Articles by alphabetic order
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 Ā Ī Ñ Ś Ū Ö Ō
1 2 3 4 5 6 7 8 9 0


Difference between revisions of "A history of Zero"

From Tibetan Buddhist Encyclopedia
Jump to navigation Jump to search
 
Line 5: Line 5:
  
 
<poem>
 
<poem>
  One of the commonest questions which the readers of this archive ask is: Who discovered zero? Why then have we not written an article on zero as one of the first in the archive? The [[reason]] is basically because of the difficulty of answering the question in a satisfactory [[form]]. If someone had come up with the {{Wiki|concept}} of zero which everyone then saw as a brilliant innovation to enter [[mathematics]] from that time on, the question would have a satisfactory answer even if we did not know which genius invented it. The historical record, however, shows quite a different [[path]] towards the {{Wiki|concept}}. Zero makes shadowy [[appearances]] only to vanish again almost as if {{Wiki|mathematicians}} were searching for it yet did not recognise its fundamental significance even when they saw it.
+
  One of the commonest questions which the readers of this archive ask is: Who discovered [[zero]]? Why then have we not written an article on [[zero]] as one of the first in the archive? The [[reason]] is basically because of the difficulty of answering the question in a satisfactory [[form]]. If someone had come up with the {{Wiki|concept}} of [[zero]] which everyone then saw as a brilliant innovation to enter [[mathematics]] from that time on, the question would have a satisfactory answer even if we did not know which genius invented it. The historical record, however, shows quite a different [[path]] towards the {{Wiki|concept}}. [[Zero]] makes shadowy [[appearances]] only to vanish again almost as if {{Wiki|mathematicians}} were searching for it yet did not recognise its fundamental significance even when they saw it.
  
The first thing to say about zero is that there are two uses of zero which are both extremely important but are somewhat different. One use is as an [[empty]] place indicator in our place-value number system. Hence in a number like 2106 the zero is used so that the positions of the 2 and 1 are correct. Clearly 216 means something quite different. The second use of zero is as a number itself in the [[form]] we use it as 0. There are also different aspects of zero within these two uses, namely the {{Wiki|concept}}, the notation, and the [[name]]. (Our [[name]] "zero" derives ultimately from the {{Wiki|Arabic}} sifr which also gives us the [[word]] "cipher".)
+
The first thing to say about [[zero]] is that there are two uses of [[zero]] which are both extremely important but are somewhat different. One use is as an [[empty]] place indicator in our place-value number system. Hence in a number like 2106 the [[zero]] is used so that the positions of the 2 and 1 are correct. Clearly 216 means something quite different. The second use of [[zero]] is as a number itself in the [[form]] we use it as 0. There are also different aspects of [[zero]] within these two uses, namely the {{Wiki|concept}}, the notation, and the [[name]]. (Our [[name]] "[[zero]]" derives ultimately from the {{Wiki|Arabic}} [[sifr]] which also gives us the [[word]] "cipher".)
  
Neither of the above uses has an easily described history. It just did not happen that someone invented the [[ideas]], and then everyone started to use them. Also it is fair to say that the number zero is far from an intuitive {{Wiki|concept}}. {{Wiki|Mathematical}} problems started as 'real' problems rather than abstract problems. Numbers in early historical times were [[thought]] of much more concretely than the abstract [[Wikipedia:concept|concepts]] which are our numbers today. There are giant [[mental]] leaps from 5 [[horses]] to 5 "things" and then to the abstract [[idea]] of "five". If [[ancient]] peoples solved a problem about how many [[horses]] a farmer needed then the problem was not going to have 0 or -23 as an answer.
+
Neither of the above uses has an easily described history. It just did not happen that someone invented the [[ideas]], and then everyone started to use them. Also it is fair to say that the number [[zero]] is far from an intuitive {{Wiki|concept}}. {{Wiki|Mathematical}} problems started as 'real' problems rather than abstract problems. Numbers in early historical times were [[thought]] of much more concretely than the abstract [[Wikipedia:concept|concepts]] which are our numbers today. There are giant [[mental]] leaps from 5 [[horses]] to 5 "things" and then to the abstract [[idea]] of "five". If [[ancient]] peoples solved a problem about how many [[horses]] a farmer needed then the problem was not going to have 0 or -23 as an answer.
  
One might think that once a place-value number system came into [[existence]] then the 0 as an [[empty]] place indicator is a necessary [[idea]], yet the Babylonians had a place-value number system without this feature for over 1000 years. Moreover there is absolutely no {{Wiki|evidence}} that the Babylonians felt that there was any problem with the [[ambiguity]] which existed. Remarkably, original texts survive from the {{Wiki|era}} of {{Wiki|Babylonian}} [[mathematics]]. The Babylonians wrote on tablets of unbaked clay, using cuneiform [[writing]]. The [[symbols]] were pressed into soft clay tablets with the slanted edge of a stylus and so had a wedge-shaped [[appearance]] (and hence the [[name]] cuneiform). Many tablets from around 1700 BC survive and we can read the original texts. Of course their notation for numbers was quite different from ours (and not based on 10 but on 60) but to translate into our notation they would not distinguish between 2106 and 216 (the context would have to show which was intended). It was not until around 400 BC that the Babylonians put two wedge [[symbols]] into the place where we would put zero to indicate which was meant, 216 or 21 '' 6.
+
One might think that once a place-value number system came into [[existence]] then the 0 as an [[empty]] place indicator is a necessary [[idea]], yet the Babylonians had a place-value number system without this feature for over 1000 years. Moreover there is absolutely no {{Wiki|evidence}} that the Babylonians felt that there was any problem with the [[ambiguity]] which existed. Remarkably, original texts survive from the {{Wiki|era}} of {{Wiki|Babylonian}} [[mathematics]]. The [[Babylonians]] wrote on tablets of unbaked clay, using cuneiform [[writing]]. The [[symbols]] were pressed into soft clay tablets with the slanted edge of a stylus and so had a wedge-shaped [[appearance]] (and hence the [[name]] cuneiform). Many tablets from around 1700 BC survive and we can read the original texts. Of course their notation for numbers was quite different from ours (and not based on 10 but on 60) but to translate into our notation they would not distinguish between 2106 and 216 (the context would have to show which was intended). It was not until around 400 BC that the Babylonians put two wedge [[symbols]] into the place where we would put [[zero]] to indicate which was meant, 216 or 21 '' 6.
  
The two wedges were not the only notation used, however, and on a tablet found at Kish, an [[ancient]] [[Mesopotamian]] city located [[east]] of {{Wiki|Babylon}} in what is today south-central {{Wiki|Iraq}}, a different notation is used. This tablet, [[thought]] to date from around 700 BC, uses three hooks to denote an [[empty]] place in the positional notation. Other tablets dated from around the same time use a single hook for an [[empty]] place. There is one common feature to this use of different marks to denote an [[empty]] position. This is the fact that it never occured at the end of the digits but always between two digits. So although we find 21 '' 6 we never find 216 ''. One has to assume that the older [[feeling]] that the context was sufficient to indicate which was intended still applied in these cases.
+
The two wedges were not the only notation used, however, and on a tablet found at [[Kish]], an [[ancient]] [[Mesopotamian]] city located [[east]] of {{Wiki|Babylon}} in what is today south-central {{Wiki|Iraq}}, a different notation is used. This tablet, [[thought]] to date from around 700 BC, uses three hooks to denote an [[empty]] place in the positional notation. Other tablets dated from around the same time use a single hook for an [[empty]] place. There is one common feature to this use of different marks to denote an [[empty]] position. This is the fact that it never occurred at the end of the digits but always between two digits. So although we find 21 '' 6 we never find 216 ''. One has to assume that the older [[feeling]] that the context was sufficient to indicate which was intended still applied in these cases.
  
 
If this reference to context appears silly then it is worth noting that we still use context to interpret numbers today. If I take a bus to a nearby town and ask what the fare is then I know that the answer "It's three fifty" means three pounds fifty pence. Yet if the same answer is given to the question about the cost of a flight from Edinburgh to {{Wiki|New York}} then I know that three hundred and fifty pounds is what is intended.
 
If this reference to context appears silly then it is worth noting that we still use context to interpret numbers today. If I take a bus to a nearby town and ask what the fare is then I know that the answer "It's three fifty" means three pounds fifty pence. Yet if the same answer is given to the question about the cost of a flight from Edinburgh to {{Wiki|New York}} then I know that three hundred and fifty pounds is what is intended.
  
We can see from this that the early use of zero to denote an [[empty]] place is not really the use of zero as a number at all, merely the use of some type of punctuation mark so that the numbers had the correct [[interpretation]].
+
We can see from this that the early use of [[zero]] to denote an [[empty]] place is not really the use of [[zero]] as a number at all, merely the use of some type of punctuation mark so that the numbers had the correct [[interpretation]].
  
Now the {{Wiki|ancient Greeks}} began their contributions to [[mathematics]] around the time that zero as an [[empty]] place indicator was coming into use in {{Wiki|Babylonian}} [[mathematics]]. The [[Greeks]] however did not adopt a positional number system. It is worth [[thinking]] just how significant this fact is. How could the brilliant {{Wiki|mathematical}} advances of the [[Greeks]] not see them adopt a number system with all the advantages that the {{Wiki|Babylonian}} place-value system possessed? The real answer to this question is more {{Wiki|subtle}} than the simple answer that we are about to give, but basically the {{Wiki|Greek}} {{Wiki|mathematical}} achievements were based on geometry. Although [[Euclid's]] [[Elements]] contains a [[book]] on number {{Wiki|theory}}, it is based on geometry. In other words {{Wiki|Greek}} {{Wiki|mathematicians}} did not need to [[name]] their numbers since they worked with numbers as lengths of lines. Numbers which required to be named for records were used by {{Wiki|merchants}}, not {{Wiki|mathematicians}}, and hence no clever notation was needed.
+
Now the {{Wiki|ancient Greeks}} began their contributions to [[mathematics]] around the time that [[zero]] as an [[empty]] place indicator was coming into use in {{Wiki|Babylonian}} [[mathematics]]. The [[Greeks]] however did not adopt a positional number system. It is worth [[thinking]] just how significant this fact is. How could the brilliant {{Wiki|mathematical}} advances of the [[Greeks]] not see them adopt a number system with all the advantages that the {{Wiki|Babylonian}} place-value system possessed? The real answer to this question is more {{Wiki|subtle}} than the simple answer that we are about to give, but basically the {{Wiki|Greek}} {{Wiki|mathematical}} achievements were based on geometry. Although [[Euclid's]] [[Elements]] contains a [[book]] on number {{Wiki|theory}}, it is based on geometry. In other words {{Wiki|Greek}} {{Wiki|mathematicians}} did not need to [[name]] their numbers since they worked with numbers as lengths of lines. Numbers which required to be named for records were used by {{Wiki|merchants}}, not {{Wiki|mathematicians}}, and hence no clever notation was needed.
  
Now there were exceptions to what we have just stated. The exceptions were the {{Wiki|mathematicians}} who were involved in recording astronomical {{Wiki|data}}. Here we find the first use of the [[symbol]] which we recognise today as the notation for zero, for {{Wiki|Greek}} astronomers began to use the [[symbol]] O. There are many theories why this particular notation was used. Some {{Wiki|historians}} favour the explanation that it is omicron, the first [[letter]] of the {{Wiki|Greek}} [[word]] for nothing namely "ouden". Neugebauer, however, dismisses this explanation since the [[Greeks]] already used omicron as a number - it represented 70 (the {{Wiki|Greek}} number system was based on their [[alphabet]]). Other explanations [[offered]] include the fact that it stands for "obol", a coin of almost no value, and that it arises when counters were used for counting on a sand board. The suggestion here is that when a counter was removed to leave an [[empty]] column it left a {{Wiki|depression}} in the sand which looked like O.
+
Now there were exceptions to what we have just stated. The exceptions were the {{Wiki|mathematicians}} who were involved in recording astronomical {{Wiki|data}}. Here we find the first use of the [[symbol]] which we recognize today as the notation for [[zero]], for {{Wiki|Greek}} [[astronomers]] began to use the [[symbol]] O. There are many theories why this particular notation was used. Some {{Wiki|historians}} favor the explanation that it is omicron, the first [[letter]] of the {{Wiki|Greek}} [[word]] for nothing namely "ouden". [[Neugebauer]], however, dismisses this explanation since the [[Greeks]] already used omicron as a number - it represented 70 (the {{Wiki|Greek}} number system was based on their [[alphabet]]). Other explanations [[offered]] include the fact that it stands for "obol", a coin of almost no value, and that it arises when counters were used for counting on a sand board. The suggestion here is that when a counter was removed to leave an [[empty]] column it left a {{Wiki|depression}} in the sand which looked like O.
  
{{Wiki|Ptolemy}} in the Almagest written around 130 AD uses the {{Wiki|Babylonian}} sexagesimal system together with the [[empty]] place holder O. By this time {{Wiki|Ptolemy}} is using the [[symbol]] both between digits and at the end of a number and one might be tempted to believe that at least zero as an [[empty]] place holder had firmly arrived. This, however, is far from what happened. Only a few [[exceptional]] astronomers used the notation and it would fall out of use several more times before finally establishing itself. The [[idea]] of the zero place (certainly not [[thought]] of as a number by {{Wiki|Ptolemy}} who still considered it as a sort of punctuation mark) makes its next [[appearance]] in [[Indian]] [[mathematics]].
+
{{Wiki|Ptolemy}} in the [[Almagest]] written around 130 AD uses the {{Wiki|Babylonian}} [[sexagesimal]] system together with the [[empty]] place holder O. By this time {{Wiki|Ptolemy}} is using the [[symbol]] both between digits and at the end of a number and one might be tempted to believe that at least [[zero]] as an [[empty]] place holder had firmly arrived. This, however, is far from what happened. Only a few [[exceptional]] astronomers used the notation and it would fall out of use several more times before finally establishing itself. The [[idea]] of the [[zero]] place (certainly not [[thought]] of as a number by {{Wiki|Ptolemy}} who still considered it as a sort of punctuation mark) makes its next [[appearance]] in [[Indian]] [[mathematics]].
  
The scene now moves to [[India]] where it is fair to say the numerals and number system was born which have evolved into the highly sophisticated ones we use today. Of course that is not to say that the [[Indian]] system did not owe something to earlier systems and many {{Wiki|historians}} of [[mathematics]] believe that the [[Indian]] use of zero evolved from its use by {{Wiki|Greek}} astronomers. As well as some {{Wiki|historians}} who seem to want to play down the contribution of the {{Wiki|Indians}} in a most unreasonable way, there are also those who make claims about the [[Indian]] invention of zero which seem to go far too far. For example [[Mukherjee]] in [6] claims:-
+
The scene now moves to [[India]] where it is fair to say the numerals and number system was born which have evolved into the highly sophisticated ones we use today. Of course that is not to say that the [[Indian]] system did not owe something to earlier systems and many {{Wiki|historians}} of [[mathematics]] believe that the [[Indian]] use of [[zero]] evolved from its use by {{Wiki|Greek}} astronomers. As well as some {{Wiki|historians}} who seem to want to play down the contribution of the {{Wiki|Indians}} in a most unreasonable way, there are also those who make claims about the [[Indian]] invention of [[zero]] which seem to go far too far. For example [[Mukherjee]] in [6] claims:-
  
     ... the {{Wiki|mathematical}} {{Wiki|conception}} of zero ... was also {{Wiki|present}} in the [[spiritual]] [[form]] from 17 000 years back in [[India]].  
+
     ... the {{Wiki|mathematical}} {{Wiki|conception}} of [[zero]] ... was also {{Wiki|present}} in the [[spiritual]] [[form]] from 17 000 years back in [[India]].  
  
What is certain is that by around 650AD the use of zero as a number came into [[Indian]] [[mathematics]]. The {{Wiki|Indians}} also used a place-value system and zero was used to denote an [[empty]] place. In fact there is {{Wiki|evidence}} of an [[empty]] place holder in positional numbers from as early as 200AD in [[India]] but some {{Wiki|historians}} dismiss these as later forgeries. Let us examine this [[latter]] use first since it continues the [[development]] described above.
+
What is certain is that by around 650AD the use of [[zero]] as a number came into [[Indian]] [[mathematics]]. The {{Wiki|Indians}} also used a place-value system and [[zero]] was used to denote an [[empty]] place. In fact there is {{Wiki|evidence}} of an [[empty]] place holder in positional numbers from as early as 200AD in [[India]] but some {{Wiki|historians}} dismiss these as later forgeries. Let us examine this [[latter]] use first since it continues the [[development]] described above.
  
In around 500AD [[Aryabhata]] devised a number system which has no zero yet was a positional system. He used the [[word]] "kha" for position and it would be used later as the [[name]] for zero. There is {{Wiki|evidence}} that a dot had been used in earlier [[Indian]] [[manuscripts]] to denote an [[empty]] place in positional notation. It is [[interesting]] that the same documents sometimes also used a dot to denote an unknown where we might use x. Later [[Indian]] {{Wiki|mathematicians}} had names for zero in positional numbers yet had no [[symbol]] for it. The first record of the [[Indian]] use of zero which is dated and agreed by all to be genuine was written in 876.
+
In around 500AD [[Aryabhata]] devised a number system which has no [[zero]] yet was a positional system. He used the [[word]] "kha" for position and it would be used later as the [[name]] for zero. There is {{Wiki|evidence}} that a dot had been used in earlier [[Indian]] [[manuscripts]] to denote an [[empty]] place in positional notation. It is [[interesting]] that the same documents sometimes also used a dot to denote an unknown where we might use x. Later [[Indian]] {{Wiki|mathematicians}} had names for zero in positional numbers yet had no [[symbol]] for it. The first record of the [[Indian]] use of zero which is dated and agreed by all to be genuine was written in 876.
  
 
We have an inscription on a stone tablet which contains a date which translates to 876. The inscription concerns the town of Gwalior, 400 km [[south]] of {{Wiki|Delhi}}, where they planted a [[garden]] 187 by 270 [[hastas]] which would produce enough [[flowers]] to allow 50 garlands per day to be given to the local [[temple]]. Both of the numbers 270 and 50 are denoted almost as they appear today although the 0 is smaller and slightly raised.
 
We have an inscription on a stone tablet which contains a date which translates to 876. The inscription concerns the town of Gwalior, 400 km [[south]] of {{Wiki|Delhi}}, where they planted a [[garden]] 187 by 270 [[hastas]] which would produce enough [[flowers]] to allow 50 garlands per day to be given to the local [[temple]]. Both of the numbers 270 and 50 are denoted almost as they appear today although the 0 is smaller and slightly raised.
Line 51: Line 51:
 
Really [[Brahmagupta]] is saying very little when he suggests that n divided by zero is n/0. Clearly he is struggling here. He is certainly wrong when he then claims that zero divided by zero is zero. However it is a brilliant attempt from the first [[person]] that we know who tried to extend {{Wiki|arithmetic}} to negative numbers and zero.
 
Really [[Brahmagupta]] is saying very little when he suggests that n divided by zero is n/0. Clearly he is struggling here. He is certainly wrong when he then claims that zero divided by zero is zero. However it is a brilliant attempt from the first [[person]] that we know who tried to extend {{Wiki|arithmetic}} to negative numbers and zero.
  
In 830, around 200 years after [[Brahmagupta]] wrote his masterpiece, [[Wikipedia:Mahāvīra|Mahavira]] wrote Ganita Sara [[Samgraha]] which was designed as an updating of Brahmagupta's [[book]]. He correctly states that:-
+
In 830, around 200 years after [[Brahmagupta]] wrote his masterpiece, [[Wikipedia:Mahāvīra|Mahavira]] wrote [[Ganita Sara Samgraha]] which was designed as an updating of [[Brahmagupta's]] [[book]]. He correctly states that:-
  
 
     ... a number multiplied by zero is zero, and a number remains the same when zero is subtracted from it.  
 
     ... a number multiplied by zero is zero, and a number remains the same when zero is subtracted from it.  
Line 67: Line 67:
 
So [[Bhaskara]] tried to solve the problem by [[writing]] n/0 = ∞. At first [[sight]] we might be tempted to believe that [[Bhaskara]] has it correct, but of course he does not. If this were true then 0 times ∞ must be {{Wiki|equal}} to every number n, so all numbers are {{Wiki|equal}}. The [[Indian]] {{Wiki|mathematicians}} could not bring themselves to the point of admitting that one could not divide by zero. [[Bhaskara]] did correctly [[state]] other properties of zero, however, such as 02 = 0, and √0 = 0.
 
So [[Bhaskara]] tried to solve the problem by [[writing]] n/0 = ∞. At first [[sight]] we might be tempted to believe that [[Bhaskara]] has it correct, but of course he does not. If this were true then 0 times ∞ must be {{Wiki|equal}} to every number n, so all numbers are {{Wiki|equal}}. The [[Indian]] {{Wiki|mathematicians}} could not bring themselves to the point of admitting that one could not divide by zero. [[Bhaskara]] did correctly [[state]] other properties of zero, however, such as 02 = 0, and √0 = 0.
  
Perhaps we should note at this point that there was another {{Wiki|civilisation}} which developed a place-value number system with a zero. This was the [[Maya]] [[people]] who lived in central [[America]], occupying the area which today is southern {{Wiki|Mexico}}, Guatemala, and northern Belize. This was an old {{Wiki|civilisation}} but flourished particularly between 250 and 900. We know that by 665 they used a place-value number system to base 20 with a [[symbol]] for zero. However their use of zero goes back further than this and was in use before they introduced the place-valued number system. This is a remarkable [[achievement]] but sadly did not influence other peoples.
+
Perhaps we should note at this point that there was another {{Wiki|civilisation}} which developed a place-value number system with a zero. This was the [[Maya]] [[people]] who lived in central [[America]], occupying the area which today is southern {{Wiki|Mexico}}, [[Guatemala]], and northern Belize. This was an old {{Wiki|civilisation}} but flourished particularly between 250 and 900. We know that by 665 they used a place-value number system to base 20 with a [[symbol]] for zero. However their use of zero goes back further than this and was in use before they introduced the place-valued number system. This is a remarkable [[achievement]] but sadly did not influence other peoples.
  
 
You can see a separate article about Mayan [[mathematics]].
 
You can see a separate article about Mayan [[mathematics]].
  
The brilliant work of the [[Indian]] {{Wiki|mathematicians}} was transmitted to the [[Islamic]] and {{Wiki|Arabic}} {{Wiki|mathematicians}} further [[west]]. It came at an early stage for al-Khwarizmi wrote Al'Khwarizmi on the [[Hindu]] [[Art]] of Reckoning which describes the [[Indian]] place-value system of numerals based on 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0. This work was the first in what is now {{Wiki|Iraq}} to use zero as a place holder in positional base notation. Ibn Ezra, in the 12th century, wrote [[three treatises]] on numbers which helped to bring the [[Indian]] [[symbols]] and [[ideas]] of decimal fractions to the [[attention]] of some of the learned [[people]] in {{Wiki|Europe}}. The [[Book]] of the Number describes the decimal system for integers with place values from left to right. In this work ibn Ezra uses zero which he calls galgal (meaning [[wheel]] or circle). Slightly later in the 12th century al-Samawal was [[writing]]:-
+
The brilliant work of the [[Indian]] {{Wiki|mathematicians}} was transmitted to the [[Islamic]] and {{Wiki|Arabic}} {{Wiki|mathematicians}} further [[west]]. It came at an early stage for [[al-Khwarizmi]] wrote [[Al'Khwarizmi]] on the [[Hindu Art]] of Reckoning which describes the [[Indian]] place-value system of numerals based on 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0. This work was the first in what is now {{Wiki|Iraq}} to use zero as a place holder in positional base notation. [[Ibn Ezra]], in the 12th century, wrote [[three treatises]] on numbers which helped to bring the [[Indian]] [[symbols]] and [[ideas]] of decimal fractions to the [[attention]] of some of the learned [[people]] in {{Wiki|Europe}}. The [[Book]] of the Number describes the decimal system for integers with place values from left to right. In this work [[ibn Ezra]] uses zero which he calls [[galgal]] (meaning [[wheel]] or circle). Slightly later in the 12th century [[al-Samawal]] was [[writing]]:-
  
 
     If we subtract a positive number from zero the same negative number remains. ... if we subtract a negative number from zero the same positive number remains.  
 
     If we subtract a positive number from zero the same negative number remains. ... if we subtract a negative number from zero the same positive number remains.  
  
The [[Indian]] [[ideas]] spread [[east]] to [[China]] as well as [[west]] to the [[Islamic]] countries. In 1247 the {{Wiki|Chinese}} {{Wiki|mathematician}} [[Ch'in]] Chiu-Shao wrote {{Wiki|Mathematical}} treatise in nine [[sections]] which uses the [[symbol]] O for zero. A little later, in 1303, Zhu [[Shijie]] wrote [[Jade]] [[mirror]] of the [[four elements]] which again uses the [[symbol]] O for zero.
+
The [[Indian]] [[ideas]] spread [[east]] to [[China]] as well as [[west]] to the [[Islamic]] countries. In 1247 the {{Wiki|Chinese}} {{Wiki|mathematician}} [[Ch'in Chiu-Shao]] wrote {{Wiki|Mathematical}} treatise in nine [[sections]] which uses the [[symbol]] O for zero. A little later, in 1303, [[Zhu Shijie]] wrote [[Jade mirror]] of the [[four elements]] which again uses the [[symbol]] O for zero.
  
 
Fibonacci was one of the main [[people]] to bring these new [[ideas]] about the number system to {{Wiki|Europe}}. As the authors of [12] write:-
 
Fibonacci was one of the main [[people]] to bring these new [[ideas]] about the number system to {{Wiki|Europe}}. As the authors of [12] write:-
  
     An important link between the Hindu-Arabic number system and the {{Wiki|European}} [[mathematics]] is the {{Wiki|Italian}} {{Wiki|mathematician}} Fibonacci.  
+
     An important link between the [[Hindu]]-[[Arabic]] number system and the {{Wiki|European}} [[mathematics]] is the {{Wiki|Italian}} {{Wiki|mathematician}} [[Fibonacci]].  
  
In Liber Abaci he described the nine [[Indian]] [[symbols]] together with the sign 0 for {{Wiki|Europeans}} in around 1200 but it was not widely used for a long time after that. It is significant that Fibonacci is not bold enough to treat 0 in the same way as the other numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 since he speaks of the "sign" zero while the other [[symbols]] he speaks of as numbers. Although clearly bringing the [[Indian]] numerals to {{Wiki|Europe}} was of major importance we can see that in his treatment of zero he did not reach the {{Wiki|sophistication}} of the {{Wiki|Indians}} [[Brahmagupta]], [[Wikipedia:Mahāvīra|Mahavira]] and [[Bhaskara]] nor of the {{Wiki|Arabic}} and [[Islamic]] {{Wiki|mathematicians}} such as al-Samawal.
+
In [[Liber Abaci]] he described the nine [[Indian]] [[symbols]] together with the sign 0 for {{Wiki|Europeans}} in around 1200 but it was not widely used for a long time after that. It is significant that Fibonacci is not bold enough to treat 0 in the same way as the other numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 since he speaks of the "sign" zero while the other [[symbols]] he speaks of as numbers. Although clearly bringing the [[Indian]] numerals to {{Wiki|Europe}} was of major importance we can see that in his treatment of zero he did not reach the {{Wiki|sophistication}} of the {{Wiki|Indians}} [[Brahmagupta]], [[Wikipedia:Mahāvīra|Mahavira]] and [[Bhaskara]] nor of the {{Wiki|Arabic}} and [[Islamic]] {{Wiki|mathematicians}} such as al-Samawal.
  
One might have [[thought]] that the progress of the number systems in general, and zero in particular, would have been steady from this time on. However, this was far from the case. Cardan solved cubic and quartic equations without using zero. He would have found his work in the 1500's so much easier if he had had a zero but it was not part of his [[mathematics]]. By the 1600's zero began to come into widespread use but still only after encountering a lot of resistance.
+
One might have [[thought]] that the progress of the number systems in general, and zero in particular, would have been steady from this time on. However, this was far from the case. [[Cardan]] solved cubic and quartic equations without using zero. He would have found his work in the 1500's so much easier if he had had a zero but it was not part of his [[mathematics]]. By the 1600's zero began to come into widespread use but still only after encountering a lot of resistance.
  
 
Of course there are still [[signs]] of the problems [[caused]] by zero. Recently many [[people]] throughout the [[world]] celebrated the new millennium on 1 January 2000. Of course they celebrated the passing of only 1999 years since when the [[calendar]] was set up no year zero was specified. Although one might {{Wiki|forgive}} the original error, it is a little surprising that most [[people]] seemed unable to understand why the third millennium and the 21st century begin on 1 January 2001. Zero is still causing problems!  
 
Of course there are still [[signs]] of the problems [[caused]] by zero. Recently many [[people]] throughout the [[world]] celebrated the new millennium on 1 January 2000. Of course they celebrated the passing of only 1999 years since when the [[calendar]] was set up no year zero was specified. Although one might {{Wiki|forgive}} the original error, it is a little surprising that most [[people]] seemed unable to understand why the third millennium and the 21st century begin on 1 January 2001. Zero is still causing problems!  

Latest revision as of 07:55, 10 November 2015

Portland Japanese gardens zen garden.jpg
BcEfhjkk.jpg
10bnv42 n.jpg
HUtCc.jpg
Aiwan.jpg
PA UE A.jpg
Stupa 9 8 10.jpg
782sdf.jpg
131.jpg
T1084M97.272.jpeg



 One of the commonest questions which the readers of this archive ask is: Who discovered zero? Why then have we not written an article on zero as one of the first in the archive? The reason is basically because of the difficulty of answering the question in a satisfactory form. If someone had come up with the concept of zero which everyone then saw as a brilliant innovation to enter mathematics from that time on, the question would have a satisfactory answer even if we did not know which genius invented it. The historical record, however, shows quite a different path towards the concept. Zero makes shadowy appearances only to vanish again almost as if mathematicians were searching for it yet did not recognise its fundamental significance even when they saw it.

The first thing to say about zero is that there are two uses of zero which are both extremely important but are somewhat different. One use is as an empty place indicator in our place-value number system. Hence in a number like 2106 the zero is used so that the positions of the 2 and 1 are correct. Clearly 216 means something quite different. The second use of zero is as a number itself in the form we use it as 0. There are also different aspects of zero within these two uses, namely the concept, the notation, and the name. (Our name "zero" derives ultimately from the Arabic sifr which also gives us the word "cipher".)

Neither of the above uses has an easily described history. It just did not happen that someone invented the ideas, and then everyone started to use them. Also it is fair to say that the number zero is far from an intuitive concept. Mathematical problems started as 'real' problems rather than abstract problems. Numbers in early historical times were thought of much more concretely than the abstract concepts which are our numbers today. There are giant mental leaps from 5 horses to 5 "things" and then to the abstract idea of "five". If ancient peoples solved a problem about how many horses a farmer needed then the problem was not going to have 0 or -23 as an answer.

One might think that once a place-value number system came into existence then the 0 as an empty place indicator is a necessary idea, yet the Babylonians had a place-value number system without this feature for over 1000 years. Moreover there is absolutely no evidence that the Babylonians felt that there was any problem with the ambiguity which existed. Remarkably, original texts survive from the era of Babylonian mathematics. The Babylonians wrote on tablets of unbaked clay, using cuneiform writing. The symbols were pressed into soft clay tablets with the slanted edge of a stylus and so had a wedge-shaped appearance (and hence the name cuneiform). Many tablets from around 1700 BC survive and we can read the original texts. Of course their notation for numbers was quite different from ours (and not based on 10 but on 60) but to translate into our notation they would not distinguish between 2106 and 216 (the context would have to show which was intended). It was not until around 400 BC that the Babylonians put two wedge symbols into the place where we would put zero to indicate which was meant, 216 or 21 6.

The two wedges were not the only notation used, however, and on a tablet found at Kish, an ancient Mesopotamian city located east of Babylon in what is today south-central Iraq, a different notation is used. This tablet, thought to date from around 700 BC, uses three hooks to denote an empty place in the positional notation. Other tablets dated from around the same time use a single hook for an empty place. There is one common feature to this use of different marks to denote an empty position. This is the fact that it never occurred at the end of the digits but always between two digits. So although we find 21 6 we never find 216 . One has to assume that the older feeling that the context was sufficient to indicate which was intended still applied in these cases.

If this reference to context appears silly then it is worth noting that we still use context to interpret numbers today. If I take a bus to a nearby town and ask what the fare is then I know that the answer "It's three fifty" means three pounds fifty pence. Yet if the same answer is given to the question about the cost of a flight from Edinburgh to New York then I know that three hundred and fifty pounds is what is intended.

We can see from this that the early use of zero to denote an empty place is not really the use of zero as a number at all, merely the use of some type of punctuation mark so that the numbers had the correct interpretation.

Now the ancient Greeks began their contributions to mathematics around the time that zero as an empty place indicator was coming into use in Babylonian mathematics. The Greeks however did not adopt a positional number system. It is worth thinking just how significant this fact is. How could the brilliant mathematical advances of the Greeks not see them adopt a number system with all the advantages that the Babylonian place-value system possessed? The real answer to this question is more subtle than the simple answer that we are about to give, but basically the Greek mathematical achievements were based on geometry. Although Euclid's Elements contains a book on number theory, it is based on geometry. In other words Greek mathematicians did not need to name their numbers since they worked with numbers as lengths of lines. Numbers which required to be named for records were used by merchants, not mathematicians, and hence no clever notation was needed.

Now there were exceptions to what we have just stated. The exceptions were the mathematicians who were involved in recording astronomical data. Here we find the first use of the symbol which we recognize today as the notation for zero, for Greek astronomers began to use the symbol O. There are many theories why this particular notation was used. Some historians favor the explanation that it is omicron, the first letter of the Greek word for nothing namely "ouden". Neugebauer, however, dismisses this explanation since the Greeks already used omicron as a number - it represented 70 (the Greek number system was based on their alphabet). Other explanations offered include the fact that it stands for "obol", a coin of almost no value, and that it arises when counters were used for counting on a sand board. The suggestion here is that when a counter was removed to leave an empty column it left a depression in the sand which looked like O.

Ptolemy in the Almagest written around 130 AD uses the Babylonian sexagesimal system together with the empty place holder O. By this time Ptolemy is using the symbol both between digits and at the end of a number and one might be tempted to believe that at least zero as an empty place holder had firmly arrived. This, however, is far from what happened. Only a few exceptional astronomers used the notation and it would fall out of use several more times before finally establishing itself. The idea of the zero place (certainly not thought of as a number by Ptolemy who still considered it as a sort of punctuation mark) makes its next appearance in Indian mathematics.

The scene now moves to India where it is fair to say the numerals and number system was born which have evolved into the highly sophisticated ones we use today. Of course that is not to say that the Indian system did not owe something to earlier systems and many historians of mathematics believe that the Indian use of zero evolved from its use by Greek astronomers. As well as some historians who seem to want to play down the contribution of the Indians in a most unreasonable way, there are also those who make claims about the Indian invention of zero which seem to go far too far. For example Mukherjee in [6] claims:-

    ... the mathematical conception of zero ... was also present in the spiritual form from 17 000 years back in India.

What is certain is that by around 650AD the use of zero as a number came into Indian mathematics. The Indians also used a place-value system and zero was used to denote an empty place. In fact there is evidence of an empty place holder in positional numbers from as early as 200AD in India but some historians dismiss these as later forgeries. Let us examine this latter use first since it continues the development described above.

In around 500AD Aryabhata devised a number system which has no zero yet was a positional system. He used the word "kha" for position and it would be used later as the name for zero. There is evidence that a dot had been used in earlier Indian manuscripts to denote an empty place in positional notation. It is interesting that the same documents sometimes also used a dot to denote an unknown where we might use x. Later Indian mathematicians had names for zero in positional numbers yet had no symbol for it. The first record of the Indian use of zero which is dated and agreed by all to be genuine was written in 876.

We have an inscription on a stone tablet which contains a date which translates to 876. The inscription concerns the town of Gwalior, 400 km south of Delhi, where they planted a garden 187 by 270 hastas which would produce enough flowers to allow 50 garlands per day to be given to the local temple. Both of the numbers 270 and 50 are denoted almost as they appear today although the 0 is smaller and slightly raised.

We now come to considering the first appearance of zero as a number. Let us first note that it is not in any sense a natural candidate for a number. From early times numbers are words which refer to collections of objects. Certainly the idea of number became more and more abstract and this abstraction then makes possible the consideration of zero and negative numbers which do not arise as properties of collections of objects. Of course the problem which arises when one tries to consider zero and negatives as numbers is how they interact in regard to the operations of arithmetic, addition, subtraction, multiplication and division. In three important books the Indian mathematicians Brahmagupta, Mahavira and Bhaskara tried to answer these questions.

Brahmagupta attempted to give the rules for arithmetic involving zero and negative numbers in the seventh century. He explained that given a number then if you subtract it from itself you obtain zero. He gave the following rules for addition which involve zero:-

    The sum of zero and a negative number is negative, the sum of a positive number and zero is positive, the sum of zero and zero is zero.

Subtraction is a little harder:-

    A negative number subtracted from zero is positive, a positive number subtracted from zero is negative, zero subtracted from a negative number is negative, zero subtracted from a positive number is positive, zero subtracted from zero is zero.

Brahmagupta then says that any number when multiplied by zero is zero but struggles when it comes to division:-

    A positive or negative number when divided by zero is a fraction with the zero as denominator. Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator. Zero divided by zero is zero.

Really Brahmagupta is saying very little when he suggests that n divided by zero is n/0. Clearly he is struggling here. He is certainly wrong when he then claims that zero divided by zero is zero. However it is a brilliant attempt from the first person that we know who tried to extend arithmetic to negative numbers and zero.

In 830, around 200 years after Brahmagupta wrote his masterpiece, Mahavira wrote Ganita Sara Samgraha which was designed as an updating of Brahmagupta's book. He correctly states that:-

    ... a number multiplied by zero is zero, and a number remains the same when zero is subtracted from it.

However his attempts to improve on Brahmagupta's statements on dividing by zero seem to lead him into error. He writes:-

    A number remains unchanged when divided by zero.

Since this is clearly incorrect my use of the words "seem to lead him into error" might be seen as confusing. The reason for this phrase is that some commentators on Mahavira have tried to find excuses for his incorrect statement.

Bhaskara wrote over 500 years after Brahmagupta. Despite the passage of time he is still struggling to explain division by zero. He writes:-

    A quantity divided by zero becomes a fraction the denominator of which is zero. This fraction is termed an infinite quantity. In this quantity consisting of that which has zero for its divisor, there is no alteration, though many may be inserted or extracted; as no change takes place in the infinite and immutable God when worlds are created or destroyed, though numerous orders of beings are absorbed or put forth.

So Bhaskara tried to solve the problem by writing n/0 = ∞. At first sight we might be tempted to believe that Bhaskara has it correct, but of course he does not. If this were true then 0 times ∞ must be equal to every number n, so all numbers are equal. The Indian mathematicians could not bring themselves to the point of admitting that one could not divide by zero. Bhaskara did correctly state other properties of zero, however, such as 02 = 0, and √0 = 0.

Perhaps we should note at this point that there was another civilisation which developed a place-value number system with a zero. This was the Maya people who lived in central America, occupying the area which today is southern Mexico, Guatemala, and northern Belize. This was an old civilisation but flourished particularly between 250 and 900. We know that by 665 they used a place-value number system to base 20 with a symbol for zero. However their use of zero goes back further than this and was in use before they introduced the place-valued number system. This is a remarkable achievement but sadly did not influence other peoples.

You can see a separate article about Mayan mathematics.

The brilliant work of the Indian mathematicians was transmitted to the Islamic and Arabic mathematicians further west. It came at an early stage for al-Khwarizmi wrote Al'Khwarizmi on the Hindu Art of Reckoning which describes the Indian place-value system of numerals based on 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0. This work was the first in what is now Iraq to use zero as a place holder in positional base notation. Ibn Ezra, in the 12th century, wrote three treatises on numbers which helped to bring the Indian symbols and ideas of decimal fractions to the attention of some of the learned people in Europe. The Book of the Number describes the decimal system for integers with place values from left to right. In this work ibn Ezra uses zero which he calls galgal (meaning wheel or circle). Slightly later in the 12th century al-Samawal was writing:-

    If we subtract a positive number from zero the same negative number remains. ... if we subtract a negative number from zero the same positive number remains.

The Indian ideas spread east to China as well as west to the Islamic countries. In 1247 the Chinese mathematician Ch'in Chiu-Shao wrote Mathematical treatise in nine sections which uses the symbol O for zero. A little later, in 1303, Zhu Shijie wrote Jade mirror of the four elements which again uses the symbol O for zero.

Fibonacci was one of the main people to bring these new ideas about the number system to Europe. As the authors of [12] write:-

    An important link between the Hindu-Arabic number system and the European mathematics is the Italian mathematician Fibonacci.

In Liber Abaci he described the nine Indian symbols together with the sign 0 for Europeans in around 1200 but it was not widely used for a long time after that. It is significant that Fibonacci is not bold enough to treat 0 in the same way as the other numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 since he speaks of the "sign" zero while the other symbols he speaks of as numbers. Although clearly bringing the Indian numerals to Europe was of major importance we can see that in his treatment of zero he did not reach the sophistication of the Indians Brahmagupta, Mahavira and Bhaskara nor of the Arabic and Islamic mathematicians such as al-Samawal.

One might have thought that the progress of the number systems in general, and zero in particular, would have been steady from this time on. However, this was far from the case. Cardan solved cubic and quartic equations without using zero. He would have found his work in the 1500's so much easier if he had had a zero but it was not part of his mathematics. By the 1600's zero began to come into widespread use but still only after encountering a lot of resistance.

Of course there are still signs of the problems caused by zero. Recently many people throughout the world celebrated the new millennium on 1 January 2000. Of course they celebrated the passing of only 1999 years since when the calendar was set up no year zero was specified. Although one might forgive the original error, it is a little surprising that most people seemed unable to understand why the third millennium and the 21st century begin on 1 January 2001. Zero is still causing problems!

Source

http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Zero.html