  nl i ich 1 rcd 

!I;.., a c;li 3 r d  a firpe c!02): ('=13=], i=$ (I.-- i LU >,; !I;, :J <;:i .in-! ~i dog il l i t  t !\ 1101 !c;p:';: C=C=!. D=L=O 
! I  rzd ha\  a cat bill !lo iiogj:C'=O. !I=], i = 3  ( 1  red has a iion-,;ii-ge dog  and 11~1  cai; .  t d ?  C=3, D=L=i 
(!.red has a lulpc iiog but  no c:it): C=E=L=0 ( I  reci Iia, n z i ~ h e i  a cat iioi ,i clog). !c) l'40 (i') Yz\. 

9. i a i  No ib i  Yes ( c )  C=fl=i, L=O il.recl ha\ a c i i  anci a non-ini-pc dog) ( c )  P ~ i t  tiierc into  nords :  
C7=D=L=i: G I ,  D=I,-0: C=O, D=L=1; G O ,  D=l ,  L=O: C=I)=L=O ( e )  Yes it) L o .  

iO.Ti-ue: a. b .  d ,  g, 11.1. k .  o I ulse: c. e. f .  1, ! (c.g.. botii contradictions),  rn (e .p .> botli ~nutologies) ,  
i i  (r.g..  p n contriidiction cind (1 ;I tautology). 

i 1 .Trcnting "iui-c" a s  s y n o r i ~ i n o ~ ~ ~  n ~ t i ?  "certain". 11 tollc;;\i il;at tl!c \ iudent  \<a?  inconsi;tr:it. i f  he  
can't be sule oi' anyt!!ing the11 lie can't be s i ~ r e  t!i;~t lit c:in't be sure of an:;thinp. (As  a related 
researcli topic. exainlni' tile pliiloiopliicsl \ i t \ \  that  in order for ail a$\crtlon to  be nieaningful it 
rnust be  verif1ab1e.i 

Ex 3.8 
I .  ( ; I )  LKC l b j  L,! A1 (L) C.orii & ( d )  LI<V ( e )  Deli (1.) C o n t r ~ i p  ( f )  Dhi (11) Llc?,! ( i )  A s m c  

\/ ( j )  ix11n 
2 .  ( ; I )  ( i )  No. Hcre ",~ntl" is u\cd !ii llie tzniporal and c:iusLil \en\? C I S  . ' L i ~ ~ d  tiicn". 

i i i )  S o .  licre " L ~ n d "  IS ~cictl ciindiiioniii!c. tlic scntzricc riiai be rcpl~r:iszd as  " i i ' ~ , ~ i ~  nlctiir:~tc then 
! ou \\I!! I'intl pr.~i~,e". Pcrli~il:\ tllcrc is also a ~ o i n n i ~ n t l  or  a t  lca\t \ trong tidbice being i\\ucd Iiere. 
!b )  Ye.. Of course t h i ~  docs !lot cliange tile i';ict 111,ii & I,  acioc.iat~\c. 

3 i --/I c$ -q) 3 'd 4) ;  (11 V q~ 3 - 1  -11 & -0). -( ^-!I & -q/ 3 'p ?/ ilj 
4. ( ' 1 )  \ o  lin\ci\i .)  ib )  N o  iconici-\e) ( c )  l ' c i  (contr:ipoiiri\c) 5 : ~ 1 ~ 1 1 i ~ l ; t 1 ~  ~i K 3 <;. ! ' i j !~i~ '~I tnt  : 

il :. k. 111, 11. 



Ex 4.2 
1 .  ('i) 3Jf. H >AT, !I \/IF ,' .'. (1,) I? 3 3 1  ?,[ .'.I? (4:):tY3i..,.:i , I  . ' ~  F (21 - d / . P &  C), 

P,! .'. --C (c)  T 3 S, -s .'. -7 (f) ji. & hi) \IS, *-(G & jf) ,' ". 13 (8; >,f>S, -.i,) 1.'. 
--S (!I! 5 3 V .  " > ; > C , C > h / . ~ .  T > F  ( i )  K > F  /' .' -i:>-I? ( j ;  G 3 R . R  ,'.~. G 
i L ) C > E , - E / . ' ,  -2C (1) D i A ,  -3 / .',-A (:TI) R > ; G . ! ~ i > L , L > i ' , '  .'.R>C 
( 17 ) - (1&A) ,1  / . n ~  '-.4 (0) $>c/ . ' .  rvU>rvS (p) i ? > W , f f > f $ J ,  R V i f  / .'. b1 
iq) /!< & f) VE, -/I3 & F) 1 .'. D (r) Y 3 L, 1' ,! .'. L 

2 .  ( i )  A = George ~vi!! apo!ogizc and Harold will accept his apology; D = They  ill haye a pi-olonped 
disputc. A V D. -A / .'. D (q) ii = The ?.\'I. \vill re~ ipn  and the Cabinet 7,vill fail to  clect a nen 
P.M.; D = The Senatc \r.ill bring the Government d o ~ v n .  A \/ D. "A / .'. D 

Ex 4.4 
1. Code: V = Valid; H = Invalid. (a) I: A=0, B=I (b) V (c) "a' (d) 1: A=O, R=l (e) 1: A=O, B=l 

(f] 1 :  A=O, B=l ( g )  V (h) I :  A=C=I, B=0 (i) V (j) 1: il=C=I, B=O; A=O, B=C=I; A=B=O, 
C=I (k) 1: A=I, B=C=D=O 

2.  (a) T V Z, T / .'. mi, 1: T=L=I (b) T V L, -L / .'. T V (c j  -IT& L) / .'. - T &  -L 
I: T=I, L=O; T=O, L=I (d) -T V -L / .'. - /T  \/ L) I :  T=I, L=O; T=O. L=I (e) S r T, -T 
V R  / . ' . S > R V  ( f ) H > M ,  - M V ( R & H ) , R  / .'. MVHI:H=ItI=O.R=I ( g ) A > N ,  
-M > L  / .'. A V L I: A=L=O, .V=l (h) S > E  / .'. S V --E V (S=O. E=l is impossihie). 

3 3 .  - I  ! . B = = (b) S V O , S >  -T, -T / .".SI:S=T=O, 

( ~ ) s > ( f i f > B ) ,  - B & S / . ' .  - M V  (d) / A & R ) > / E > Y ) /  .'.(A& - Y ) > ( - R V - E ) V  
(e) i# r N f! V -(vJ V S )  / ... If IS 1: W=H=I, S=O (0 A (P \J G) & (6 311, -P / .'. A 
1: A=P=O, P=C=I (p) G >S. (S > N )  \i C, --C & "N/ .'. -C V (h) P I S ,  -S >(P I D ) ,  S 
3 -B / .'. 3" > (P & -dQ !E=.D=O, S=2 is impossi'ole). 

4 (a) Yes (b) 5 .  in) -2 315 ,S >F, / . ~ ~  i? \.If (b) RzQ. F=,S=.7 

Ex 4.6 
1. Code: V = Valid; 8 = Gnvaiid. (a) F r  (b) I: p=O, q=I (c) V ( d )  V (el I: ail rows 

(f) V (g) I:=q=l. v=0; p=r=l, q=0 (h) V 2. (e) 3. a i i (b) Yes 
4 .  ( a  , i iv (b) i, ii are invalid, iv is valid. (c) Yes 
5. R / .*. P (a) No (b) Yes 6 .  True: a ,  d ,  e ,  f , g ,  j 
7.  (a) DC for MT) (b) DN (c) DD (d) RAA (e) Contrap (f) AA (or MP) (g) Corn 

(h) DeM (i) AA (or M?) 

Puzzle 4. Cyril is honest because the honest person must say he is honest. Alan can't be the 
liar because if he was h e  would be telling the truth. So Alan is o~dinary.  Hence "aetty 
is the liar. 

Ex 5.3 
1. Tautologies; a. c, d ,  f ,  g ,  j 2 .  Contrad.: a. c ,  e 3. (a) Taut. (b) Conting. (c) Contrad. 
4 .  (a) (A f B) & (B & A )  PC-contrad. (b )  -A  3 -(A & 12) Taut. (c) (A &I?) V m A  PC-indet. 
5 .  I t  is a contingency 6.  Code: 7 = Necessary T r u t l ~ :  F = Contradiction (a) (I > Sj V "Y T 

(b) (V & Y )  & -1 F ( C  j tli > -(H& 111) T (d) [kt/ 6 (111 > -rjl J > -11f T 
(e) S & (H 3 - A t )  F 



Ex 5.4 
I (a) Yes (h)  Yo (c) Yec 2 (a) Yes (b) Yes ic) Yes id) No e g.,p=q=r=O 

je) Yes ( i )  Yo e g . p=O q=r=l 3. a. b 

Ex. 5.5 
1. (a) V (b) I: p=O, q = l  (c) V (d) I:  p=O, q=v=l (e) I: p=s=t=O, v=l, q optional. 
2. (a) PC-valid (b) PC-indet. (c) PC-valid (d) PC-indet. 
3. (a) V (b) I: A=O, B=l (c) V (d) I: A=B=C=E=O, D = l  
4.  (b) Xo. Preniises are inconsistent. 
5 .  (a) C > ( L V D ) , C  / . ' . L & D  B:C=L=l,D=0orC=D=l,L=O ( b ) A l > C , C > ( P & R )  

/ .'. ( - P V - R )  3 - M  V 

Puzzle 5. If A is a student she will lie and say "no". if A is a lecturer she will tell the truth and say 
"No". So A replies "No", and consequently B is telling the truth and is therefore a 
lecturer. From what C says we know that if A is a student C is truthful and hence a 
lecturer: i f A  is a lecturer then C is lying and hence a student. So there are two possible 
arrangements, and in each of these there is exactly one student. 

Ex 6.2 
1 .  (a) No (b) Yes (c) No (d) No (el No (0 Yes 

Ex 6.3A 
1.  Contradictions: a. b.  c, d ,  e ,  i ,  j ,  1. Here are some sample solutions: 

(a) " I .  - (p  =)p i  F The tree closes. 
2. P Therefore - (p  -- p) is a contradiction. 

1 
3. -p  

b 

- i l ~ e  two paths on the ~ i g h r  will remein open, so x'e do not havc to gc! any f ~ r t h e r .  
- 3  1 ne forxuia is nor a contradiczion. 

2 .  Tautologies: a. d .  f. j, 1, rn. Here are some sampie solulioizs: 
I <  ( d )  i J 1. -(p ~ p )  NF Making the krrnula false leads to a 

2. P contradiction. Hence p 2 p must 
3. -p 

1 always be true: it is a rauloiogy, 

The right path w:l! not c!ose. Hsncz the formu!a is not a tautoiogq 



Ex* 6.3B 
1. (a) p=r=O, q=i (b) p=q=r=i; p=q=l, v=O !c) p=v=0, q=i; p=qrv=O (d) None 
2 .  Code: T = Tautology: F = Contradictioii; C = Contingency. 

(a) C: p=l;p=O (b) n- L (c) C: p=q=O;p=I, y=O (d) F (e) C :  p=q=i;p=l, q=O 
(f) C:  p=q=r=l. p=q=l r=O ( g )  p=q=v=s=]; p = q = ~ l ,  s=O 

3 .  (a) P & -( --S V P )  PC-contradiciioa (b) R V (F & C) PC-indeterminacy 
(c) B 3 [C 3 (C & B)] Tautology. 4 .  Contingency 

5 .  (a) .I 3 -&I Necessary Truth (b) -J >A4 Contingency (c) "D & P & E Contradiction 
(d) (L & -A) 3 ( A  & -L) Necessary Truth 

Ex. 6.4 
1. (a) Yes (b) No (c) Yes 2. (a) No (b) Yes (c) Yes 

Ex 6.5 
Code: V = Valid; I = Invalid 
2. (a) V (b) I: p=O, q=I (c) V (d) I: p=I, q=O (e) I :  p=I, q=0 or p=O, y=I 

(f) V (g) V (h) V (i) 1: p=v=O, q=I (j) V (k) V (1) 1: p=q=r=s=O (m)  V 
6.  (a) L I, -L / .'. -1 I:  L=O, I=I (b) -(R & B), -R / .'. B 1: B=R=O (c) J 3 R ,  S 3 (J V 

D ) , S  / . - , D V R V  (d) * ( P 3 - Q ] , ( P & Q ) > S 3 S 3 - P /  .'.-QV 
(e) S $ M, - S 3 D ,  - D V I , M  I /  . ' . D V - S V - 1  V ( ~ ) L V O , I I ~ > S , O V E  / 1. 
( - § a  -E) 3 ( L  V M V  -E) V (g) -F>-P, w P 3 - W ,  - W > ( Y V L ) , L > - I  / .D. 

i 2 i V  '/ ic) !' (h) E = 1 believe that God. exists: T = I am a theist: A = 1 am a? atheist; D = 1 
believe that God doesn't exist; N = 1 am an agnostic (note that D does not mean the same as -E). 
(E > T ) &  ( D > A ) , I V > ( ~ T &  % A )  / .'. i V > ( - E &  ?C3) V (i) A V B V C V D V E , A  
$ B, C =; ( D V E ) , A  V C V E . , ( D & B ) V ( - D & - B )  / . ' . A & C & E &  -B&-D E:A=l, 
B=C=D=E=O etc. Here is one case where a tree is less efficient than a table even though there are 
5everal propositional letters. (j) S 3 ( -1 \/ Z) ,  -L 3 -M, M V F, ?- F / .'; Z V - S 
V (k) S >E 1 .~, S V -E i" (S-0, E=I is impossi'n?e). 

Ex 72. 
I .  (a) AII women are inferior. (b) Only financial members of the union ~riii! get the pay rise. (c) This 

argument is an enthymerne. (d) Becoming a competent logician is reaiiy worthwhile. 
2. (a) Fred is uili'it for your job. (b) The government lnernber is not  interested in mainraining a high 

standard of   ducat ion in our ccluntry. 
3 .  (a) If you were a greedy iittie brat you rvouldn't be satisfied wit11 your usual allowance. But I 

know you're not a greedy little brat. So you will be satisfied ivith you: usual a1lcv;ance. won't 
you? (b) Only if you are rich enough to afford it will you donate S50 000 to  charity. 1 can see 
that a fine gentleman like you is rich enough to  afford i t .  So no  doubt you will donate S5il 000 
to charity. 

4.  Although the explicit PL-form of the argument is invalid. subatomic analysis reveals the argument 
is valid (the conclusion l'ollcu~s from the second premise). 

5 .  (a) U = The universe exists: S = The universe 11ad a start; C = So~nething caused the universe; C = 

God exicts. (U 3s) & U, C Z C / .'. 6 Counterliiiiciel: U=S=I. C=6=3. (b) Add S > C as a 
premise. This elin>iaates the countermodei. (c) Ar, arguinent is sound iff it is valid !FQ Icjgicdi 
error) an:! nas trite premises (no Cacii~al er;cr:. Thus if !,I* ~ g n o s t i c  ciisiprees with m y  of :he 
premises (e.g., he :i~ighr believe rlie universe ciways was) he is not bound (by ihic argu!'~entj to  
accp:;t thc conc!?~sion. 



6 .  (a) One countcrexarnpie is a possible world where he studies Chinese but not Indian philosophy 
and he knows o f  Lao Tzu  but not Slrankara. A valid argument is obtained i f  we modify the conclu- 
sion to : Either he doesn't study Chinese philosophy or he doesn't study Indian philosoplry. (b) 
One counterexample is a possible world where he follows Yoganandz and values both Hinduism 
and Christianity. A valid argument is obtained if we modify the conclusion to:  He values Hinduism 
if and only i f  he values Christianity. 

7 .  A counterexample is a possible world in which almost every logic student gets married but the next 
logic student does not get married. An inductively strong argument is obtained if the claim o f  
support is weakened from certainty to mere probability as follows: Almost every logic student gets 
married; so probably the next student t o  enroll in logic will get married. We  now have an inductive 
rather than a deductive argument. 

Ex 7.3 
1 .  (a) <-> T & P, ( b )  + T & -P; ( c )  + R ;  ( d )  + G > -F; ( e )  +R 3 G; (0 + -R V G 
2. (a) *%-F;  (b)" -G; ( c )  + R  & -C; ( d )  i+ -R & -P; ( e ) + R  V P o r ( e ) + R  $ P ;  

( D + F V G ;  (g)+F>-G; (h)+-P; ( i )  +-(R I F ) ;  Q)+-(F&R) 

Ex 7.4 
1. ( a ) + R > ( i f F C )  ( a ) + R > ( F > C ) ;  ( b ) + n o t R > n o t F  (b )+-R>-F;  ( c )+R>( i f  

not F not C) ( c )  + R  3 ( -F 3 -C); ( d )  +not ( i f R  then F) >not C (d3 +-(i fR then F) 3 
-C (d l+- (R  3 F )  3 - C ;  ( e ) + i f R  t h e n F > C ( A = i f R t h e n F ) ( e ) + A > C ;  ( f ) -+C>if  
R then F (0 -+ C 3 (R 3 F); ( g )  " n o t  C >not (if R then F) ( g )  +-C > -A; ( h )  +neither R 
nor F 3 not C (h) + - ( R  V F) 3 C; (i) * -(if F only if R then not C) on. (i) +--(F only if 
R 3 not C) (B = F only i f  R )  ( i)  +-(B 3 -C); Q )  +-N(B 3 C only if F) Cj) + -(B 3 (C 3 F)); 
( k )  + i f  R F  V not C (k) + ( R  3 F) V -C; (1) +not i f  FC V n o t  i f R F  (1) +-if FC V m i f R F  
(D = i fFC)  (1) +-D V - A  

Ex 7 -5 
(A = adequate; I = inadequate; N = Necessary Truth: C = Contradiction). 
i .  ia)  i & -\.s A: (b) + h $i -L A ffo N GI C; ( c )  t)L \,/ -p A; (dj +!hy > A fCZ llCi 
N or G; (e) +/L $ E) 2 (F & 7) A. f31 not N or C; {Q '.L 3 jzP V L j  A for :lot W 0; 6. 

2. ( y  = i~ss,  it  l;o?d~: = i.9. i t  is  I:~I. shotpic I: hold) 
< 3 ]  2 +t,: :, q *n x <-,.?-><T \ j 3 :  f;, \ ,  A;a (y) -4 ;), (;ii) g, 
," )" +..-" & :a. 2 + -..-. '-'. .,i, ii2 at. i ; ~  i,. 
. :\,) n f' -26 B, +C& . dB, J.; L~~ . y f i  (jii] -4 {z 
," 
;a)2:+'; >B, & - + C ~ , - B :  (; A . 4 . Y; :jl: t .) A @I> i:-' i 

:z<-,B & lF,Q-+ .?-,, -* 3 -  -, --t - : ( j )  '$ j l  (ii) ; (iii) A ,: 
< I -  

Ex 4,6 
( l ) E > G , H > E  / .'. --G>--HT!l; ( t ) ( I  t' W) > j f k f & S ) ,  -S/ .'. -VIVA; ( 3 ) N  Q ,  
--R?/B / .~.  ( r i '&(X>Q))  > A 7 V I ;  ( 4 ) c w T V - M ,  ( T &  -W) v--(fM\'G),--i@>-C, T > ( T &  - 
W )  / .'" W k V - 4  I n V ( W = T = ! ~ = G = O ) I ;  ( 5 ) A V . r 8 G > A , U 3 F  / . ~ . C V U I n V ( G = U = O ,  
A = F = I ) I ;  ~ ~ ) ( G & - - R ) > H , - H B G  / . ~ . R  V A ;  ( ~ ) - o v F , F ~ ( c ~ R ) , R ~ v ,  -e 1 .'. 
O > V V I ;  ( 8 ) ( 1 3 B ) > ( A  \ JE) , - - k&I  / . ' . E I n V ( E = A = B = O , Z = I ) I ;  ( 9 ) B > F  / .'.-F> 
--B V I ; ( I O ) M > D ,  --D / .'. -MVA; ( 1 1 ) S  / .'. R f --R V A ; ( 1 2 )  --M>S, S > P , M > T  / 
.'. P V T VI; (13) M 3 -S, -S / ~'~ M InV (M=S=O) I ;  ( 1 4 )  0 3 ( E &  F) / .'. F V- -0  V I ;  ( 1 5 ) l  
> C , I > ( R  V S ) ,  -S, R / .'.C InV(C=S=I=O,R=l)I; ( f 6 ) F > - W , L & M , ( L & W > S , W  / .'. 
§ & - F  VA; (17) U k V E . S > ( E > M ) ,  - M & S  / .'.-U VA; (18) S 3 D , ( D &  -W)>>O, 
cV / .'. -0 3 --S Vn: ( 1 9 )  (P & R )  3 (A 3 -C), C, R / ~'. -P HnV (P=C=R=I, A=O) I ;  (20)  (R 
V H) 3 ((P V M) 3 (V  & §)), - (T  & S) 3 1 / .'. 1 V -(R & P) HnV (l=O, R=P=H=M= V=§=T=I) I ;  
( 21 )  W > A ,  -R \/ W, -A / .'. -R V A ;  (22 )  E >-Q, -Q >A,  L 3 Q ,  Q 3 B ,  .E 3 - L / .'. A 
V B VH; (23)  ( V &  S)  >P, -S / .'. --P InV (P=l, V=S=O) 1 ;  (24)  P >-C, F >C, F / .'. -P V A ;  
( 2 5 ) P , B > O ,  ( S & P ) > - 0  / ..~ - - B V m S  VI; ( 2 6 ) P V m E , P > A  / . ' .-A>-EVP; ( 2 7 ) L  
>H, H 3 G, -N 3 - G  / *'. G V h l L  VE; (28)  C>D,  -D / .'. -C VA; 129) -(S V U) 3k: S 
/ .'. -- InV [C=S=U=I) 1; (30 )  D V E, E 3 1 ,  -1 / .'. D VA; (31 )  T >I,  P 31 / .'. P 3 T InV 
(P=I=l, T=O) I :  ( 32 )  C > V , - D  >H / .'. V V H V H ;  ( 3 3 ) C > R ,  ( C & R )  3 W ,  ( C > W )  > m S , S V  
.%i .'. lii' air ;  (34)  (I, & C) > F ,  F I s ,  G & --s / .'. --L VA; ( 3 5 ) ( S V i )  > B , R  >B/ :.R 3 
( s  V I)  InV (R=B=l, S=i=O) I: ( 3 6 )  -P >EE WE. / .'. P V-I< VH; (37)  J V M ,  -9, M 3 3: T 3  
B / .~. BVA; (38 )P \ iS ,P>(3 ,S>(TV 'V131 .  -W / . ' .OVA: (39 )  - G > P , P > L , L > R  / .~. 



-R 3 C VI; (40) 0 > W ,  0 3 A ,  !A/ / .'. A InV (A=O=O, W=l )  1: (41) C 3 ( A  3 R),  C & -R / 
.'. - A  VA; (42) S V -F, -S / .'. -F VA; (43) R > C, C I S ,  R / .'. S VA; (44) G V L ,  G 3-41, 
- L  / .'. M V A :  ( 4 5 ) 1 V D , i > T , D > S , S > ( k l & Q ) ,  (Tv.Vl)  3 P  / . ' . PVA;  ( 4 6 ) B > ( A & D ) ,  
A & D / .'. B InV (B=O, A=D=I) I ;  (47) A V G ,  G 3 - U ,  - L J 3 - S  / .'. S > A  VI: (48) S > 
A, A 3 -C, C 3 W / ... S 3 --W InV (S=A=l, W=C=O) I ;  (49) W 3 (F V S) / .'. (W 3 F) V 
(S 3 W) VI; (50) (G T) & -G, T v - R  / .'. R 3 D  VI; (51) (S >L)  & (H 3 -L), H I S ,  H I  
P / .'. S 3 P InV (S=L=I. P=H=O) I ; (52) R 3 J, -R / .'. -J InV (R=O, J=i) I :  (53) -(S V 
A ) ,  - S > M ,  - - M V C /  . ' . - A & C V A ;  (54) L V S , S > - I , L > - I /  . ' .-IVA; ( 5 5 ) F I -  
W, - W / .'. F InV (F=W=O) I ;  (56) D 3 S ,  S > T ,  S & - D / .'. - T V -(D 3 s )  InV (T=S=I, 
D=O) I;  (57) M V T, M / .'. - T InV (M=T=I) I :  ( 5 8 ) D  > C  U &  C, -D = U / .'. (D V - D )  
& C VA; (59) F > -S, -S / .*. F InV (F=S=O) I;  (60) T 3 C, E 3 C, -B / .'. -T InV (T=E= 
C=O) I ;  (51) - (D & T), - T / .'. D InV (D=T=O) A; (62) L 3 F ,  C 3 J  / .'. (L & C) 3 J  VI; 
(63) C &  H, H 3 - D / .'. -- (C& D) VA; (64) -A V R ,  -R & F / .'. -A VA: (65) (C& G) 
3 W / .'. - C 3 -W InV (C=G=O, W=l) I 

Puzzle 7 The master has not contradicted himself. \+'hen the master and student utter the sen- 
tence "The oak tree is in the garden" they are asserting different propositions. The 
master has arrived at  his answer by intuitional experience but  the student has simply 
repeated the answer without understanding why it is an answer. 

1 .  (a) DN (b) DN (c) Contrap (d) DeM (e) Idem (f) Dist (g) Dist (h) MI 
2. Lines: 4 (3 MI); 5 (4 DeM); 6 (5 MI); 9 (8 Exim); 10 (9 Dist (and Corn)); 16 (15 RlI) 
3. We list here the relevant Rules in the order they are used for one solution (other solutions are 

possible): if you are stuck, use one or more of these Rules as hints. (a) Idem, DN (b) DeM, 
Corn, MI, (c) ED, ME, Dehl, MI (d) MI, Assoc, Corn, MI (e) MI, MI. DeM, DN, Corn, (f) MI, Dist 
(and Com), DN, DeM , MI, MI. 

Ex 8 -3 
1. (a) i Simp; 3 Simp; 4 Simp; 2.5 A k  (b) ! Simp; i Sirnp; 2,4 C O : ~ ;  5 Corn; 4,3 AA: 7 DN; 3,8 

Conj (ii) 2 DN; 4 ME: 5 Simp; 1. 6 AA: 5 Simp: 3,8 AA; 7.9 AA; :O DN (dl 1 ME: 4 Simp; 2 
MZ;  6 Simp (or I iem);  5,3 AA: 6 1C~em 10: Simp): 9.3 A.A. (el 1 IIE; 5 Siinp: 6 , l  A;_: 4 ?:L; 
8 Simp: 4,s AA: -;,j,i~C SCD (or CCD. :den);  l! DN. 

2,. Reievd.n.~ Ruies: (a) Cih PLr. DC {D) :n Ai, ,.\A jc) 3C1 33 (6;; DG, i )C,  C r j  (e; 3C, ;ia.l 
Simp, Add ig) Contrap. Coi~ i rap ,  CCD (11) DN, :VIE, Simp, AA, Con; (i) AA, Conj, ,<>A 0) 

Add, Corn, AA, Add 

Ex 8,4 
1. (a) A; 1 Simp, 2 ,  3 A h ;  1 S i m p ; 4 , 5  Ccnj; 2-6 RAA (b) A; 1, 3 A A ; 4 , 2  Conj; 3-5 RAA !c) A; 

3-3 CP, 4 MI;  5 , 2 , 1  SCD (or CCD, Idem) (d) A;  2 Addx2; 3 .4  Coxj; 2-5 CP; A; 7 Simp; 8 Add, 
Corn; 7 Simp; 10 Add, Com; 9, 1 1  Conj; 7-12 CP; 1, 6 ,  13 SCD. ie) A;  1 DeM; 3 M1;4.2 AA; 
2 Com; 6 , 5  Conj; 7 DN; 2-8 CP 

2. Relevant Rules: (a) A, AA,  DeM, DN. DD, CP (b) A. AA, DC, CP (c) A. AA, AA, Conj, 
DeM, DC, CP (d) A ,  Add, AA. CP (e) A ,  SCD. CP 

3. Relevant Rules: (a) A,  DC. DN, A A ,  Conj, RAA, DN (b) A ,  AA, AA. Conj, RAA (c) A. DeM, 
RAA. DN (d) A .  DC. DN. DeM, DN. DD, Conj, RAA, DN (e) A ,  DeM, DN. Simp, AA, DD, Simp, 
Simp, Conj, RAA, DN 

Ex 8.5 
1. Relevant Rules: (a) A, Simp. CP (b) A ,  Simp. Simp. Ch Ar. CP (c) A, Simp, Simp. A, SCD, 

CP, CP (d) See proof of Permutation in 5 8.2 example and use CP. CP, Conj, ME (e) A, LIE. 
Simp, MI. A, DN, DD, Simp, CP: CP 

2. Relevant Rules: (a) DD, ME. Simp, A 4 .  311. DK, DD. Conj (b) DN. DD. DeRf, DN, DD, Conj 
(c) Sirnp, Simp, MI. DeM, DX, Simp, 4 A .  Conj (d) DeM, DN, Simp, Simp, Mi, Dehl. DN, Simp. 
AA. Simp, Conj (e) ME,  Simp, Simp. MI, Idem, DC, AA, Conj 



Ex 8A 
1 .  Reievani Rules: (a) .&A, AA (b) AA, Add, C'om (c) ChAr, ChAr, id) A .  BX, DC, 31<, Conj 

!c: Simp. 3C. D*;, .;\A. Simp. AA, Idem (f) Simp. DN, DC, DC (g) DeX. Simp, DC, AA (li) C o n  
:rap, a:'. A.4. A.4. Add (i) AA. DC. BC !j) C'ontrap, Dehl, AA, AA. Add, Coin (k) Contrap, DN, 
DeSf. AA, AA (1) A. AA, Simp. Add, >5,11. CP (m) A, AA, ChA;, A,  AA, Simp, CP, CP (n) A, DC, 
DD. Siinu, Conj, R A A ,  DN (0) A ,  AA, A,  AA, AA, AA,  CP, CP (p) Simp, Simp, A, A,  AA, 
Simp, Conj, AA. Simp, Conj, KAA, DN, CP (q) MI, Idem (I) MI, Idem, DC, DeM, DN, DD, DC, 
DelLI. Corn 

2. Relevant Rules: (a) A. CP, ? v l I ,  Com (b) A, A, theorem (a), SCD, CP, CP (c) A ( -p), Add, 
CP, MI, Mi ,  DN (d) A, A, DN, MI, ChAr, MI. DN, Com, CP, CP (e) Assume -[(p -q) V ( q  Z r ) ] ,  
then use DeM, Simp and ME (2nd version), DeM, Simp, DeM, DN, MI a number of times, then 
assume p  to get p 3 r and assume v  to get r > p ,  and hence by Conj and ME get p -- v; then dis- 
charge the first assumption and use MI (and Assoc) to finish the proof. 

3. Relevant Rules are listed after the translation. 
(a) A 3 0, 0 3 W / .'. -- W  3 -A ChAr. Contrap (b) (S >B) & ( " S  3 E) / .'. E V B Simp, 
Simp, A, CP, MI, CCD (c) B  > (N V  A), N 3 L, L 3 -D, D & B / .'. A Simp, Simp, DM, DC, 
DC. AA, DD (d) L & (B 3 C), C I R ,  -R / .'. -(L 3 C) Simp, Simp, DC, Conj, DN, DeM, MI 
( e ) O > W ,  W > T , H  E T, -17 / ...- OME,Simp,DC,DC,DC ( f ) E \ / [ - E > ( ( N & W ) \ /  
-W)], W  & -E / .'. M Simp, Simp, DD. AA, DN, DD, Simp (g) M 3 -M, M / .'. -E- AA, A, 
Conj, RAA (h) W, (C & W) If', (P & Sj 3 (D V  L),  -15 & S / .'. D  V  -C Simp, Simp, A, Conj, 
AA, Conj. AA, DD, CP. MI Corn 

Pazz%e 8 (1) Ptace on plan!< across one coiner of the moat, then place the other plank at right 
angles to this, forming a "T" with its end on  the island. You may now walk across 
and rescue the maiden. 

(2) If the maiden is free to  move there are several other solutions. For example, place 
one plank on the outer bank with its edge protruding a bit across the moat, then 
slide the other plank over tlie top of this to  the islaild (holding thii-igs steady w i ~ h  
your foot if necessr:rg~>: the maiden may walk a.cross ':he top plank. 

:. (a; ire, I s  :?ei:;?pl 3:: ;:cr " 3 .  itj; S i l~ :  1s LI G <c) she ii; 33.  
.,-> 

/-. 1"; ihievec n:: I);; ;yirr;ca 6nG $:.i-llsj.. 
C D .  1 

., , I . O ( J S S  ." G.AA u - .-- \-,a, ...""\;_?-~'- ," ,.? ,g a1e t;?e m~;ldf,??:? . , 
4 ,  ti) Loiyi ,Qpha fii) Aloha a l l  Beta 
5,  3dariiyr,, Sarbrra and Tina wear a s~riixsui: and Earilia wears an evenir;g go<,vn. 
6 .  Ann is L'ticistia.n, Sill is Moslem. Cathy is &indu rnii 2 o n  is Buddhist. 
1. Alan's -life is Camel .  Bill';; t~;;iî ;: is Forn?a, Cclifi's wife is Kare7: and &\rid's 7883:. 

Ex 8.3 
1. (a) +, x (b) +, x (c) +, -, x (d) +, -, x, f (e) +, -, x, + 
2, (a) 0.  0 ,  1 ,  1 (b) +, x (c,) Yes (d) No e.g., l + (2 x 3) # (1 + 2) x (1 + 3) 

(e) No e.g., 2 + 2 = 1 " 2  = -1 but  then 2 x 2' # 0 (F) No (g) +, x (h) Yes (i) No 

( a ) x - ( I  e y ) = y  ax ( b ) x l a ( x + y ) = x l e y  (c)(O*y) I = I + ~ '  
(a) Not closed; Com; Not idem; id = 0 ,  even numbers (b) Not closed; Not com; Not idem; id = 0 ;  
zero; negatives (c) Not closed; Com; Not idem; id = 1 ; squares (d) Not closed; Not com; Not 
idem ; id = 1 ; one, reciprocals 

5 .  Relevant theorems: (a) Id, Corn, Id (b) Idem, Idem (c) Dist, Idem (d) Inv, Inv (e) Idem, Idem, 
Left Comp (f) Id ,  Id, df Comp 

6 .  Not closed under : (a' = c). # is not  idempotent (a #a # a). a is not  commutative (a A b # b A 
a). 

7. Not closed under . Q is not idempotent. 'V is not  commutative. 

Ex 9 "4 
1. (a) { 2 . 4 , 6 , 8 ,  1 0 )  (b) (c) { 2 , 6 ,  1 0 )  (d) { 2 , 4 )  (el { 4 , 8 ,  1 0 ) 2 . ~ e s  
3. (a) T &  (p V,Fj p & n ( A  U { } ) = A  (b) ( p & T j  V w ( p V q )  * p V w q  (A n & ) U ( A  U  

B)' = A U B  
4.  (a) Nan-theorem (b) Theorem (c) Kon-theorem (d) Theorem 



6 .  Relevant theoreins: (a) LNC, Id. l)N ( b )  Id, A b \  (c) Uehl. iljcoc ( d )  Deh'f, Dehf (e)  l l z h l ,  l11st. 
LEM. Id (f)  Dist. LNC, Id (g) DeM. UN. Id, C'om (11) Dist, Abs 
(i) Com, Dist, LFM. Id (J) Cf:, Id. DehI, Abs ( k )  Dist, Dist. LI.'bl, Id. (:om. Uist. C'om. Ascoc 

Ex 9.5 
1.  Simplified formulae: (a) A (b) F (c) A & B & C (d) T (e) A V B (0 A (g) T (11) .A & (B V C) 

( i ) A & B & ( C V D )  Q ) A & B & D  ( k )  A & B  ( l ) A V ( B & C )  ( m ) [ ( A & B ) V C / & ( A V D )  
Doesn't simplify (n) B (of .4 V -B (p) " A  & -B ( q )  A (r)  B V/A & C) (s) ( A  & B) V C 
(t) A & (C V D) (u) -C & [(A & B) V ( -A & -B)/ (v) Note that there are six pathways from 
left to right but only two of these are possible (any series pathways with complementary st i tches 
will not transmit). Applying ldempotence we obtain: (A & -C & -B) V (B & C & -A) .  

2.  Formula: (A & [(B & (C VD)) V ( C &  D)]) V (B & C & D) 
3. Formu1a:A & ([B & (C VD)] V ( C &  D)) 
4 .  Formula: A & [(B & ( C V D  VE)) V ( C &  (D VE)) \or [(A&C) &(BvD)] v [(B&D) & ( A V C ) ]  
5. Formula: -B 6. 1;ormula: C &  (A V-B) 
7. Formula: D & [(A & [(B & C) V ( -B & -C)]) V ( -A & [(B & -C) V ( -B & C)])] 
9. Simplified Formulae: (a) -p (b) -p (c) p 4 q (d) p & q (e) p & -q (f) p 1 q (g) p & (4 V 

Y )  (h) ( P  4 4) 6 r 

1. Tautologies: a, b,  c, d ,  h, j Contradictions: e, f Contingencies: g ,  i 
2. Main-column values listed top to  bottom are. 11100010 
3 .  (a) Contingent (b) Contingent (c) Tautology (d) Tautology 
4. (a) P I (4 i 41; [(P J. PI $ 4 1  4 / ( P  4 P) ./ (11 

(b) - (e) These are fairly tedious. Make use of ME, ED and M I .  
5 .  (a) V , C , 3 , =  (b) V , V .  -, &, 1 , f  , & , F  (c)%i,V,'+,h, & ,  & , $ ,  F 

Ex 9.7 
1. (a) i "p V q) I- (p 3 q)  (b) (((p 3 4) 3 P) 3 pi -- (P V -pi 

(c) -1;;. 3 ( q  & ?i') -- ( ( p &  4) I(?. V q ) )  id) ((p 3 4 )  3 ( q  3")) -- (i. Vs) 
: e) --{(~p 3 ;7/ V (G p)) 

2 ,  ia) i-dp & -q/ > ( l-I'j9 V q) (b) {p & q) EE (q & pi (c) /(p ',/ q) $ r/r & q)) 2 
, 3~ \ & , , P . ~ > , G J \ / $ ~  -=(,*,,?*& ,>,()) \<) f, 'p>q) y) :+: 

Ex 8.g 
! .  (a) C>~h:qp ('o) CKpqApq (c? E~,-liVpqCpq ( r i )  E"LrcipqKl1Jp~'~q (e)  CCpCpqq 
2 .  ia )  ((*? 3 4) & /d 3 ")) 3 ( p  2 Y )  (b) ((p \/ q) 3 r) 3 ( [ I ;  3 ij' & (q 3 r))  

( c ) ( ( p > q ) > i ; i > ( ( r > p ) > p )  (dl ( p > q ) > ( - 9 3 - p )  
i e )  ( ( p  $ q) $."/ & -((p& q) & r) E ( ( ( p  Vq) 'Jr) & (-(P iPC q) & (-(q g: :., & -,!G & Y,))) 

Puzzle 9 



Ex 10.2 
1. Code: PN = Proper Name; SP = Singular Pronoun; DD = Definite Description 

(a) James: PN (b) Susan: PN (c) Jan, Jill: PN (d) The principal: DD (e) The Premier: DD 
(E) Kirstp: PN, the prize: DD (g) She, him: SP (h) You, me, him: SP, the money: DD (i) The 
Wizard of Id: DD Q) The economy: DD 

2. (a) Falling down (b) being unsteady (c) being solicitous (d) being reassured (e) being beautiful 
(0 having a splitting headache (g) being deft with bandages (h) having gone to bed (i) being 
happy 0) being asleep 

3. a ,  f ;  b ,  h ;  c, e ;  d ,  i; g, j 4. a, f ;  b ,  h ;  c, g ;  d ,  e ;  i , j  

Ex 10.3 
1. (a) 1. F x  B2M; 2. Ga B2M; 3. (Fx >Gal 1, 2 R 3  
2. (a) (i) F x  (ii) (Fx V (3y) Gy) (iii) (Fx 3 Gx) (iv) Fx (v) (p & Gx) 

(b) (i) F y  (ii) p (iii) F y  (iv) -(Fy V Gy) (v) (Fy 3 Gx) 3. a ,  d 

1 .  (a) Alan is a farmer and Carol is a student. True. (b) Bert is not  a grocer and he tries hard.True 
(c) If Dana is a brilliant student then Dana is a student. True (d) Although not a brilliant student, 
Carol is a student who tries hard. True (e) If Dana is a farmer or a grocer then Dana tries hard. 
False (f) Dana is a grocer if and only if Bert is a student. True (g) Alan is a farmer or Carol is a 
grocer, but  not both. True (h) Bert and Dana are brilliant students, but  Bert tries hard and Dana 
doesn't. True (i) If Alan is a brilliant student then he is a student, and the same goes for Bert, 
Caroi and Dana. True Q) At least one of Alan, Bert, Carol and Dana is a farmer. True. 

2.  F G S T B  

d 

2Q"Skk 
, {a) ('v;:) p): $) ('v>;j 5 4 ~  (c> ('Vxj (AI>: v.??<) (<I {'Qk; (Tx 2 &Lx) 

,\ $ {s\;/;<~) ("FA 2 pc,i , ,-, $7, (\,y/x) -,:c;< (& (',d:;) 1) '-..2axj 
( k )  (\:I>:) '2 & s;c; i i) 1 ij. ' ;>-:; 2 --* p>:) $ ) ;'>GI><) 1; p>;; 

,% L, ja; / > FG 3 Jb; i , i  ( t j  p-c:c & ,--Ch: 15 (6 (k;L? 3 Go) $ (,Fb 2 G b / :  3,' 
id:. [Fa 3 - 6 0 )  & (Fh 3 - ,Ch j :  i ; O  (ej (EL V Go) & (FL V Gbj: !,I 
( f )  -a(,% '\/ Gaj & '\.I! 60): 0,0 ( g )  (Fo & -.,Gal & (Fb & -Gb): 193 

3 ,  (a) & & Sh (b) --,Sa & *--Sb & ",Sc (cj  (Fc > Gal & jiVb > C,b] $ (;i. > Gc/ 
(d) Same as ( c )  (e) TO &- Tb $ Tc & Td 

4. (a) (Fe i/Gc) & (Fd VGd]:  1 (Fb V Gb) & (Fe VCe) & (Ff VGfl :  0 
( b ) ( A ~ c 3 G c ) & ( F d > C d ) : Z  ( F b > G b ) $ ( F e > G e ) & ( F f > G f l : 1  
(c) (Fc 3 -Gel & (Fd >-Gd): 1. (Fb 3-Gb) & (Fe >-Gel & (Ff 3-6f l :O 
(d) w F c  & -Fd: 0. -Fb & -Fe & -Ff: 0 
(e) (Fc Gc) & (Fd Gdj : 0. (Fb - Gb) & (Fe Ge) & (Ff Ei Gfl : 1 

Ex 10.5B 
1. (a) (3x1 ~x (b) (3x1 -SX (c) (3x) (Mx V P ~ )  (d) (3x1 (SX & PX) (e) (3x) (SX & -PX) 
2. (a)-Fa V-Fb: O,i ( b ) ( F a &  Ga) V ( F b &  Gb) :0 ,1  

(c) (Fa VGa) V ( F b  VGb) :  i , 1  (d) ( F a 3 G a )  V ( F b 3 G b ) :  0 , l  
(e) (Fa & -Gal V (Fb & -Gb) : 1,0 (t) -(Fa V Ga) Vm(Fb VGb):  0,O 

(g) - (Fa > Ga) V -(Fb 3 Gb): 0, 1 
3. (a) -Sa V -Sb V -SC (b) (Sa & Ta) V (Sb & Tb) V (Sc & Tc) 

(c) (So& "Ta) V(Sb&-Tb) (d)-(Sa 1-Ta)  Vm(Sb 2-Tb) Vm(Sc>-Tc) 
(e) ($a & Fa) V (Sb & Fb) V (Sc & Fc) V (Sd $ Fd) 

4. ( a ) F a V F b V F c :  1. F a V F e : O  (b) mGaV-GbV.uGc:  i .  -GuVmGe:I  
(c) (Fa V Ga) V (Fb V Gb) V (Fc V Gc) : 1. (Fa V Ga) V (Fe V Ge) : 1 
(d) (Fa f Ga) V (Fb f Gb) V (Fc f Gc): 1. (Fa f Ga) V (Fe f Ge): 1 
(e) (Fa& -Gal V ( F b  & -Gb) V ( F c &  -Gel: 1. (Fa& -Gal V ( F e &  -Ge): 0 



Ex 10.5C 
I .  (a) Sa (b) -Sb (c) Sa 3 (3x1 Sx  (d) -Sb 3 - fVx )  S x  (e) (Vx )  ( lx  31Wxj 

( f )  ( 3 x 1 ~ ~  & ( 3 x )  -Mx (g) Pa 3 -la (h) -(tlx) ( Ix  3 M x )  (i) ~ ( v x )  (Ix 3 -Px) 
0) Sb V -(Vx) SX 

2. (a) -u( -Fa V -Fb) (b) -( -Fa & -Fb) (c) -'-Fa (d) ---Fa 
( e )  Gb 3 Gb ( f )  (Gb V Gc) 3 (Gb & Gc) (g) ( -Ga & -Gb) 3 ( -Ca V -Gb) 
(h) [(Ga 3 Fa) & (Gb 3 F b ) J  >[(-Fa 3-43) & ( -Fb  3-Gb)J  
(i) [(Ga 3 Fa) & (Gb > Fb)] 3 [(Ga & Fa) V (Gb & Fb)] 
0) (Fa & Ga) V (Fb & Ga) V (Fc & Ga) (k) (Fa V Fb V Fc) & Ga 
(1) (Fa 3 Ga) & (Fb 3 Ga) (m) (Fa & Fb) 3 Ga 
(n) -[(Fa & Fb) 3 (Ga V Gb)] (0) -([(Fb & Gb) V (Fc & Gc)] & ( -Fb & -Fc)) 

3. (a) (Fb V Ga) V (Fc V Ga) : 1 (b) (Fb V Ga) & (Fc V Ga) : 1 iff a = c 
(c) (Fb V Gc) V (Fc V Gc) : 1 (d) Gb & [(Fb V Fa) V (Fc V Fa)] : 0 
( e ) ( - F b > F a ) & ( - F c 3 F a ) :  l i f f a = b  

$ U Z Z ~ ~  10 Hint: List the 8 colour arrangements BBB through GGG and eliminate 4 of these 
using the information given. (The answer is Blue). 

Note: For ease of typesetting we will use U for the universal quantifier V and E for the existential 
quantifier 3 . 

Ex 11.1 
1. (a) (Ex) Ox (b) (Ex) "Ox  (c) -(Ux) (Px 3 Ox) (dl (Ex) (Px & Ox) 

( e )  (Ex) (Px & B x  & Ox) (0 (Ux) (Px 3 Bx) (g) (Ux) [Px 3 (Bx  & Ox)] 
(h) (Ux) [(Px & Bx)  3 Ox] (i) (Ux)[(Px & Bx) 3 -Ox] 
(j) (Ux) [(Px & Ox)  3 -Ix] (k) (Ex) [Px & Ix  & (Bx V Ox)]  (1) (Ex) (Mx & Ix)  
(m) (Ex) (Mx & Ox & -Ix) (n) (Ex) (Zx & Mx & Px) (0) (Ux) (Mx 3 -Bx) 

2. (a) (Ex) (Fx & Dx) (b j  (Ux) (Ax  3 D x )  (c) (.EX) ( V x  & -Dx) 
(d) (Ex) ( V x  & -Dx & hix) (e) (Ux) ( A x  3 - Vx)  (0 (Ux) [Ox> (Dx & Nx)]  
(g) (Ex] (Vx $ --IVx] 6h) -(Ux) (Gx 3 N x )  (i) (Ux) [(Ax $ Dxj 3 Gx] 
(j) (Ux) /(Fx & Jx) 3 -- vxj (k) (Ux) [ (Ax  \/ Ox) 3 (Dx & iV:~) j 
(1) (Ux) [(Irk & -Gxj ~.V.X] (m) (Ux) [{F;< & -A;< & -Qx) 3 /Jx & a x  & !'WX)] 
(n) ('[;A:,) { ' x  13 (22) (0) (Ex) (Fx & d7x) & (Ex) (F>c & ..wbix) 

3 - .  <z; ;uxj /px :> (Tx ',! !T>:) ,' ( g i j  /-I7-* -= .-*- 
. > 

I A ,* - -F;c,i (,:) (&:! 7 -, t'Tx J lcx,i] 
(d) '.:Ox & ---' r y  .& - >c;:) (el (KJc,! j-P:< & Tk & -" 1'!7~j 

( fi ('Ux) /(Px & Tx & A'xJ 3 cx] (g) (Ux) [ V ~ X  2 ('Tx & lDx)] 
(h) (Ux) j{Px & Wx,! 3 -Txjl/ (i) (Lk) [(PIX $ Px) 3 -Cx] 
(j) (Uxj [(Px & -iVx) 3 (Cx V Fx)] 

Ex. 1 l .z 
1.  (a) Fx (b) (Fx V (EY) GY) (c) (Fx 3 (UY) FY) 
2 .  (a) (Hx 3 p )  (b) f f x  (c) (Lx  Lz) 
3 .  (a) (Ex-) (e) ( U Y ~ H Y  3 ( U E y l  (h) 

4. (a) F s  (c) (Ux) Gx  & F s  (g) (Ex) ((UY) GY & (Gx & EY)) 
5.  (a) (Ux) Fx; (Ex) Fx (0 (UX)  (UY) (Fx 3 GY); (Ex) (EY) (Fx 3 GY) 
6.  Vacuous: (a) (Ex) (b) First (Uz) (c) (Uz) (EY) (dl (Ux) (el l u x )  

Ex 11.3 
1. MQT-Necessities: a b,  c d ;  e 
2. Counterexamples: b ;  d 
3. Possible worlds: a, b ,  d,  f 
4.  If every expansion of an MQL-form up to 2n items is a PC-contradictio~i. then every finite expan- 

sion will be a PC-contradiction. 

Ex 18.4 
1. (a ) I :  F a = G a = I , f f a = O  ( b ) % : F a = O , G a = H a = l  ( c ) H : F a = G h = 1 , 1 ~ ~ b = G a = O  

(d) I: Fa = I ,  Ga = Fb = Gb= O (e) V (f) V ( g )  Y (h) V (1) I: Fa = Ga =Ha = O (J) Y 



2. ia) V (b) V (c) I:  Ca = 0.  So =Ha = I (d) V (e) V Ngte: in is reasonable to assume that  Jane and 
Susan a:.e people. Also, the sentence "Susan's vehicle is registered in July" indicates thatSusan has 
only on2 vehicle. and that it was registered in neither April nor May. 

Ex 11.5 
I .  (a) (UX)  "Px (b) (Ex) K x  (c) (Ux) (Tx  3 Kx) (d) (EX)  Tx  & (Ex) -Tx 

(e) (Uxj (Px 3 K x j  (0 (Ux) MX ( g )  (Ex) (Afx & Sx  & Kx)  (h) (Ux) ( -Kx >Mx) 
(i) (Ux) ( A x  3 Kxj 0) (51x1 ( - Tx 3 -Sx) 

2. Delete all reference to  Px from answers t o  Ex 11.1 Q. 3. 
3. Valid. but  still need the information " (As VIM~/ 

Ex 11.6 
1. (a) P 3 [(Fa & Gaj V (Fb & Gb)] (b) [P 3 (Ga & Fa j] V [P 3 (Gb & Fb)] 

(c) [(Ga 3 Fa) 6i (Gb 3 Gb)] 2 Q (d, [(Ga >Fa) 3 Qf 6; [(Gb 3 F b )  3 Ql 
(e) Ga 3 (Ga & Gb) (0 ([P 3 (Ga & Fa)] V [ p  3 (Ga & Fb)] & ([P 3 (Gb & Fall V [P 3 (Gb 
& Fb)] ( g )  ((P 3 (Ga V Ga)) 3 Fa] & [(P 3 (Ga V Gb)) 3 Fb] 
(h) [(Fa V Fb) 3 p] [(Fa 3 p) & (Fb 3 p)] ( 0  [(Fa & Fb) 3 P] [(Fa 3 P )  v (Fb 3 PI/  
Q )  / p  3 (Fa & Fb)] - [(p 3 Fa) & ( p  3 Fb)] 

2 (a) T 3 (Ux) (Sx 3 Gx) (b) -T 3 (Ex) (Sx & -Gx) (c) T 3 '-Dl 
(d) (Ex) (Px & -Sx & Gx) (e)  (Ux) (Gx 3 D x )  3 -T 

3 MQT-Necessities, a c d e (b) Fa = I, Fb = O ( f )  Ga = I ,  Gb = O 
4 Counterexamples a, b 
5 ( a ) F a = I , G a = O  (b) F a = G b = I , G a = F b = O  (c) F a = O , G a = l  ( d ) F a = I  (e) Fa=Gu=O 

Puzzle 1 k Ask the qaestion: "What would your twin say if 1 asked him whether the left door 
led to the men's room'!" If the answer is "No", the  left door does lead to  the men's 
room; if the answer is 'Yes"; the right door leads to  the men's room. 

Ex 12.1 
1 .  Yes: a b ,  E, g h. i,  1, c iJo: c . d , f ; j , i < , r ; ! , n , p  
2 .  :'ode: L = i-ft branch; R = 'jrarlcb 

;2; ?FL ;I: 't.) I d 2  . .  " .A:?;<) _r>: _"i .--, .CC ?C fC)  dr9 & 5' (2:  ,; ' - 7 , / 
'Ju c: 

, , z , e  - r:4 n. -- iq ...2 /.;--\i - x 7 . [ j d - - ;  , , I ,~. L" , . , . ; <.76! <g; : , , L d s  F;< ,? re;,,i [;.; 1:: 
(I-\. L -, ,cL :bt ,,;;! 5: E; /:? \ , , -  ,r, lri 8 .d't:Jc 2 cy; t;3y ,';> e, ! ,T:-, .< !, '; .,-;- . L, , ,?, -. - ,--' iZ - -  5: 

jgx j2,2 
i ; , 2 ;  ; 5 @;;PC; :;i$jq: 4 ~ ; ;  5pb;; 2 : j i  * ~ 

8 --,- 
&, . PC: 3 PC; j QN; 2 El ;  it El; 6 E i  t d )  I PC: 3 PC; 5 QN: 4 El: 2 Ut;: 4 >Jp i-, 0 o pfq - -  

(c) - F",-.. , , . ri, 3 PC; 6 QN, '7 E;; 2 u:: o! , -",- I -  jf) 2 QN; 3 Ui, 

{g) 3 QW; 4 EE; 5 PC; i UP; 8 PC; 2 UE; 10 PC (hj  2 PC; 4 QN; 1 ~ 1 ;  3 ~ 1 ;  5 ~ J I ;  f, PC 
(i) 3 QN: 2 EI; 5 PC: 4 UI;  8 PC; 1 WI; I0 PC; 115 PC 
ij! 3 PC; 5 QN; 6 EI; 7 PC; 4 UI; 1 UE; 2 UH; 11 PC; 12 PC; 10 PC 

2. Correct: L ines1 ,2 ,5 ,8  Incorrect: l l n e s 3 , 4 , 6 , 7  Tick: l i n e s 2 , 4 , 5 , 7  

2 01 J 1 .  -(3 x)[(3x)Fx 2 Fx] NF 
ba \ 2. (Vx) -[(3x)Fx ~ F X ]  I ,  Q N  

J 3.  -[(3 x)Fx I> Fa] 2, UI 

6. Fb 4, EI 
J 7. - [ (3 x)Fx 2 Fb] 2, UI 

8. ( 3  x)Fx ] 7, PC 
9.  -Fb 

X Closure. .'. MQT-Necessary 



5. (a) 
1 .  ( 3 x )  F x  P 

J 2. - ( 3 x ) ( F , ~ v G x )  NC The tree closes. Hence it's 
a \ 3. (Vx)-(F.x v G x )  2. BN impossible t o  have all the 

4. Fa E1 premises true and  the  conclu- 
J 5. - ( F a v G a )  3, U1 sion false. Therefore the  

6 .  -Fa ] 5 ,  PC argument-form is valid. 
7. - C a  

X 

6. (a) (Ex) (Sx  & A x ) ,  (Ux) (Sx  3 M x )  & (Uxj [(Sx & A X )  3 -Ex] / .'. (Uxj (Mx- 3 Ex) V 
fb) Pa & La / .'. (Ex) (Lx  & Px) V (c) (UX/ [Nx 3 (Tx 3 (Ox V E x ) ] ,  (Uxj [(Nx & Hx) 3- 
(Ox V Ex)] / .'. (Ux) [Hx 3 (Nx 3 - T x ) ]  V (d) Universe = persons. (Uxj [Px (Gx V T x ) ] ,  
- T j &  - A j & P j / . ' . G j  V (e) ( E x ) ( I x & R x j , ( U x ) ( E x > R x )  / . ' . ( E x )  ( I x & E x )  H:la= 
Ra = I ,  Ea = O (f) (Ux) (Mx 3 - P x j  & (Uxj ( R x  3 - M x )  / ... (Ux) ( R x 3 P . x )  I:Ma=Pa=O, 
Ra=I (g) Universe = persons. (Ux) [(Sx & Lx) 3 W x ] ,  (Ux) (Wx >Px), (Ex) (Sx  & -Px) / .'. 
(Ex) (Sx & -Lx) V (h) Universe = persons.(Ux) ( L x I F x ) ,  (Ux) (Lx>Ex j ,  (Ex) (FxPrIx) / 
.'. (Ex) (Fx & Ix  & Ex)  1: Fa=la=I, La=Ea=O (i) Universe = persons. (Uxj [Fx 3 (Lx  Pr Wx ) ] ,  
(Ux) [ (Lx  & Wx) 3 Ex]  / .'. (Ex) (Ex & Fx) I :  Fa=La=Wa=Ea=O (j) (Ux) (Dx 3 Bx),  (Ux) 
(Bx 3 Wx) / .'. (Ux) (Dx 3 Wx) V 

Ex 12.3 
2. (a) True (b) False (c) True (d) True (e) True 

solution for (dl: / 1. - [ (Vx ) (Fx  6t p) . - . ( V x ) F x  8r p]  NF 

1 ,  PC 

3 ,  PC 

6. < /  (3 x)*-Fx / ( 3 - 7 )  5a, QN. 2b, QN 
,! ~ ,.+, pvL7 /' -(&-a &--. . !ii 4. el 

,,--. 
/' :ra & !7 ,- -.. ,% ,. 8. / dFc~ & :I ..,' \~ A?, ?ii 

.-~ ,,' 
2 ~ 

6, -, 
< L ;cs - i Li 

" 1 .  -- 5 '., pa-- \ r:c ' - . . - ' -  

! 2. j: D AGO )< , 4, X k J I  

X X X 

Pi"J ~a.lbs close. Hence the formulae are MQTequivalent. 

Ex 12-4 
2. (a) (Ex, Fx  3 p (b)  [Ex) Fx 3 (Uy) Gy (c) (Ux) Fx & (Ey) Gy (d) p 3 [(w Gx V (Eyj F4.j 

e ( E x  x 3 ( j  y (0 (Ga & Faj 3 (Ex) (Gx & Fx) (g) (Ux) (Fx 3 Gx) 3 (Fa 3 Ga) 
(h) Already in MSF (i) ((Ex) Fx & Fa) 3 ((Ux) Fx & Fa) a) ( p  & Ga) 3 [CTz) GZ V ((C~X) GX & 
(UY) 

3. Equivalent: a, c, h ,  i. Equivalent only when closed: d ,  e ,  j .  Note: closure equivalences should 
not be  used in substitution. 

4. (a) (UxJ (Fx 3 P) ib) ( U 4  (Eyl (Fx 3 G Y ~  (c) ( u x j  (Uyl (GY 3 F x j  (dl (Ux) ( U Y ~  (GY & Fxj 
(e) (Ex) (UY) (GY V Fx) (0 (Ex) (Uyl (Ew) (Uz) [(Fz 3 & (FY 3 Fxll  

Puzzle 12 The pilot is Jones. 

13. 
Answers requiring a diagram will refer to Figure i. Fi, in Section 13.2 .  and: n=S means iz is shaded; 
n = O: means an 01 in n; n-m=cI means a disjunction bar from n to  m with an cIat each point;iz-m = 

a! - 0 means a bar with a and p a t  ends n and m respectively. 



Ex 13.2 
1. (a) F I ,  F2: F=S; (b) F3, F4: 2=S; (c) F5, F6: x =2; (d) F3, F4: 3-1 -2=x; (e) F3, F4: 4 3 ;  

(f) F5, F6: I-2-6=x; (g) F5, F6: 1 -2-3=x; (h) F5, F6: 1=S; (i) F5, F6: 1=5=6=S; (j) 
F5, F6: I =2=6=S; ( k )  F3, F4: 1 -3=a, I -2=b; ( 1  ) F I ,  F2: F-F' = a-0; (m)  F I ,  F2: F-F' = 

x -- 0; ( n )  F I ,  FZ: F = x ,  F' = S; (a) F I ,  F2: F=Y F' = x. 
2.  (a) F3, F4: I=3=4=S; (b) F3, F4: 3=S, 1=S; (c) inconsistent; ( d )  F5, F6: 2-6=a, 1 -2-3-4=b; 

(e) F3, F4: 3-1-2=a--ah-b; (f) F3, F4: 2-4=a, 3-4=b; (g) inconsistent. 

Ex 13.3 
1 .  (a) F5, F6: 2=6=S, 3=4=S, V ;  (b) F3, F4: 411, 3=x, 2=x; (c) F3, F4: 3=S, V ;  (d) F5, F6: 5=6=S, 

V ;  (e) F5, F6: I ,  5=6=S, I= X ;  (f) F3, F4: I=x, V ;  (g )  F3, F4: I - 3 = ~ ,  3=S, V ;  (h) F5, F6: 
I -2=x, I=4=S, V ;  (i) F5, F6: 5-6=x, V ;  (j) F5, F6: 2-6 = X,  5=6=S, V ; (k) F5, F6: I ,  1 =2 
=S, 6=x; ( 1 )  F5, F6: I-2-5-6=x, 1=4=S, 2=6=S, V ;  (m) F3, F4: 1-3=& 1-2 = X, V ;  (n) F3, 
F4: 3=S, 2=4=S, V ;  (0) F7, F8 (J=I): 1-2-5-6=X, V. 

2 .  (a) (Ux) (Wx 3 Cx), (Ex) (Ux & Wx) / .'. (Ex) (Cx & UX),  V ; (b) (UX)  (ik 3 Px), (Ux) (Ix h. 

Jx) / .'. - (Ux) (Px 3 Jx),  I, P/J/I = F/G/H, F6,3= 7=S, 2=3=S; (c) (Ux) (Sx  3 Wx),  (Ux) ( R x  
> - Wx) / .'. (Ux)(Sx 3 " Rx) ,  V ; (d) (Ux) (Px 3 Ix),  (Ux) (Px > Mx) / .'. (Ex) (Mx & 1x1, 1, 
P/I/M = F/G/H, F6, 5=6=S, 1=5=S; (e) -(Ex) ( A x  & Sx) ,  (Ex)(Sx & Px) / .'. (Ex)(Px & -Ax),  
V; ( f) (Ux) (Ix 3 Sx) ,  (Ex) (Bx & - S x / .'. (EX)  (Bx & -Ix), V ; (g) (Ex)(Ax  & Hx),  (Ux) (Fx 
3 Hx) / ... (Ex)(Ax & Fx),  I, A/H/F = F/G/H, F6, I=x, 6=7=S; (h) (Ux)(Tx >Ex) ,  (Ux)(Ex 3 
Cx) / .'. (ojc) (Tx  3 Cx),  V ; (i) - (Ex) ( R x  & A x ) ,  (Ux) (Dx 3 R x )  / .'. -(Ex) (Dx & A X ) ,  V; 
(j) (Uxj (Lx  3 -Ex),  (Ux) (1x 3 Lx) / .'. (Ex) (Ex & -Ix) , I ,  L/E/I = F/G/N, F4, 1=2=S, 3= 7%; 
( k )  (Ux)(Rx 3 Fx),  (Ux)(Fx 3 - Bx)  / .'. (Ex)(Rx  & -Bx),  I ,  R/B/F = F/G/H, F6, 5=I=S, 
2=3 = S; ( 1 )  (Ux)(Bx > Fx), (Ux)(Hx 3 FxJ / .'. (Ex)(Bx & Hx),  I ,  B/F/H = F/G/H, F6, 5=6=S, 
6=7=S; (m) (Ex) Sx,  -(Ex) R x  / .'. (Elxj(Sx & -Rx), $I: (n) (Ux)(Sx >Bx),  (Ux)(Bx >Px) 
/ .'. (ujci (h > Sx) ,  I ,  P/S/B = F/G/H, F6, 1 =4=S, 3= 7=S; (0) (Ux) (7k > Sx) ,  -(Ex) (Wxa Sx )  
/ .'. (Ex) (Wx & - Tx) ,  1, T/S/W = F/G/H, F6, 5=6=S, 2=3=S; ( p) IV (Ex) (AX  & Ix) ,  (Ex) (AX  & - WX)  j ,.~ ,w (Ex) ( Ix  $ Wx) I, A/I/w = F/G/H, F6,  1 =2=S, 1 5 = x ,  3=x; (qj - (Ex)(Ax  & Sxj,  
(sls;)((Ax v Sx )  > Px), (Ux/((Px & TX) > A x )  / .~, (Ux)(Sx 3 (Px & --Txj), V; (r) -- (Ex)(Bx & 
.;,X), ( Y x )  (iflx 3 I?>:): (Ux) (-qx 3 Ex) / . "~  - (Ex) (Mx & Bx & Px), 17:  (s) ,- (Ex) (Ex & I x ) ~  . . 
(gx) (svy  & & ( Ex) (Tx  & I>:) / ~~~ {Zx) (Qx & -, Cx) & (Sx) (T;; ct - ..Ex) : (t) ;LTx) ((.Px & 
T;: & Ax) 2 r-s;:], (E-y)(!;;: <fC 'qx & 13~ &: Tx) 1 ~ " '  /Ex) /:% fi; Hx &: 3;~).  Td= 

1Sa4 
~ (hT;<)(>/x zz lJJ<j" { u;;) l: ,---- -2;;; / . . (UJzi (;);;< 2 *--, R X j ,  2176, y j , i / @ / - ~ = ~ ~ / ~ ; ~ q ;  1 & 5, 2 & 2 / 

, - & 2, -{:I: jb) /Ux)!Ly > CX), (LTx,!(Cx 2Px) / .'- (,Gx)(Px & Zx) FS, S/C;iP= F/G/hr, ,5 & 6; . ~. 

I & 4 / ~"~ -- 2 '/ - 6, i; (Lc) (Lix) (Dx 3 -2  Ui), (Ux) (Ax 3 DJ:) / ~.~ (Ex) ( 3 3 :  & - 3x), Ft5, 
] 3 / ~ ~ / ~ 4 ~  = xhl/G/2b", j & 2, 6 & 7 / ~"~ ,--, 3 v *-* 4, 1 ;  (d) ( ~ ~ ! / . ~ ~ x  & ,-& Fx;, ( L ~ X , I ( ~ ; ;  3 Lx) / . "~  

(&~;cJ(L~ & -.Cx), FG, R/F /L  = F/"/'C/H? -- 5 V -- 6, j & j / .. -- 6 V -' 7 7J: (e) (E:;)(Sx & 
.hTx), (Ex) (Sx & ,- Bx) j .'. (E.x) ( f ix  (2- - Bx), F6, d/i;li;l/~ = F/G/FP, -1 '\I -2, - I \/ - 5 / 
~ ' .  - 1 '\I -4, 1 ; (0 (Ux) (Mx 3 (Ox & Gx)) , (Ux) (Ox 3 Fx),  (Ux) ((Gx V -Fx) 3 Px), (Vx)  ((Px & 
Fx) 3 - Gx), (Ex) (IvIx & (Fx f Ox)) / .'. -(Ux) (Mx 3 Fx), M/o/G/F/P = F/G/H/I/J, Fax2 (LH 
= J : 1 - 1 6 ; ~ ~ = ~ ~ : 1 7 - 3 2 ) , 1 & 5 & 9 & 1 0 & 1 3 & 1 4 & 1 7 & 2 1 & 2 5 & 2 6 & 2 9 & 3 0 , 1 & 2 &  
3 & 4 & 1 7 &  1 8 & 9 & 2 0 , 1 7 & 1 8 & 1 9 & 2 0 & 2 2 & 2 3 & 2 6 & 2 7 & 2 9 & 3 0 & 3 1 & 3 2 , 6 &  
7 & 10 & 11, -5 \/-- 6 V--13 v--14 V--21 V - -22  V--29 \/--30 .", -- I \ / - -2V-13 
\/ -14 V -1 7 V -18 V -29 V -30, V; (g) R >(U;ul((Qx V D x )  >Ex) ,  -(Ux)(Qx V D x )  3 

Ax) / .'. R 3 --(Ux)(Ex 3 Ax) ,  &/D/E/A = F/G/H/I, F8, R 3 (I & 5 & 9 & 1 3  & 4 & 8 )  - 
(I  & 2 & 3 & 4 & i 3  & 14) / .'. R 3 --(2 & 3 & 14 & 1 5 ) , V ;  (h) (Ux)( (Ax& Wx&-Hx)  3 
Dx),  (Xx) (Wx & Nx) ,  (Ux) ( A x  3 Wx) / .'. (Ex) ( A x  & Dx),  A/w/D/N = F/:IG/H/I, Fa, 1 ,  -5 V - 
6 v -7 V -8, i! & 10 & I 3  & 14 / .'. - 2 V -6 v -10 V  -14, 1;  (i) ( I &  (Ex)(Tx & - 
Rx) )  3 (Ex) (Sx  & -Bx), (Ux) (Ex 3 Bx) ,  (I & (Ex) (Sx  & -Fx) / /'. -(w (Tx  3 Rx) ,  T/R/S/B/ 
F =F/G/H/I /J ,  F8x2, ( I  & ~ ( 9  & 1 0 &  1 3 &  1 4 &  2 5 & 2 6 & 2 9 & 3 0 ) )  3 - ( 2 &  3 &  1 4 & 1 5 &  
1 8 & 1 9 & 3 0 & 3 1 ) , 1  & 2 & 3 & 4 & 1 3 & 1 4 & 1 5 & 1 6 , 1 & - / 1 8 & 1 9 & 2 2 & 2 3 & 2 6 & 2 7  
& 30 & 31) / .'. - ( 9  & 10 d 13  & 14 & 25 & 26 & 29 & 30) ,  1: (i) (Ux)(Ex 3 I x )  V -(Ex)(Px 
& R x )  / .'. (Ex) /Px & Ex) 3 (Ex) (Ex & ( ix  V -Rx)) ,  E/I/P/R = F / G / m  F8, (9  & I0  & 1 3  & 14) 
V ( 6 &  7 &  IO& 11) / .'. - ( 2 &  6 &  1 0 &  14) >-(I & 2 & 5 &  6& 1 3 &  1 4 j , V .  

h z z k  13 In clockwise order: Henry, Anne, Fred, Beth, Cath, George. 



1.  (a) 2 (b) 2 (c) 2 (d) 3 ie) 4 
2. (a) Active. (b) Passive. Tlie ball struck Mike. (cj Passive. The umpire declared Dennis out .  

(d) .4ciive. (e) Passive. Given any person. sorneone wiil respect that person. 
3.  (a) I active. (b) 0 active (c) I passive (d) E over A active (e) A over 1 passive {f) I over A 

passive (g )  1 over A passive (h) A by I passive over A active (i) E by 1 active over A active 
a) A by E active active. 

Ex 14.2 
1.  Rules used: (a) 8 2 .  B2. R>. RU (b) B 2 ,  RE, B1, R> (c) See solution below. (d) B2, RU, RE,  

Rk .R-- ,  B 2 . B 2 , R & , R m ,  R E , R U , R >  ( e ) H l , B 2 , R E , K > . B 2 , R m , R V , R U .  
Solution t o  (c): 

I .  F2xy B 2 
2. ( 3y )F2xy  1: R.3 
3 .  (3x) (3 .v)F2xj~  2 , R 3  
4. G1a 13 2 
5 .  N'b B 2 
6. (G1a 3 M'b) 4,  5 ,  R 3 

19. (Vx)(G1a a M1b) 6 ,RV 
8.  ( ( 3 x ) ( 3 y ) F 2 x y  = (Vx)(G1a 3 H'b))  3. 7, W - 

Ex 14.3 
1.  (a) (i) (Pa > aRaJ & (Pb 3 hRa): 0 (ii) Pa 3 aRa; 1 (b) (i) (Pa -aRa) & (Pb 3 aRh) : I  

(ii) Pa > - aRa: I (c) (i) [(Pa & Ca) & aRa] \/ [(Pb & Gbj & bRa]  : 0 (ii) (Pa & Go) & aRa :O 
(d) (ij [(La & G a )  > aRa] & / (Eb & GbJ > bRal  : I (ii) (La & CaJ aRa : O (e) (i) (aRa \i 
aRb) & (bRa V bRbJ : 1 (ii) aiia : O (0 (i) ( - aRa & - hiia) V / - aRb & -bRb) : 0 (ii) 
- a R a :  I (g) ( i j  !Pa >/(PO& C a &  - a R a ) ? / ( P b  & Gb & -aRbj) /  & [ P b > / ( A U c : & G a h F w  
bRa) !l/ (Pb & Cb & - bRaJ V & Gb h -5Rb)):: 6 (ii) ;3ci I), (Pa & Cri & -doRr!) : 1 
(11)  (i) d; (Gu >OR&) $ jGb 3 oRb))  >aRa] & "Lh & $70 > bA;g/ $ (GS I), hZA) )  3 ijRc_' 
9 < i i ) ( L n $  ( c c > n R r ) ) 3 : . R a : ]  ti) (i)(gRaVI;l?g) 3 3  : Q { : i i ) g l j 3 i ; : ]  

, ( i :  i i , -?/aEa '*,:hXa,,; 3- Ir; >!sRE YbR,+,l]. :ii> !j 2gz?(t : G 

.x y ., L$, LL 
L ~ >  - .. 

L .. 
! , (a) C 2F9.i.29 16 2.1" ((-1,. :$l. Ne;:ej~:&;e~; b. ;, e, " zg, ; 
2, ( c )  is not a QT-Necessity, 

' f < 1 ..-~~ 3 ,  ( m ?  .- J / ) ,  , ~ , ~ ; ~ ~ ~ ~ ~ ~ x ~ ~ 3 ~ ~ ' ~ ~ ~ ' ~ ' ~ 1 ~ ~ ~ J ~ , ~ ~ c 2 , J ~ ~ x ~ ~ ( \ ~ y ) ~ ~ , ~ c ) ~ ~ ~ ~ i ~ '  L\ - - I \  3 ? / ~  , -1 
J 2. (3 x)('s/y)xAy 1 

3.  - [ j V ~ ) ( \ d y ) ~ ~ ~ ~ ~ x  3 y3xj 2 (Vy)(; x)xB.yj 
b a :  xy ii\ 4, ( V ~ p : ) ( b ' y ) ~ x  3 ykix) i 

J 5. -(Vyji)(3 x)xBy ) 
J 6. j s~) (vx 'x ) -xB.~  
h \ 7 .  (VYJQAY 
a \ 8.  (Vx) -xB b 

9.  aAb 
2 0. -aBb 

X X 

The tree closes. Therefore the formula is QT-necessary 

4 .  Sample counterexamples. (a) aRa = hRb = I ,  aRh  = bRa = O (b j  bRa = 0, rest = I 
(c) aRa = 1, rest = O ( d )  aRa = 1, rest = 0 (e) Fa = aRb = 1,  rest = O 

5. QTSCC: a. c. d .  (a) Valid (c) Invalid (d) I~lvalid. 
6 .  (b) Valid (e) Invalid 



7. (0 
abc : xyz \ 1 

2. 
abc : xyz \ 3.  

J 4. 
5 .  

J 6. 
7 .  

4 8. 

(Vx)(Vy)(Vz)[xGy & xGz . 2. Bxyz] 
(3 x)[lVx & ( 3  y ) ( 3  z)(xGy & xGz)] 

( V x )  (Vj])(Vz) (Bxyz  2 - Nx) 
Na & ( 3 ~ 1 ) ( 3 z ) ( a G y  & aGz)  

Wa 
( 3  y ) ( 3  z)(aG.v & aGz) 

a 6 6  QL aGc 
aGb & a 6 c  .2. Babc 

9.  -(aGb & aGc) Babe 

X X 

Ciosure. .'. Valid 

8.  Counterexamples: a ,  b ,  d 

9 .  (a) aHa = I, rest = 0 (b) aRa = I ,  rest = 0 (cj aRb = I ,  rest = 0 

(dl aRu = bRb = aSu = bSb = I ,  rest = 0 (e) p = Fb = bRa = 0 ,  rest = I 

Ex. 14.5 
Note: for ease of typesetting we use U for v and E for 3. 

5. (a) -eLm $ eIm {b) -. (Exj(Px d eLx) 3 -eLe (c)(Ux)[Px & (Uy/(Py 3 xLy) . 3 .  Cx] 
i d )  (Ex)(Px & Rxme) >ele or (C/i)/(Px & Rxme) 3 e L e i  ie) ukm d L-La & Rame 

6 .  (a) aPb (b) (Ex)(Hx $ -- xPb) (c) Ma 6 aPb (d) (Ex)(Mx & fi $. aPx) 
(e) H5 & -- MS if) Hb & -- Mb & nPb (g) (Ex) xPb (h) (Ex)/c-?x & xi35/ 
(i j ( ~ x ) ( E y j  (x@ & yPb) (j) (Ex)(Ey) ( - IWX & X-iy & yPb) !k) (Ux) (Hx 3 (Ey) yPx) 
( I )  -. (Ux)/(Eyl xPy >.Mx] (m) ( U x ~ i M x  6 (Ey) xPy . 3 .  I W ~ ]  in) -- (Ex)(Hx 6 XPX) 

7 .  (a)Pb (b )  (Uxj(Px 3 H x j  (c)  PC >Pk id) (ExjjPx & ( U ~ I ) ( B ~ ,  2 y L x ) j  
(e) (rJxliPx 3 (Ejii(Py & x t y ) ]  (0 same as (e) (g) (Ex)(iWx 6 xLx) 
(h) (Ex) Px 3 Pb !i) (Ux)[(Lx V Px) 2 (Ix & Sx)j (j) '-(Ex) Mx (k) (Ex)(Px & fi & -Lx) 
(1) (Uxj(!~Jx > Lx) (m) For this and the qexl translation, Lx = x  is a czse of iaziness. (Ux)(Sx 2 - Lx) (n) (Ex)(Lx & Dx) (0) (Uz)(Sx >Mx) ig) (Ux)(i"x 2 Gxj (q) (LrX)(Cx 6 i'ix & Sx & 
Bx . 3 ,  Dx) 

8. (a) Net everything is a sport or mental activity. (b) Each person isgood a i  some sport. (c) Not 
everyone is good a? all mental activities. (d) Everyone is good at  sornethifig which is neither a 
sport nor a menta! activity. 



9.  (a) ?.lot a!! adill! peciple are ini.le. (b) ?,very man is loved by soi~ie momd:? or atlier. (c) Sofile 
adui: Ferso:-? {o.~es s o n s  aiui t  pi-rszn biri s qo: !oved by the latter. (dl There i, a :r,a!s -,~rhc io\ies 
himseli' but  Inires i ? r ~  ~ema:e';. (c) l f  2 aduii ;;eopie art: either rr:a?e or fe11i:il-i but i;ct both, then ;lo 
r:dui; person is boil1 male ;r:~i:. !e:-i,a?i. 

10. (a) A;; pojitiv- ;;j imb-p; are rcsi numbers. (b) There is a real numbe: which is -1-iei:hsr po?iiive nor 
~ega t ive ,  (c) GL'ven acy tiiJo real numbers, either the first is greaier than the secozd G; the second 
:s greater tha:; the Arsi  ox they arz equal. id) Given any p?siiive n u m b e ~ ,  &here is  nc negative 
number thas  it. (el h . 3 ~  ;ea: !lumber greeter than a ~ o s i l j v e  :ii:rni;er is itself ~ ~ r ~ ~ v z .  

Z,x 14.6 
Lqde: -*,7 = Valid; 1; = T<\raji&, 
1. (a) 'v (b) "$ (5 )  "; ((d) V (P) (0 -vi (g) T/, AS i: stands, the argnxlieiit has E cou~itermodei, 

but  this is an imposcibie ;~.odel (and hence no; a cour!lerexar?,gic: since ail vzcant allotments are 
real estate (this Furthil cofidition may be added as a taci'. prernisej. (!?) V (9 ! (j> V (k) I 
(i) 8 (m) V (n) 1 (0) The symbolized argii.nec: is Valid, but  it  is debatable wi~~jil'ier Izze cr*g'- ;rial 

English argument is valid : it depends on whether the denial of thc conciusioi;'~ anraceden: implies 
:ha.; :he conciusicr 1.. t--.- (p) TtJ (6;) V (I) V { a s s ~ n ~ i ~ g  that Mr. Brown is r, person; i s )  V 

2 (a) I (h\ -, V (c) I (dl (e) v (0 No. the argumeiii is icyalid.. (g) s;i (h) 1,' (ij '\I' (j) Ti 
5 (*,. 1 8 )  k - (:m) l (n) \r 

Sux*zpEe defclls: 

Aa 
akm 

.". Valid 
Puzzle 14 The destroyer is in status III in sector ,451. The tanker is in status I in sector A52. The 

cruiser is in status II in sector A54. The scout is in status IV in sector ,453. 



Ex 15.1 
1 .  (a) 1.P. 2. I D N .  3 .2  QN, 4.3 Debl, 5.4 M I ;  (b) 1.P, 2.1 DN, 3.2 QN, 4.3 $11, 5.4 DeM,6.5 DN, 

7.6 QN, etc.; (c) 1. P. 2.1 Contra.; (d) 1.P, 2.1 Contra, 3.2 DN: (e) 1.P, 2.1 DN, 3.2 QN. 

Ex 15.2 
1.  Line numbers will not be used. (a) P,  UI, CG: (b) P, P. UI. AA. Conj. FG: (c) P, P,  UI, Simp, 

AA, Simp. Conj, EG; (d) P, P, QN. UI, Simp, Simp. Dehl, DN, DD, Conj. EG; (e) P,  P, Simp, 
Simp, UI. DC, Conj, EG; (0 P, U1 wrt a ,  UI wrt b. EG, EG; (g) P,  UI wrt a ,  UI ~ v r t  a ,  EG; (11) P, 
UI. EG; (i) P, P, P,  EG (2), ..., DD, QN, UI, ... ; a) P. UI. Av. AA. EG, CP. 

Ex 15.3 
1.  (a) Correct; (b) Incorrect, every a + y ;  (c) Incorrect, a in P ;  (d) Incorrect, a in A ;  (e) Incorrect, 

a in P. 
2. Hints: (a) QN. UI, .... ChA, UG; (b) UI ,  MI, Add, DeM, ... ; (d) Ap; (e) Ap; (0 A(Ex) Fx;  

(g) UIx, z wrt a :  (h) UIx2 u r t  a ;  (I) Add. MI 

Ex 15.4 
1.  (a) Correct: (b) Incorrect, a in 2;  (c) Incorrect, b in 2 ;  (d )  Correct; (e) incorrect, a in  1 .  
2. Hint: (a) A(Ux)Fs before EI;  (b) etc over to you. 

Puzzle 15 1st: Corporal, arms. RAAF; 2nd:  Army S, Bldg St, Army; 3rd: RAAFS, fuel, Navy; 
4th:  priv, food, Civ - so third is bomb truck. 
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